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Outline – [Chap. 1  Parallel hardware architectures]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best for my application?
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Concepts

Parallel Processing concepts: 
• Pipelining -> vector computing
• Functional Parallelism -> modern processor technology
• Combined instructions -> e.g. multiply-add as one instruction
• Multithreading
• Array-Processing
• Multiprocessors (strongly coupled) -> Shared memory
• Multicomputers (weakly coupled) -> Distributed memory

Memory access concepts:
• Cache based
• Vector access via several memory banks
• Pre-load, pre-fetch

—> MFLOP/s performance  and MB/s or Mword/s memory bandwidth 

Hybrid
architectures
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Major Parallel Hardware Architectures

• Shared Memory
– SMP = symmetric multiprocessing

• Distributed Memory
– DMP = distributed memory parallel

• Hierarchical memory systems
– combining both concepts
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Multiprocessor - shared memory

Memory-Interconnect

CPU CPU CPU CPU

memory
bank

memory
bank

memory
bank

memory
bank

• All CPUs are connected to all memory banks with same speed 
• Uniform Memory Access (UMA)
• Symmetric Multi-Processing (SMP)
• Network types, e.g.

• Crossbar independent access from each CPU 
• BUS one CPU can block the memory access of the other CPUs
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Multicomputer - distributed memory

Node-Interconnect

CPU CPU CPU CPU

Memory Memory Memory Memory

Node or PE (processing element)

• Nodes are coupled by a node-interconnect
• Each CPU: – Fast access to its own memory 

– but slower access to other CPU’s memories
• Non-Uniform memory Access (NUMA)
• Different network types, e.g. BUS, torus, crossbar
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Hybrid architectures

Node Interconnect

• Most modern high-performance computing (HPC) systems are 
clusters of SMP nodes

• SMP (symmetric multi-processing) inside of each node
• DMP (distributed memory parallelization) on the node interconnect

SMP 
node
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Interconnects

• Memory interconnect
– bus 
– cross-bar

• Node interconnect
– bus based networks

•

– multi-link networks, e.g.,
• ring with independent 

connections

– 2-D or 3-D torus
• each processor is connected 

by a link with 4 or 6 neighbors

– hierarchical networks 
• multi-level cross-bars

– cross-bar (single level)
– full interconnect

3-D torus  (8x8x3 nodes)

cheap, 
but poor
inter-
connect

scalable
network 
costs,
high accumulated 
bandwidth

not scalable!  — n*(n-1)/2 links
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Other Architectures

• ccNUMA (cache coherent non-uniform memory access)
– a distributed (hybrid) architecture
– looks like one big SMP
– programmable like one big SMP
– but cluster of several small SMPs in reality 
– cache coherent
– programming:

• global access with same load/store instruction as local
• parallelization, e.g., with OpenMP

• ccNUMA with >500 CPUs and multi-level network
• parallelization, e.g., with Multi Level Parallelism (MLP)

• DMP with RDMA (remote direct memory access)
– programming:

• global memory access with special instructions, but without OS
• e.g. Co-array Fortran, UPC (Universal Parallel C), shmem

• MTA (multi-threaded architecture)
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Hitachi SR 8000-F1/112  (Rank 5 in TOP 500 / June 2000)

• System:
– 168 nodes, 
– 2.016 TFLOP/s peak
– 1.65 TFLOP/s Linpack
– 1.3 TB memory

• Node:
– 8 CPUs, 12 GFLOP/s
– 8 GB, SMP
– pseudo-vector
– ext. b/w: 950 MB/s

• CPU:
– 1.5 GFLOP/s, 375 MHz
– 4 GB/s memory b/w 

• Installed: 1.Q 2000 at LRZ
• Extended: 1.Q. 2002 

(from 112 to 168 nodes)
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Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s
10 TB memory
optical 640x640 crossbar
50m x 20m without 

peripherals
• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP
ext. b/w: 2x16 GB/s

• CPU: Vector
8 GFLOP/s, 500 MHz
Single-Chip, 0.15 µs
32 GB/s memory b/w

• Virtual Earth  - simulating
– Climate change (global warming)
– El Niño, hurricanes, droughts
– Air pollution (acid rain, ozone hole)
– Diastrophism (earthquake, volcanism)

• Installation: 2002
http://www.es.jamstec.go.jp/

single-stage
crossbar

640*640 (!)

.....

.....

Node 1

Node 640
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Outline  – [Chap. 2  Parallel Programming Models]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best for my application?
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Why?

• Why should I use parallel hardware architectures?

• Possible answers:
– The response of only one processor is not just in time
– Moore‘s Law:

• The number of transistors on a chip will double approximately every 18 
month

• in the future, the number of processors on a chip will grow

– You own a 
• network of workstations (NOW)
• Beowulf-class systems 

= Clusters of Commercial Off-The-Shelf (COTS) PCs 
• a dual-board or quad-board PC

– Huge application with huge memory needs 
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Abstract Model

Questions
& Response

Reality

Physical Model

Mathematical Model

Numerical Scheme

Application Program

Hardware Architecture

a few parallel
Programming Models
e.g. MPI   HPF   OpenMP
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Parallelization strategies   — hardware resources

• Two major resources of computation:
– processor
– memory

• Parallelization means
– distributing work to processors
– distributing data (if  memory is distributed)

and
– synchronization of the distributed work
– communication of remote data to local processor (if memory is distr.)

• Programming models offer a combined method for
– distribution of work & data, synchronization and communication
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Distributing Work & Data

do i=1,100
i=1,25
i=26,50
i=51,75
i=76,100

Work decomposition
• based on loop decomposition

Domain decomposition
• decomposition of work and

data is done in a higher model,
e.g. in the reality

A(  1:20, 1:  50)
A(  1:20, 51:100)
A(21:40, 1:  50)
A(21:40, 51:100)

Data decomposition
• all work for a local portion

of the data is done by the
local processor
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Synchronization

• Synchronization
– is necessary
– may cause

• idle time on some processors
• overhead to execute the synchronization primitive

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-i)
Enddo
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Communication

• Communication is necessary on the boundaries

– e.g. b(26) = a(26) + f*(a(25)+a(27)-2*a(26))

– e.g. at domain boundaries 

Do i=2,99
b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i))

Enddo

a(1:25), b(1:25)
a(26,50), b(51,50)
a(51,75), b(51,75)
a(76,100), b(76,100)
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Major Programming Models

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1
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Shared Memory Directives  – OpenMP,  I. 

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO
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Shared Memory Directives  – OpenMP,  II.

Master ThreadSingle Thread

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL



2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-12

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 23

Shared Memory Directives  – OpenMP,  III.

• OpenMP
– standardized shared memory parallelism
– thread-based
– the user has to specify the work distribution explicitly with directives
– no data distribution, no communication
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling
– standardized since 1997

• Automatic SMP-Parallelization
– e.g., Compas (Hitachi), Autotasking (NEC)
– thread based shared memory parallelism
– with directives (similar programming model as with OpenMP)
– supports automatic parallelization of loops
– similar to automatic vectorization
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Major Programming Models  – HPF

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2
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Data Parallelism   – HPF,  I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)
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Data Parallelism   – HPF,  II.

• HPF (High Performance Fortran)
– standardized data distribution model

– the user has to specify the data distribution explicitly 
– Fortran with language extensions and directives
– compiler generates message passing or shared memory parallel code
– work distribution & communication is implicit
– set-compute-rule:

the owner of the left-hand-side object computes the right-hand-side

– typically arrays and vectors are distributed

– draft HPF-1 in 1993, standardized since 1996 (HPF-2)
– JaHPF since 1999
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Major Programming Models  – MPI 

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2

3
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Message Passing Program Paradigm  – MPI,  I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank 
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0
data

sub-
program

myrank=1
data

sub-
program

myrank=2
data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network
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Additional Halo Cells   – MPI,  II.

Halo
(Shadow,
Ghost cells)

User defined communication
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Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing   – MPI,  III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition
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Summary   — MPI,  IV.

• MPI (Message Passing Interface)
– standardized distributed memory parallelism with message passing
– process-based

– the user has to specify the work distribution & data distribution
& all communication

– synchronization implicit by completion of communication
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– typically domain decomposition is used
– communication across domain boundaries

– standardized 
MPI-1:   Version 1.0 (1994), 1.1 (1995), 1.2 (1997)
MPI-2:   since 1997
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Distribution methods

Decom- easiest Memory distribution Work distribution
position Model & communication

• Work OpenMP – none – explicit by program
(with directives)

• Data HPF explicit by program implicit by set-compute-rule
(with directives) or explicit with ON directive

& implicit comm.

• Domain MPI explicit by program explicit by program
(via process‘ ranks) (via process‘ ranks) 

& explicit communication
(with MPI library routines)
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Limitations, I.

• Automatic Parallelization
– the compiler 

• has no global view
• cannot detect independencies, e.g., of loop iterations

parallelizes only parts of the code

– only for shared memory and ccNUMA systems, see OpenMP 

• OpenMP
– only for shared memory and ccNUMA systems
– mainly for loop parallelization with directives
– only for medium number of processors
– explicit domain decomposition also via rank of the threads 
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Limitations, II.

• HPF
– set-compute-rule may cause a lot of communication
– HPF-1 (and 2) not suitable for irregular and dynamic data
– JaHPF may solve these problems, 

but with additional programming costs
– can be used on any platform

• MPI
– the amount of your hours available for MPI programming
– can be used on any platform,  but

communication overhead on shared memory systems
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Other Concepts

• shmem  and  MPI-2 one-sided communication
• Distributed memory programming (DMP) language extensions

– Co-array Fortran
– UPC (Unified Parallel C)

• Multi level parallelism (MLP)
• Threads: A single process having multiple execution paths
• Remote Memory Operation: A set of processes in which one 

process can access the memory of another process without its 
participation

• Shared Virtual Memory (SVM)
Software based Distributed Shared Memory (SoftDSM)
Distributed Virtual Shared Memory (DVSM)
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SHMEM - Shared Memory Interface

• SHMEM allows a user to access remote memory locations with 
shmem_..._put() and shmem_..._get() routines.

• For parallel machines with global address space, this means no 
OS intervention => high bandwidth and low  latency.

• Targeted for SPMD programs.
• No forced syncs:  User has control of (and responsibility for) 

integrity of data from remote transfers.
• High BW, low latency and minimal syncs make SHMEM very fast, 

but dangerous if not carefully used.
• Cache coherency must be programmed explicitly.
• Example Cray T3E: 

– MPI and SHMEM bandwidth ~ the same
– MPI latency about 10x longer than SHMEM latency
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DMP Language Extensions,  I.

• Programmable access to the memory of the other processes
• Language bindings:

– Co-array Fortran
– UPC (Unified Parallel C)

• Special additional array index to explicitly address the process
• Examples (Co-array Fortran):

integer  a[*], b[*] ! Replicate a and b on all processes
a[1] = b[6] ! a on process 1  :=  b on process 6 

dimension (n,n) :: u[3,*] ! Allocates the nxn array u
!                 on each of  the 3x* processes

p = THIS_IMAGE(u,1) ! first co-subscript of local process
q = THIS_IMAGE(u,1) ! second co-subscript of local process 
u(1:n,1)[p+1,q] = u(1:n,n)[p,q] ! Copy right boundary u(1,) on process [p,]

! to right neighbor [p+1,] into left boundary u(n,)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 38

Multi Level Parallelism (MLP)
• program
• processes
• multiple threads inside

of each process 
(OpenMP)

• data associated with 
each process

• but shared (ccNUMA) 
access to other 
processes’ dataCheap load balancing

– by changing the number of threads per process
– before starting a new parallel region
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Programming Models on Hardware Platforms

Hardware allows: Usable programming model:

• only reliable message transfer MPI, HPF

• remote DMA (direct memory access) ´´ ,    ´´ + SVM, shmem, 
UPC, Co-array Fortran

• SMP and PVP, MTA, ccNUMA ´´ ,    ´´ + ´´ ,  ´´ , ´´ , ´´ + OpenMP
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Programming Models on Hybrid Systems

• MPI based: 
– the MPP model

• massively parallel processing
• each CPU = one MPI process

– MPI + OpenMP
• each SMP node = one MPI process
• MPI communication on the node interconnect
• OpenMP inside of each SMP node
• DMP with MPI  &  SMP with OpenMP

– MPI + automatic parallelization
• Compas on Hitachi,  Autotasking on NEC, ...
• same model as MPI+OpenMP

• Other models:
– HPF, MLP, ...  

Node Interconnect
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Outline – [Chap. 3  Which programming model is the best?]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best 
for my application?
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Which parallel programming model is the best 
for my application?

• no absolute answer

• only hints on the next slides
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Why do I want to parallelize my code?

• time
– parallelization of the work on many CPUs 
– to speedup the execution

• memory space
– the application does not fit to the available memory of one CPU
– parallelization on distributed memory
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Additional questions

• Available parallelization strategies in my numerical scheme?
– loop parallelism
– domain decomposition

• Which hardware architecture?
– today
– in the future

• How many working hours do I want to spend for parallelizing the code?

Numerical Scheme
Application Program

Hardware Architecture
Programming Model
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Execution time

• My application runs to slow
– (Floating point) operations / second on each CPU?

• vectorization (memory CPU memory)
– expensive hardware  /  cheap programming effort

• cache oriented optimization
– cheap hardware  /  expensive programming effort

• such optimization is impossible for me
– Parallelization

• shared memory
– expensive & limited hardware  /  cheap programming effort

• distributed memory
– cheap hardware  /  expensive programming effort

Today / in the future

OpenMP, HPF, MPI

MPI, HPF, shmem, MLP, CoArrayFort., ...
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Speedup, Efficiency, and Scaleup

• Definition:
– T(p,N) = time to solve problem of size N on p processors

• Speedup:
– S(p,N) = T(1,N) / T(p,N)
– compute same problem with more processors in shorter time

• Efficiency:
– E(p,N) = S(p,N) / p

• Scaleup:
– Sc(p,N) = N / n    with  T(1,n) = T(p,N)
– compute larger problem with more processors in same time

• Problems:
– Absolute MFLOPS rate / hardware peak performance?
– S(p,N) close to p or far less?   —> see Amdahls Law on next slide
– Or super-scalar speedup:  S(p,N)>p, e.g., due to cache usage   
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Amdahls Law

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)
For p —> infinity,  speedup is limited by S(p,N) < 1 / f

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
p = #processors

Sp
ee

du
p 

S(
p,

N
) S(p,N) = p (ideal speedup)

f=0.1%  =>  S(p,N) < 1000
f=   1%  =>  S(p,N) < 100
f=   5%  =>  S(p,N) < 20
f= 10%  =>  S(p,N) < 10
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Amdahls Law  (double-logarithmic)

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)
For p —> infinity,  speedup is limited by S(p,N) < 1 / f

1

10

100

1000

1 10 100 1000
p = #processors

Sp
ee

du
p 

S(
p,

N
) S(p,N) = p  (ideal speedup)

f=0.1%  =>  S(p,N) < 1000
f=   1%  =>  S(p,N) < 100
f=   5%  =>  S(p,N) < 20
f= 10%  =>  S(p,N) < 10
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Parallelization problems

• Two major resources of computation:
– processor
– memory

• Parallelization means

– distributing work to processors
—> load balancing necessary
—> synchronization overhead should be minimized

—> to achieve optimal speedup

– distributing data (if  memory is distributed)
—> implies communication 

to bring data to processor
—> communication is overhead

—> is reducing the speedup

du/dx = (–ui +ui+1)/∆x
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Which hardware should I use / buy?

• Network Of Workstations (NOW)

• Beowulf class system / 
Clusters of Commercial Off-The-Shelf PCs 
(COTS)

• PVP (Parallel Vector Processor)
with shared memory

• Hybrid systems (cluster of SMPs)

many processors,
distributed memory

small number of CPUs

medium number of CPUs

for same hardware costs

Implications for software costs?
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Parallelization costs

• low  costs for parallel hardware high parallelization costs
• high costs for parallel hardware low parallelization costs

costs for parallel hardware

costs for
parallelization 
of software
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Advantages and Challenges

  OpenMP HPF MPI 
Maturity of programming model ++ + ++ 
Maturity of standardization + + ++ 
Migration of serial programs ++ 0 – – 
Ease of programming (new progr.) ++ + – 
Correctness of parallelization  – ++ – – 
Portability to any hardware architecture – ++ ++ 
Availability of implementations of the stand. + + ++ 
Availability of parallel libraries 0 0 0 
Scalability to hundreds/thousands of 
processors  

– – 0 ++ 

Efficiency – 0 ++ 
Flexibility – dynamic program structures – – ++ 
  – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut.
– – ++ 
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Implications on Hybrid Systems

• Hybrid system = cluster of SMPs, e.g., with vector CPUs
– MPP (massively parallel processing) model  (pure MPI): 

• one MPI process on each CPU
– hybrid model: MPI+OpenMP or  MPI+automatic parallelization

• each MPI process is multi-threaded with OpenMP/…
• lousy communication speed, 

if MPI is done only by master thread
(all other threads are sleeping)

• highest costs for parallelizing the software
• Amdahl’s law 

with reduced number of CPUs on several levels
– HPF may also fit,

• e.g., on the Earth Simulator in Japan

next slide
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Why not hybrid models?

• Typically, hybrid models can achieve only 10 % more efficiency,

• but often:  hybrid model less efficient than MPI-MPP model !!!

• Programming effort should be invested into

– cache optimization

– vectorization 

DMP
SMP
cache / vectorization

MPI

OpenMP / automatic parallelization

optimization by hand / by compiler

you may win factors and not only percents !

(Distributed 
memory parallelism)

(Symmetric
multiprocessing)
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Which Model is the Best for Me?

• Depends on 
– your application
– your platform
– which efficiency do you need on your platform
– how much time do you want to spent on parallelization

easy to “assembler of 
program parallel programming”

OpenMP MLP HPF MPI MPI+OpenMP

without                         with
programming of the halos
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Summary

• Hardware architectures
– hybrid (hierarchical) systems are the future

• cluster of dual-board PC
• …
• clusters of PVP-SMP systems 

• Parallel Programming models
– MPI and OpenMP are dominating
– HPF still alive ( JaHPF on Earth Simulator)

• Which model is the best
– depends on your needs & hardware,  today and in future
– OpenMP is limited to shared memory platforms, 

but may be extended with a data distribution model (like HPF)
– MPI is the assembler of parallel programming
– invest your working effort into single-CPU-optimization,

rather than into hybrid programming

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 58

Appendix

Additional Slides
– Abbreviations
– Classification of Flynn
– Co-Array Fortran examples
– MLP example and interface definition
– Pipelining and memory access
– Parallelization costs
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Abbreviations

• Network of workstations (NOW)?  Distributed memory

• Beowulf-class systems = Clusters of Commercial Off-The-Shelf 
(COTS) PCs Distributed memory

• Multiboard workstations/PCs  Shared memory

• SMP Symmetric multiprocessing Shared memory 

• PVP Parallel vector processing 

• MPP Massively parallel processing

• PE Processing Element, e.g., one node of an MPP system

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 60

The Classification of Flynn

• Classify architectures according to multiplicity of data and 
instructions

• SI: single instruction for all processors
• MI: multiple instructions for different processors
• SD: single data for all processors
• MD: multiple data for different processors

• SISD classical processor
• SIMD array processor
• MIMD distributed or shared memory

• SPMD single program & multiple data
• MPMD multiple program & multiple data
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Real :: A(n,m), B(n,m)
do j = 2,m-1

do i = 2,n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

DMP Language Extensions  – Co-Array Fortran Example

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-2,je)

do i = 2,n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

size = NUM_IMAGES()
p = THIS_IMAGE() ! index of the invoking image (= MPI myrank+1)
m = size * m1

Real :: A(n, m1)[*],  B(n, m1)[*]
do j = 2, m1-1

do i = 2, n-1
B(i,j) = ... A(i,j) ... A(i-1,j) ... A(i+1,j) ... A(i,j-1) ... A(i,j+1)

end do
end do
if (p > 1) then ! calculation on left boundary of each image

do i = 1,n
B(i,1) = ... A(i,1) ... A(i-1,1) ... A(i+1,1) ... A(i,m)[p-1] ... A(i,j+1)

end do
endif
if (p < size) then ! calculation on right boundary of each image

do i = 1,n
B(i,m) = ... A(i,m) ... A(i-1,m) ... A(i+1,m) ... A(i,m-1) ... A(i,1)[p+1]

end do
endif

Call SYNC_IMAGES()
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Multi Level Parallelism (MLP)

• Two levels of parallelism (usually)
• Fine grained parallelism provided by the compiler (e.g., OpenMP) 

at loop level
• Coarse grained parallelism provided by forked processes
• communication by shared memory arenas, i.e. direct access to 

global arrays by compiler generated code
• Minimal latency  (0.33–1.0 µsec on 512 processor Origin2000)
• Only four additional routines:  INITMEM,  GETMEM,  FORKIT,  BARRIER

• Targeted for large CPU count NUMA SMP systems
• Efficient and easy load balancing on ccNUMA, 

e.g., by adapting the number of threads on each process
• Method can also execute across clusters
• A Fortran interface for System V shm
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Example: Parallel Efficiency of OVERFLOW/MLP
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• OVERFLOW CFD code at NASA/Ames
• high, sustained GFLOP/s rate
• with Multi Level Parallelism (MLP)
• scalable on large CPU counts
• on 512 processor ccNUMA Origin 2000
Ref.: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”

in proceedings of the Cray User Group conference SUMMIT 2000, 
www.cray.org
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MLPlib

The MLPlib routines for scalable parallel execution support are:
• Subroutine INITMEM(numbytes)

– The INITMEM routine sets up a UNIX shared memory arena consisting of numbytes
bytes to be used by all subsequently spawned processes

• Subroutine GETMEM(xarry,xpoint,numxbyt)
– The GETMEM routine allocates numxbyt bytes to the xarray variable
– xpoint is the Cray pointer to xarray
– xarray is resident in the shared memory arena 
– The xarray data will be visible to all MLP processes using the shared memory arena.

• Subroutine FORKIT(numpro,myrank)
– spawns a total of numpro additional processes
– returns current process id myrank (0–numpro)

• Subroutine BARRIER(numpro)
– The BARRIER routine waits until numpro processes have hit the barrier, then all drop 

through
Reference: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”
in proceedings of the Cray User Group conference SUMMIT 2000, www.cray.org
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Pipelining

• c = a + b
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Startup-time
of the pipeline

1 cycle

a result value is stored
in each cycle

time

Each unit of the 
pipeline is active
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Parallelism & memory access, I.  

• The memory access characterizes vector systems today!

Main MemoryMain Memory

PrePre--fetchfetchPrePre--loadload

Cache

Floating Point Registers

Load

Arithmetic UnitArithmetic Unit

Memory SwitchMemory Switch

Direct vectorDirect vector--loadload
Indexed vectorIndexed vector--loadload

availability
depend on
platform
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Parallelism & memory access, II.  

• Pipelined memory access
– vector register 

& vector load/store operations
– indexed vector load/store

operations

– pseudo-vectorization
• e.g., with pre-fetch

• Parallel vector processing (PVP)

• Without vector memory access:
– memory latency hiding with one to three levels of caches

VSTVADDVLD

PF Lat LD + ST
LD + ST

LD + ST
LD + ST

LD + ST

PF Lat LD + ST
LD + ST
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Parallelization Costs on NOW (Network of Workstations)
and COTS (Clusters of Commercial Off-The-Shelf PCs)

• Network of workstations (NOW)   or   Beowulf-class systems 
=  Clusters of Commercial Off-The-Shelf (COTS) PCs

probably a huge number of processors
distributed memory parallelization, e.g., with MPI or HPF

Amdahl’s law may limit the speedup
communication overhead may reduce efficiency

high costs to correctly parallelize codes  (e.g., multigrid codes)
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Parallelization Costs 
on shared memory PVP (Parallel Vector Processor) 

• Shared memory Parallel Vector Processing (PVP)

shared memory parallelization, e.g., with OpenMP

Amdahl’s law with reduced number of CPUs, but on two levels:

• vectorization

• SMP parallelization

no communication overhead
probably easier to achieve good efficiency
but limited number of CPUs

cheap parallelization

but expensive hardware?


