Y pallas

Gesellschaft fiir Parallele Anwendungen und Systeme mbH

OpenMP Tools

Hans-Joachim Plum, Pallas GmbH
edited by Matthias Muller, HLRS

Pallas GmbH
Hermilheimer StralRe 10
D-50321 Briihl, Germany

info@pallas.de
http://www.pallas.com

Introduction: OpenMP is clear and easy .. ////

© Easy directive based handling

© Portable code

© Single source for sequential/parallel

© Incremental parallelization

© Well-defined semantics

So, why tools ?

© Pallas GmbH

Introduction: ... but ////

@ Performance tuning can be tricky
Losses are transparent

@ "Easy’ to introduce data conflict bugs
These are tedious to fix

@ Data mapping
Will be important for clusters. Heavy inter-thread data
dependencies often difficult to detect.

m OpenMP tools must
— bring out the strengths of OpenMP
— help to overcome the problems

- _©PallasGmbH

Introduction: KAP/Pro Toolset ////

m Supported Platforms:
— Compagq alpha (True64 Unix, WinNT4.0)
— SGI MIPS (IRIX 6.5)
— Sun SPARC (Solaris 2.5, 2.6, 2.7)
— Intel IA32 (WinNT4.0, Linux86, Solaris86)
— HP PA-RISC 2.0 (HP-UX 11)
— IBM RS/6000 (AIX 4.1.* - 4.3)

:@?F’allawmbl—l

Overview: KAP/Pro Toolset ////

= Guide: fully OpenMP compliant F77/F90/C/C++ compiler
m GuideView: graphical performance analysis tool

m Assure: fully OpenMP compliant F77/F90/C/C++ compiler for
checking semantical code correctness

m AssureView: graphical backend of Assure

m PerView: online performance monitor

© Pallas GmbH

Overview: Guide and GuideView ////

= Guide: fully OpenMP compliant C/C++/F77/F90 compiler

m Based on native compiler => native performance, native
options are passed to backend compiler

PLUS:

= An additional statistics library on user request, traces OpenMP
events at runtime

m After run, visualize tracefile with GuideView

© Pallas GmbH

Overview: Sample with GuideView ////

—|Region—3pecific Thread Times — R3¢ - | _|

Filz ‘Window Opotions Help
00s.[idetme 00s.[[] barriers time
00s.[0 sequentialavh. 15s.[ll mbalkance time
00s.ll synchronzed time 00s.[ll paralelovh.
00s.[0 locks time 55s.[0 paraleltme

R36 infile _solve, routine Z_SOLVE_CELL,
atline 40,# invocations 201. Input file g_stats_4.2.

Tolal ime =705,
4
Fo

Thread order: TO T1 T2 T3

© Pallas GmbH

What can be detected? ////

Guide (and its alarm colors):

m Loadimbalance O

m Too many synchronization points

m Too much ‘communication” [

m Heauvy critical sections O

m Acquiring locks O

m Heavy sequential sections (overhead) 0 ()
m |dle times [

= And the good color is O

(independent work of thread)

© Pallas GmbH

Performance tuning: invoke Guide -WGstats ////

m Compile code with Guide compiler:

guidef90 [options] -WGstats -0 myprog myprof.f90

m Execute

setenv OMP_NUM_THREADS ..

./myprog
=> Guide statistics file guide.gvs has been produced

m Visualize

guideview guide.gvs&

© Pallas GmbH

What can be detected: Loadimbalance ////
| $OVP PARALLEL
I $OWP DO — Region-Specific Thread Times —R1 |
50 i =1, xl en Fie. Cpins ieien
00s. [l ide time 00s.[0 barriertime
IF(i<xlen/2) THEN 00o ywwenseaime ODS e
X(i)=sin(float(i)) e
y(i)=real (i) Toetime =pos
ELSE .
x(i)=L.
y(i)=1.
ENDI F 1.
ENDDO
| $OMP END PARALLEL e

© Pallas GmbH

Source code view is available! ////
=i Raio=speaic Thid T =R1— | File loadinb.fon B
| P cosors Windew ..1ed region begins on line 10 1002 [N
1| PROGRAM easy &
005 e tme 00s.[] barriertn 2
::::E T et ::::E i 3 INTEGER, PARAMETER. : xlen=100000
oo lcktime oos. [parabelts 4
A1 in il ioadint. 154, rowline EASY, 9 FEEAL, DIMENSION (xlen):: x.y
al fine 10, & invosations 1. lnpul fik guide gvs. g
Total lime =0.0%. 7 INTEGER:: i
H
3 i
11 1304 Do
12 Do i=l.xlen
13
14 1F{ i<xlens2) TEEN
15 x(i)=sin(float (i}
18 y(il=real {i)
w 17 ELSE
18 xli=l. m
18 ylil=l.
Thread order: TO T 20 ENDIF
BT
Right mouse click
=> Show code

© Pallas GmbH

What can be detected: ////

I $OVP PARALLEL
! $OVP m Whole Program Thread Times — all th reads

m I :1 XI en File Onotions Window Helpl
. 00s.[ideetime 00s.[0 barrier fime
<i nbal anced as above> 08s.[] sequentialavh. 00s.ll imbalance lime
00s.Jll synchronized time 00s.[ll paralielovh.
00s.[0 locktime 00s.[0 paralleltime
ENDI) Input file guide gvs.

Total time =0.1 s. Thread number 1.

' $OWP DO
DO i =2, xl en

z(i) = x(i-1)+y(i)
ENDDO e

Thread order: T0 T1

' $OVP END PARALLEL

© Pallas GmbH

What can be detected: Overhead ////

Par al I el I zation Of Region—Specific Thread Times — R2

i nner nost I OOp: File Options Wincow Help |
00s.[l e time 00s.[barriertime
00s.[[] sequentialovh. 00s.[ll mbalance time
00s.[ll synchronzed time 00s. [l paralielovh.

m | =1, 1000 00s.[d locktme 00s.[0 paraliel time

R2 in filke ovrhd.f90, routine EASY,
at line 14, # invocations 1000. Input file guide gvs.
Totaltime =00 s.

I $OVP PARALLEL DO 3
DO j =1, 100
tenmp(j) = &
tenp(j)+1./i
ENDDO

Thread order: TO T1

ENDDO

- ©PalasGmbH _

What can be detected: Critical + Locks ////

I $OVP PARALLEL PRI VATE(tenp)

! $OVP m I Region—Specific Thread Times — R1
P File Opfians Window Hel
DO i =1, 100000 ol
00s. [l idietime 00s.[] barrier time
| PARAL LEL PRVI ATE o0s.[] sequential ovh. 00s. [l mbalance time
" 0.1s.Jll synchronized time 0.1s.[ll paralielovh.

| CALCULATI ONS . . e e, |
tenp = 1. e ogs, o

| CRITI CAL UPDATES :

I $OVP CRI TI CAL

sum = sumtsi n(tenp)
I $OVP END CRI TI CAL
ENDDO

' $OVP END PARALLEL

S ©PalasGmbH

Fo

Thread order: TO T1

The incremental optimization cycle ////

Initial OpenMP program

v

guidef -WGstats

guideview

A

Tune most important region(s)

l

O.K. Assure (View) fault

© Pallas GmbH

Guide ////

Output file names can be controlled by environment variables:

KMP_STATSFILE (guide.gvs file)
KDD_OUTPUT (.kdd file of assure, see below)

Three meta characters are available to use in the names:
%P #threads of the run

%I unix process id of the run
%H hostname to run the program

© Pallas GmbH

Guide ////

e.g.

setenv KMP_STATSFILE gs%P_%|_%H

gives Guide statsfile similar to

gs2_11074_vision.gvs

© Pallas GmbH

GuideView: Displays ////

Usage:
guideview <stats_file>

Main display

m Estimated speedup

m Whole program timing breakdown

© Pallas GmbH

GuideView: Displays ////

Whole timing breakdown (averages of threads)
—IH

=i
Estimated Speedup
a
3 __ upper speedup curve
= " Iower speedup curve Left butt
£ __ideal speedup curve e U On
3 2
&
1 = run’s upper speedup
o = run's lower speedup

number of threads

o 1 2 3 a = run’s actual speedup / dOUbIeCIiCk

Whole Program Time Distributions

=> ..

» 250.0
= S 1 showing
S FD: g_stats.gvs
- Thu May 25 13:13:36 2000
S 0.1 s. total time
= 2 parallel 0 barrier regions
23 run on 2 threads
H 0.0 s.sequential
[0 0.0s. sequential ovh.
B 0.0 s. synchronized
[E 0.0s.lock
O 0.0s. barrier
Fo 2T B 0.0 s_imbalance
[l 0.0 s._parallel ovh.
E 0.1 s. parallel

© Pallas GmbH

GuideView: Displays ////

... => Thread timing breakdown

—|Whole Program Thread Times — all threads - |_|
File Optioi Windoey Help

00s. [idle time 0.0s.[] barrier time

0.0s.[] sequential ovh. 0.0%: imbalance time
0.0s. [l synchronized time 0.0s. wh.
00s.[@ lock time 0.1 s.[0 paraliel time
Input file g_stats.gvs.
Total time = 0.1 s. Thread number 1. R . V_
4
=> ..
Fo

Thread order: TO T1

© Pallas GmbH

GuideView: Displays ////

...=> Region timing breakdown (again average or per thread)

e
I Thread Average Region Times I
File Options Sort Windaw Help

JolJeNjey

0.0s. [l sequential time 0.0s.[] barrier time
0.0s.[] sequential ovh, 0.0s. [l imbalance time
0.0s. [l synchronized time 00s. [l paraliel ovh.
0.0s.[@ lock time 00s. [0 parallel time

R2, routine EASY in file easy_omp.f30,
at line 20, # invocations 1. Total time = 0.0 s.
01 2 3 4 Input file g_stats.gvs.

number of threads

I J
=

51 ri 52 n2 53

speedup
o = Now oA

Input file order: FO

© Pallas GmbH

GuideView: Displays ////

Region timing breakdown
m Each parallel region (denoted 'R1, R2, ...")
m Each sequential part (denoted "S1, S2, ...")

® Inside each region (optional):

Breakdown into sections between barrier points
(denoted 'RxB1, RxB2 ...").

Can be unselected in "Options/Show Barrier Regions"

© Pallas GmbH

GuideView: Displays ////

Always remember:

There is a link between each of the displayed sections and the

corresponding code

(right mouse button on column => context "show code”)

© Pallas GmbH

GuideView: Displays ////

m Click "Help/GuideView Info" for explanations

® Whole Program Time Distribution
The three-di i hars give a br of the

observed time spent in each Kind of construct for the
whole program.

% Sequential is time spent oulside of parallel regions.

% Sequential overhead is time spent outside of parallel
regions in the Application Accelerator library.

% Synchronized is time spent inside critical sections.

% Locks is time spent waiting to acquire locks.

% Barriers is time spent waitling at barriers.

% Imbalance is time spent wraiting at join barriers.

% Parallel overhead is time spent inside the Application
Accelerator library in the parallel regions.

% Parallel is time spent inside parallel regions hut
outside of the above non-overhead constructs.

Positioning the mouse above different bars will display
the performance numbers and informational data for
the selected input.

© Pallas GmbH

GuideView: Displays ////

Sort button
Several sort criteria for the regions, in particular:

sort by time => most important first
sort by overhead => most critical first

Options/Filter button

Filter regions, e.g. only display heavy ones (more than 10% of
total)

- ©PalasGmbH _

GuideView: Trace Comparison ////

Compare different #threads for same program (e.g.)

m guideview <first statsfile>

m Click "File/open new file "
Menu opened => select second statsfile

All views are then comparative between the two files

S ©PalasGmbH

GuideView: Trace Comparison (1 <-> 2 threads) ////

KAl GuideView
File View Cpboes Window Halp

2

Estimated Speedup

‘Whole Program Time Distribulions

T 2 2500 MHz rale
1 ! O 2 rues 2 showing
o3

o PO guade gv
D Tha May £5 20-10:40 2000
2 D35 iotltme
2 Eparalkl0barrier reglors
@ runcni thread

OENCOEECE
a

- ©PalasGmbH _

Overview: Assure and AssureView ////

m Assuref77/f90: OpenMP compliant, restriction in usage of
OMP library (in particular: OMP_GET_THREAD_NUM)

m Use as normal compiler, but not for getting performance (small
input data set)

m Multithreaded run is simulated sequentially, all memory
accesses verified

m Run AssureView to visualize error breakdown. When "No
Errors" are reported, multithreaded run is assured free of
semantical errors as explained below, but only in the branches

touched by the simulation run.

© Pallas GmbH

What can be detected: invoke Assure ////

m Compile code with yet another compiler:

assuref90 [options] -0 myprog myprof.fo0
m Execute (but don‘t expect performance!!)

./myprog

m Visualize

assureview

© Pallas GmbH

Assure ////

The Assure process

Souce program

Assuref compiler

l

Run executable

'

Simulation file .kdd Project file .prj

Assureview

© Pallas GmbH

What can be detected: Conflicts ////

real:: a(0:N), b(N
a(0) = 0.
I $OVP PARALLEL
'$OWP DO
DO i=1,N

a(i) = 1.17i

b(i) = a(i-1)+a(i)
ENDDO

What s wrong ??

© Pallas GmbH

What can be detected: Conflicts ////

g‘ Source: confl.fon ‘ . |J‘

Show Search Source: confl190 ‘ Show Stack
1 program confl L4
2

3 integer, parameter:: N-10 -
1 real:: ail:N). b(NI, aux Show Search Sink: confl50 Show SIackJ
: |
1 pregrs £1
6 al0) =0 2 o con =
1 3 integer, parameter ' N-10
g 4 real:: al0:N). biN), aux
9 !S0MP PARALLEL 5
10
g aldl = 0.
@ 11 !'soe Do 7 :
12 Do i=1,1 H
@13 ali) =1.7i 9 |S0MP PRRALLEL
® 11 bli) = ali-li*ali) 10
15 EHDDO @ 11 !sop Do
18 12 DO i=1,N
17 !S0MP END PARALLEL ® 13 s - 1gi
8 @[14 bii) = ali-i+ali]
19 print, b 15 ERODO
20 16
@ Il !50MP PARALLEL 17 |$OMP END FARALLEL
22 N
18
23 'S0MP Do 15 priot*, b
24 DO i=1.0 20 ’
® 25 bli) = auxtalil @ 20 !30MP PRRALLEL
26 22
27 !SO0MP ENDDO NOHRIT 33 S0P Do
28 : 24 DO 11N
28 'SP DO ® 25 kii) = auxtali)
30 DO i=1.N 26 EWDO
27 !SOMP ENLDO NOWAIT
28
29 1S0MF DO
L 30 DO i=1,N0

© Pallas GmbH

. /
What can be detected: Conflicts ///
— Source: confl.fon [‘J”
Shaow Search Source: confl.f90 Show Stack
@ 11 500 Do Al
12 DO i=1.K
® 13 al) =1 . .
@ 14 b)) = ali-D+ali) = sSink: confl.fon [
15 o B Sink: conlLf90 ‘ Show Stadk |
17 !'30MP END PARRLLEL I 17 !'S0MP END PAFALLEL ik |
18 18
10 prints, b 18 print*, b
20 20
@ 21 !50MP PARALLEL @ 21 5040 PARALIEL
22 22
23 1500 DO 23 150 DO
24 DO i=1,K 240 i=1,1
@[25 bii) = auxtali) @ 25 bili) = auxtaiil
26 EHDDO 26
27 150MF ENDDO NOWAIT 27 1SOMP ENDDO NOWAIT
28 28
20 |S0MP DO 20 150MP DO
30 DO i=1,K 30 DO i=1.N
® 31 al) =bli-) @G a0 -b0-D)
32 ENDDO 32
33 3
34 34
35 !30MP END» PARALLEL 35 'SOMP END PARALLEL
36 36
37 print=, b 37 print*, b
38 8
’I 39 !50MP PARALLEL 38 !S0MP PARMLLEL
‘ 40 10
@ 41 !50F Do
1210 i=1,0 !
@ 13 aux = ati-l)+atid
® 14 bli) = aweanx
| 45
6

4
© Pallas GmbH

Assure: Error Types ////

Write-Read conflicts
I $OVP PARALLEL DO
DO i=1,N
a = b+c(i)
d(i) = ate(i)

The 2 statements inside the loop have to be executed in that
(Write-Read) order, which is not guaranteed in a multithreaded

run (a is shared by default).

Repair: private(a)

© Pallas GmbH

Assure: Error Types ////

Read-Write conflicts

| $OVP PARALLEL DO
DOi=1,N
d(i) = a+e(i)
a = b+c(i)

Repair: private(a)

- ©PalasGmbH _

Assure: Error Types ////

Write-Write conflicts
I $OVWP PARALLEL DO
DO i=1,N

a = b+c(i)

Repair: private(a)

- _©pPalasGmbH _

Assure: Error Types ////

Private symbol, used outside loop

I $OWP paral lel do private(a)
DOi=1,N
a=c(i)
d(i) = a*a
ENDDO
PRI NT*, a

Repair: lastprivate(a)

© Pallas GmbH

Assure: Error Types ////

Uninitialized private
firstiter = . TRUE.

I $OWP parallel do private(firstiter)
DO i=1,N

IF(firstiter) THEN ...
ENDDO

Repair: firstprivate(firstiter)

© Pallas GmbH

Assureview: Displays ////

Main

m Main error list
- Clickable button for each error
Click to get precise diagnostics

- Overview chart showing statistics of bugs, different
severities

m Call Tree

allas GmbH

Assureview: Displays ////

Project: assure Data File: assu

File “iew Search Print Preferences Reorder ‘Windows Help

I NealESNCT

- @ 5Lobal notations that apply to the entire progranm
¢’ Default EMP_STACKSIZE should be sufficisnt; estimated stack usage = 2056 bytes
= @ FSCR/S has inconsistent size. Declaration marked in red should have heen the largest:
-+ Length 1s 12000 in roukine COMPUTE
.4 Length 1s 40 in routine BARBUGS
-@ 5 Constructs containing Errors, Warnings, or other Messages
=@ 1 Error in Routine: PARBUGS
.PRIVRTE symbol referenced outside parallel construct in BARBUGS: I referenced as I in PARBUGS (wr
B. 2 Errors in PARALLEL DO: PARBUGSR18-22
{ @@ ERead -> Write IT in PARBUGS -» IT in PARBUGS
L @Write -> Vrite II in PARDUGS
=@ 2 Errors in PARALLEL region: PAREUGS®25-34
i@ Write -»> Read ISOMAY in PARBUSS -» ISOMAX in PARBUGS
i@ Parallel I/0 incorrectly synchronized in PAREUGS
=@ 2 Errors in PDO: PARBUGSRZE-30

|]
Program Wide Errors Per Parallel Comstruct. Total: 8 Errors
MErrors g
E cautions
OWarnings
ok
W Hot Run

© Pallas GmbH

Assureview: Displays ////

Reading the diagnostics
Click the "+" buttons to get into the diagnostics

Finally the code sections are shown containing the error
locations, (source and sink), both clearly marked.

© Pallas GmbH

AssureView: Displays ////

Inside code windows
m Show Search: normal string search menu

m Show Stack: show the calling sequence for arriving at the
location.

© Pallas GmbH

Assureview: Displays ////

Other buttons

View
Select display of the error list

Search
Normal search menu, inside error list

Print
Self explaining

© Pallas GmbH

Assureview: Displays ////

Preferences
Miscellaneous settings. In particular:
source code locations ("finding files")

Reorder
.. error list by different criteria

© Pallas GmbH

Thanks for your attention!

Y pallas

Pallas GmbH
Hermilheimer Straf’e 10
D-50321 Briihl, Germany

info@pallas.de
http://www.pallas.com

