
Höchstleistungsrechenzentrum Stuttgart

Topology aware

Cartesian grid mapping with MPI

Christoph Niethammer Rolf Rabenseifner

niethammer@hlrs.de rabenseifner@hlrs.de

High Performance Computing Center (HLRS), University of Stuttgart, Germany

HLRS, Stuttgart, Sep 25, 2018
Slides for the poster at EuroMPI 2018

For further information, see https://fs.hlrs.de/projects/par/mpi/EuroMPI2018-Cartesian/

2018

https://fs.hlrs.de/projects/par/mpi/EuroMPI2018-Cartesian/

Niethammer, RabenseifnerSlide 1

Topology aware MPI process grid mapping

The Problems of

MPI_Dims_create + MPI_Cart_create

• The factorization of a given amount of MPI processes must be

– Application topology aware [1]

– Hardware topology aware

• Current definition of MPI_Dims_create is not prepared for this

• Extreme differences in latency and accumulated bandwidth

between inter-node and intra-node communication

• The reordering by MPI_Cart_create:

– Many implementations do nothing

– A perfect reordering may require complex domain

decomposition algorithms (e.g. Metis) [3]

We propose a new and fast algorithm,

which is application and hardware topology aware

[1, 3] see References on last slide

2018

Slides 1+2

Slides 7-17

Slide 6

Slide 19

Slides 3-5

Niethammer, RabenseifnerSlide 2

Topology aware MPI process grid mapping

Examples

• Application topology awareness

– 2-D example with 12 MPI processes and gridsize 1800x580

• MPI_Dims_create  4x3 • grid aware  6x2 processes

• Hardware topology awareness

– 2-D example with 25 nodes x 24 cores and gridsize 3000x3000

• MPI_Dims_create  25 x 24 • Hardware aware

 (5 nodes x 6 cores) X (5 nodes x 4 cores)

580
290

300
1800

580
194

450
1800

600

600

2018

Accumulated

communication

per node

O(4x600) = O(2400) 

Accumulated

communication

per node

O(10x120+12x125)

= O(2700) 

120

125

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 

Niethammer, RabenseifnerSlide 3

Topology aware MPI process grid mapping

Ring Benchmarks for Inter- and Intra-node

Communication
Benchmark halo_irecv_send_multiplelinks_toggle.c

• Varying message size,

• number of communication cores per CPU, and

• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node

1

node

2

Intra-CPU: core-to-core

A

CPU
several
cores

Intra-node: CPU-to-CPU

B

CPU
several
cores

Inter-node, only

with one CPU

C

Inter-node and

all CPUs communicate

CPU
several
cores

D

See HLRS online courses

http://www.hlrs.de/training/par-prog-ws/

 Practical  MPI.tar.gz

 subdirectory MPI/course/C/1sided/

2018

Niethammer, RabenseifnerSlide 4

Topology aware MPI process grid mapping

Measurement with halo_irecv_send_multiplelinks_toggle.c on 4 nodes of Cray XC40 hazelhen.hww.de, June 15, 2018, HLRS, by Rolf Rabenseifner (protocol 10)

Duplex accumulated ring bandwidth per node

The limit of accumulated

intra-CPU and intra-node

bandwidth is 8x larger than

the limit of accumulated

node-to-node bandwidth

A

B

C

D

What is important?

3 slices,

see next slide

8x

See HLRS online courses http://www.hlrs.de/training/par-prog-ws/

 Practical  MPI.tar.gz  subdirectory MPI/course/C/1sided/

2 Haswell Intel Xeon E5-2680v3,

each with 12 cores.

Cray XC40 Aries dragonfly network

Niethammer, RabenseifnerSlide 5

Topology aware MPI process grid mapping

Duplex accumulated ring bandwidth per node –

scaling vs. asymptotic behavior

()

Core-to-core:

Linear scaling for small

to medium size mes-

sages due to caches

Core-to-core & CPU-to-CPU:

Long messages:

Same asymptotic limit

through memory bandwidth

Node-to-node:

One duplex link by

one core already fully

saturates the network

8x

Result: The limit of accumulated intra-CPU and

intra-node bandwidth is 8x larger than the limit of

accumulated node-to-node bandwidth

6x4x

Niethammer, RabenseifnerSlide 6

Topology aware MPI process grid mapping

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster

of SMPs (cores / CPUs / nodes)

• Example with 48 cores on:

– 4 ccNUMA nodes

– each node with 2 CPUs ,

– each CPU with 6 cores

• 2-dim application with 6000 x 8080

gridpoints

– Minimal communication with

2-dim domain composition

with 1000 x 1010 gridpoints/core

(shape as quadratic as possible

 minimal circumference

 minimal halo communication)

– virtual 2-dim process grid: 6 x 8

• How to locate the MPI processes

on the hardware?

– Using sequential ranks in

MPI_COMM_WORLD

– Optimized placement

 Proposed algorithm

in slides 7-15

CPU 0: CPU 1:node 0:

CPU 0: …….. CPU 1: : ……..node 1:

CPU 0: …….. CPU 1: : ……..node 2:

CPU 0: …….. CPU 1: : ……..node 3:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Non-optimal communications:

26 node-to-node (outer)

20 CPU-to-CPU (middle)

36 core-to-core (inner)

Optimized placement:

Only 14 node-to-node

Only 12 CPU-to-CPU

56 core-to-core

Process coordinate, direction 1

P
ro

c
e
s
s
 c

o
o
rd

in
a
te

,
d
ir
e
c
ti
o
n
 0

Order of the new ranks:
Last coordinate is
running contiguously
 Perfect basis for
MPI_Cart_create()
without reorder, i.e.
with reorder==0 / .FALSE.

2018

Niethammer, RabenseifnerSlide 7

Topology aware MPI process grid mapping

Proposed Mapping Algorithm

• To keep the algorithm small (and fast):

– Use multi-level Cartesian subdomains

• Based on the benchmark results:

– The first and major optimization goal is minimizing the

inter-node communication volume

– Using the algorithm from [4] for the

multi-dimensional factorization of the number of nodes,

but with a modified optimization goal

that is application topology aware

• Using the same principles for each further hardware level

to minimize

– intra-node (i.e., CPU-to-CPU) communication

– intra-CPU (i.e., core-to-core) communication

2018

Niethammer, RabenseifnerSlide 8

Topology aware MPI process grid mapping

The Optimization Algorithm – First level

Given: 𝒅-dimensional Cartesian grid with a total of 𝑇 = 𝑖=1
𝑑 𝒕𝒊 elements

Level 1 (= outer level = node level) on 𝑵 nodes:

• Factorization of 𝑁 into factors 𝑛𝑖 𝑖=1,𝑑 with 𝑁 = 𝑖=1
𝑑 𝑛𝑖

• Communication cost in both directions

of each dimension (example for 𝑑 = 3):

2
𝑡2𝑡3

𝑛2𝑛3
, 2

𝑡1𝑡3

𝑛1𝑛3
, 2

𝑡1𝑡2

𝑛1𝑛2

• Minimizing the communication costs 𝑐

𝑐(𝑙𝑒𝑣𝑒𝑙=1) = 2 𝑖=1
𝑑 𝑗=1

𝑗≠𝑖

𝑑 𝑡𝑗

𝑛𝑗
= 2

𝑇

𝑁
 𝑖=1
𝑑 𝑛𝑖

𝑡𝑖

Summary of Level 1: One must search factors (𝑛𝑖)𝑖=1,𝑑

– that factorize 𝑁 with 𝑁 = 𝑖=1
𝑑 𝑛𝑖

– and minimize the term 𝑖=1
𝑑 𝑛𝑖

𝑡𝑖

2018

𝑡3

𝑡3
𝑛3

𝑛3

𝑡1
𝑡1
𝑛1

𝑛1

𝑡2
𝑡2
𝑛2

𝑛2

The total grid divided into

subdomains, one on each node

Niethammer, RabenseifnerSlide 9

Topology aware MPI process grid mapping

Second Level Optimization

Level 2:

• Each node has 𝑷 processors (or cores)

• Factorization of 𝑃 into factors 𝑝𝑖 with 𝑃 = 𝑖=1
𝑑 𝑝𝑖

• Communication costs in both directions

of each dimension:

2
𝑡2𝑡3

𝑛2𝑝2𝑛3𝑝3
, 2

𝑡1𝑡3

𝑛1𝑝1𝑛3𝑝3
, 2

𝑡1𝑡2

𝑛1𝑝1𝑛2𝑝2

• Minimizing the communication costs 𝑐,

𝑐(𝑙𝑒𝑣𝑒𝑙=2) = 2 𝑖=1
𝑑 𝑗=1

𝑗≠𝑖

𝑑 𝑡𝑗

𝑛𝑗𝑝𝑗
= 2

𝑇

𝑁𝑃
 𝑖=1
𝑑 𝑛𝑖𝑝𝑖

𝑡𝑖

Summary of Level 2:

One must search factors (𝑝𝑖)𝑖=1,𝑑

– that factorize 𝑃 with 𝑃 = 𝑖=1
𝑑 𝑝𝑖

– and minimize the term 𝑖=1
𝑑 𝑛𝑖𝑝𝑖

𝑡𝑖

2018

𝑡3
𝑛3𝑝3

𝑝3

𝑡1
𝑛1𝑝1

𝑝1

𝑡2
𝑛2

𝑝2

The subdomain on each node is

now divided into processors

𝑡1
𝑛1

𝑡3
𝑛3

𝑡2
𝑛2𝑝2

Niethammer, RabenseifnerSlide 10

Topology aware MPI process grid mapping

Hierarchical Cartesian Domain Decomposition

0
0 1 2 3
0 1 2 3

1
0 1 2 3
4 5 6 7

2
0 1 2 3
8 9 10 11

3
0 1 2 3

12 13 14 15

11 3
10 2
9 1
8 0

7 3
6 2
5 1
4 0

3 3
2 2
1 1
0 0

3 1
2 0

1 1
0 0

0

1

2

0

1

x
Coordinate 0

y
Coordinate 1

z = Coordinate 2

Node coord.
coord. in SMP
Global coord.

Virtual

location of an

MPI process

within an

SMP node

All MPI

processes

of an SMP

node

2018

Primary and main

optimization goal:

Whole communication

from each node to all of

its neighbors must be

minimized!

Second and minor

optimization goal:

Whole intra-node

communication must be

minimized!

Niethammer, RabenseifnerSlide 11

Topology aware MPI process grid mapping

Example

• Given: 𝒅=3 dimensions, 𝑵=625 nodes, 𝑷=24 cores, and all 𝒕𝒊 are identical

•  in all formulas, the 1/𝑡𝑖 can be ignored

• Level 1:

– Search (𝑛𝑖)𝑖=1,3 that 𝑛1𝑛2𝑛3 = 625 and 𝑖=1
3 𝑛𝑖 minimal

– Result: (𝑛𝑖)𝑖=1,3 = 25,5,5 with 𝑖=1
3 𝑛𝑖 = 35

• Level 2:

– Search (𝑝𝑖)𝑖=1,3 that 𝑝1𝑝2𝑝3 = 24 and 𝑖=1
3 𝑛𝑖𝑝𝑖 minimal

– Result: (𝑝𝑖)𝑖=1,3 = 1,6,4 with 𝑖=1
3 𝑛𝑖𝑝𝑖 = 25 + 30 + 20 = 75

• Optimized result:

– with (𝑛𝑜𝑑𝑒𝑠 𝑥 𝑐𝑜𝑟𝑒𝑠) in each dimension: (25𝑥1) X (5𝑥6) X (5𝑥4)

– Total core numbers as used for MPI_Cart_create: 25 X 30 X 20

• Comparison with existing MPI_Dims_create:

– MPI_Dims_create would result in 25 x 25 x 24

 complex mapping to the hardware is needed, see also slide 2 ,

or no reordering is done  (25𝑥1) X (25𝑥1) X (1𝑥24)

with 𝑖=1
3 𝑛𝑖 = 51 (instead of 35 ),  46% more inter-node communication!

2018

Niethammer, RabenseifnerSlide 12

Topology aware MPI process grid mapping

Generalized multi-level optimization

Given: 𝒅-dimensional Cartesian grid with a total of 𝑇 = 𝑖=1
𝑑 𝒕𝒊 elements

Number of hardware levels 𝑳

and for each level the number of processors 𝑵(𝒍), 𝑙 = 1, 𝐿

Communication costs on each level 𝑙:

𝑐(𝑙) = 2
𝑇

 𝑘=1
𝑙 𝑁(𝑘)

 𝑖=1
𝑑 𝑘=1

𝑙 𝑛𝑖
(𝑘)

𝑡𝑖
for a factorization 𝑁(𝑙) = 𝑖=1

𝑑 𝑛𝑖
(𝑙)

Search:

• On each level 𝑙 = 1. . 𝐿, one must search a factorization 𝑛𝑖
(𝑙)

𝑖=1,𝑑
of 𝑁(𝑙)

• with𝑁(𝑙) = 𝑖=1
𝑑 𝑛𝑖

(𝑙)

• and minimal sum 𝑖=1
𝑑 𝑘=1

𝑙 𝑛𝑖
(𝑘)

𝑡𝑖
,

i.e., with minimal sum 𝑖=1
𝑑 𝑎𝑖

(𝑙)
𝑛𝑖
(𝑙)

with 𝑎𝑖
(𝑙)
=
 𝑘=1
𝑙−1 𝑛𝑖

(𝑘)

𝑡𝑖

2018

Niethammer, RabenseifnerSlide 13

Topology aware MPI process grid mapping

Generalization with weighted communication in

each direction, e.g. by different halo width

• If the communication cost in each direction 𝑖 = 1, 𝑑

is multiplied with a halo width 𝒘𝒊, e.g., 2
𝑡2𝑡3

𝑛2𝑛3
𝑤1

• On each 𝑙 = 1. . 𝐿, the sum to be minimized is

 𝑖=1
𝑑 𝑘=1

𝑙 𝑛𝑖
(𝑘)

(𝑡𝑖/𝑤𝑖)

• i.e., 𝑖=1
𝑑 𝑎𝑖

(𝑙)
𝑛𝑖
(𝑙)

with 𝑎𝑖
(𝑙)
=
 𝑘=1
𝑙−1 𝑛𝑖

(𝑘)

(𝑡𝑖/𝑤𝑖)

2018

𝑡3

𝑡3
𝑛3

𝑛3

𝑡1
𝑡1
𝑛1

𝑛1

𝑡2
𝑡2
𝑛2

𝑛2

𝑤3

𝑤2

𝑤1

Niethammer, RabenseifnerSlide 14

Topology aware MPI process grid mapping

Using weighted MPI_Dims_create

for application topology awareness

• Task: In general, on each hardware topology level 𝑙 with 𝑙 = 1, 𝑳 and for given 𝑵(𝒍),

find factorizations 𝑛𝑖
(𝑙)

𝑖=1,𝑑
with 𝑁(𝑙) = 𝑖=1

𝑑 𝑛𝑖
(𝑙)

and

the following sum is minimal: 𝑖=1
𝑑 𝑎𝑖

(𝑙)
𝑛𝑖
(𝑙)

with 𝑎𝑖
(𝑙)
=
 𝑘=1
𝑙−1 𝑛𝑖

(𝑘)

(𝑡𝑖/𝑤𝑖)

• Algorithm on each level 𝑙 = 1. . 𝐿

– Sorting indexes 𝒊 = 𝟏. . 𝒅 so that the 𝑎𝑖′ 𝑖′=𝟏..𝒅 to be non-decreasing

– Calculate all divisors of 𝑵(𝒍)

– Loop over all non-increasing factorizations and find optimum according to

• 1st criterion: a factorization is better if 𝒊=𝟏
𝒅 𝑎𝑖

(𝑙)𝑛𝑖
(𝑙)

is smaller

• 2nd criterion: if the 𝑖=1
𝑑 𝑎𝑖

(𝑙)𝑛𝑖
(𝑙)

is the same then

a factorization is better if ∆= 𝑛𝟏
(𝑙) − 𝑛𝒅

(𝑙)
is smaller

• 3rd criterion: if 𝑖=1
𝑑 𝑛𝑖 and ∆= 𝑛𝟏

(𝑙)
− 𝑛𝒅

(𝑙)
are the same then

a factorization is better if 𝑛𝟏
(𝑙)

is smaller

– Revert the index mapping 𝑛
𝑖′
(𝑙)

𝑖′=𝟏..𝒅
 𝑛

𝑖
(𝑙)

𝒊=𝟏..𝒅

Re-mapping of all process ranks according to 𝑛
𝑖
(𝑙)

𝒊=𝟏..𝒅,𝒍=𝟏,𝑳

and creation of the new Cartesian communicator according to algorithm in [2]

2018

N
e
w

M
P

I_
D

im
s
_
w

e
ig

h
te

d
_
c
re

a
te

i.e. with 𝑛𝑖 ≥ 𝑛𝑖+1

Additional tricks:

• Calculate divisors only upto

sqrt(N), calculate the rest by

reciprocal values.

• Loop over divisors from

highest to smallest,

recursively over 𝑖 = 1, 𝑑,

• Start value for 𝑛𝑖+1 is next

real divisor equal or smaller

then 𝑛𝑖

Niethammer, RabenseifnerSlide 15

Topology aware MPI process grid mapping

Rank mapping is based on:

• Node level: 625= 5 x 25 x 5

• CPU level: 2= 2 x 1 x 1

• Core level: 12= 3 x 1 x 4

Result (product): 30 x 25 x 20

Proposed Interfaces

MPI_Cart_ml_create_from_types (MPI_Comm comm_old,

int ntype_levels, int type_levels[ntype_levels],

int ndims, double dim_weights[ndims],

int periods[ndims], MPI_Info info,

/*OUT*/ int dims[ndims], MPI_Comm *comm_cart);

MPI_Cart_ml_create_from_comms (int nlevels,

MPI_Comm level_comms[nlevels],

int ndims, double dim_weights[ndims], int periods[ndims], MPI_Info info,

/*OUT*/ int dims[ndims], MPI_Comm *comm_cart);

MPI_Dims_weighted_create (int nnodes, int ndims, double dim_weights[ndims],

/*OUT*/ int dims[ndims]);

MPI_Dims_ml_create (int nnodes, int ndims, double dim_weights[ndims],

int nlevels, int sizes[nlevels], /*OUT*/ int dims_ml[ndims][nlevels]);

2018

e.g., with

25*25*24 = 15000 processes

on 625 ccNUMA nodes with

2 CPUs/node and 12 cores/CPU e.g.,

{ MPI_COMM_TYPE_SHARED,

MPI_COMM_TYPE_NUMA }

e.g., 3 dimensions with a data

grid with 1000 x 1100 x 950

elements  dim_weights[] =

{ 1.0/1000, 1.0/1100, 1.0/950 }

Next steps:

MPI_Comm_rank (comm_cart, &my_rank);

MPI_Cart_coords (comm_cart, my_rank, ndims, coords)

The Cartesian communicator reflects this result: 30 x 25 x 20

Same as above

e.g., level_comms[0] is comm_old, level_comms[1

and 2] are the result recursively called MPI_

Comm_split_type with the type_levels from above.

Same as above

Same as

above

S
u

b
s
ti
tu

te
 f
o

r
/

e
n

h
a

n
c
e
m

e
n
t
to

 e
x
is

ti
n
g
 M

P
I-

1

M
P

I_
D

im
s
_

c
re

a
te

(
s
iz

e
_

o
f_

c
o
m

m
_
o
ld

,
n

d
im

s
,
d

im
s
)

;

M
P

I_
C

a
rt

_
c
re

a
te

(
c
o

m
m

_
o
ld

,
n

d
im

s
,
d

im
s
,
p

e
ri
o

d
s
,

re
o

rd
e

r,
 *

c
o

m
m

_
c
a

rt
);

Niethammer, RabenseifnerSlide 16

Topology aware MPI process grid mapping

Conclusion and Outlook

Conclusions

• We developed a new algorithm to minimize the total communication

time in a cluster of ccNUMA nodes with multi-core CPUs.

• It is needed, due to the significant bandwidth differences between

inter- and intra-node communication.

• It can be implemented based on the algorithm in [4],

but with a modified optimization goal,

and repeated for each hardware level.

Outlook

• We plan to provide a portable implementation, and

• compare it with existing solutions with MPI_Dims_create +

MPI_Cart_create.

• We plan to propose an appropriate interface for the next MPI

standard, because MPI libraries may internally have faster access

to the hardware topology information for a given communicator.

2018

Niethammer, RabenseifnerSlide 17

Topology aware MPI process grid mapping

References

[1] Pavan Balaji et al. 2009-2012. Topology awareness in MPI Dims

create. https://github.com/mpi-forum/mpi-forumhistoric/issues/195

Accessed 2018-07-19.

[2] Bill Gropp. 2018. Using Node Information to Implement MPI

Cartesian Topologies. In Proceedings of the 25nd European MPI

Users’ Group Meeting (EuroMPI ’18), September 23–26, 2018,

Barcelona, Spain. ACM, New York, NY, USA, 9 pages.

[3] T. Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies

for Large-scale Parallel Architectures. In Proceedings of the 2011

ACM International Conference on Supercomputing (ICS’11). ACM,

75–85.

[4] Jesper Larsson Träff and Felix Donatus Lübbe. 2015. Specification

Guideline Violations by MPI Dims Create. In Proceedings of the

22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM,

New York, NY, USA, Article 19, 2 pages.

2018

Niethammer, RabenseifnerSlide 18

Topology aware MPI process grid mapping

Appendix

• Additional material that is not part of the poster

2018

Niethammer, RabenseifnerSlide 19

Topology aware MPI process grid mapping

0 1 2 6 7 8 24 25 26 30 31 32 48 54
 0  1  2  3  4  5  6  7  8  9 1011 1213 14 1516 17

3 4 5 9 10 11 27 28 29 33 34 35
1819202122 2324 2526 272829 303132 3334 35

12 13 14 18 19 20 36 37 38 42 43 44 60 66
363738              

15 16 17 21 22 23 39 40 41 45 46 47
54                

72 73 74 78 96 102 120 126
72

75 76 77
90

84 90 108 114 132 138
108

87
126

144 150 168 174 192 198
144

147
162

156 162 180 186 204 210
180

159 215
198 215

Renumbering in a 2-dim example

with 3 levels (nodes / CPUs / cores)

d
im

0
 =

 i
n
n

e
r_

d
0

*
m

id
_

d
0

*
o

u
te

r_
d

0
=

 2
*2

*3
=

 1
2

dim1 = inner_d1 * mid_d1 * outer_d1 = 3*2*3 = 18
0 1 2 oc1 = outer coordinate in 0..(outer_d1-1)

0 1 0 1 0 1 mc1= middle coordinate in 0..(mid_d1-1)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 ic1 = inner coordinate in 0..(inner_d1-1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 c1 = process coordinate

2
1

0
o

c
0

=
 o

u
te

r
c
o

o
rd

in
a
te

1
0

1
0

1
0

m
c
0

=
 m

id
d
le

 c
o

o
rd

in
a
te

1
0

1
0

1
0

1
0

1
0

1
0

ic
0

=
 i
n

n
e

r
c
o

o
rd

in
a
te

1
1

1
0

9
8

7
6

5
4

3
2

1
0

c
0

=
 p

ro
c
e

s
s
 c

o
o
rd

in
a
te

Outer = several ccNUMA nodes

Middle = CPUs of a ccNUMA node

Inner = cores of a CPU

Old ranks in MPI_COMM_WOLRD. The ranks must be
sequential in the hardware, i.e., first through the CPUs, then
through the ccNUMA nodes, and then through the cluster

New ranks in optimized communicator.

 New global communicator with

minimal node-to-node &

optimal intra-node communication

Order of the new ranks: last coordinate is running contiguously
 Perfect basis for MPI_Cart_create() with reorder==0 / .FALSE.

2-D example with
12*18 processes on

hierarchical hardware

direction 1

d
ir
e
c
ti
o
n
 0

Number of communication links:

Without
re-num-
bering:
150 outer
72 mid

180 inner

With new
ranks:
60 outer
90 mid

252 inner

2-D example on hierarchical hardware
with 9 nodes x 4 CPUs x 6 cores

resulting in 12*18 Cartesian processes

2018

Niethammer, RabenseifnerSlide 20

Topology aware MPI process grid mapping

Renumbering in a 2-dim example

with 3 levels (nodes / CPUs / cores) – the code
Product = number of cores/CPU number of CPUs/node number of nodes

/*Input: */ inner_d0=…; mid_d0=…; outer_d0=…;

inner_d1=…; mid_d1=…; outer_d1=…;

dim0=inner_d0*mid_d0*outer_d0; dim1=inner_d1*mid_d1*outer_d1;

idim=inner_d0*inner_d1; mdim=mid_d0*mid_d1; odim=outer_d0*outer_d1;

whole_size=dim0*dim1 /* or =idim*mdim*odim */;

ranks= malloc(whole_size*sizeof(int));

for (oc0=0; oc0<outer_d0; oc0++) /*any sequence of the nested loops works*/

for (mc0=0; mc0<mid_d0; mc0++)

for (ic0=0; ic0<inner_d0; ic0++)

for (oc1=0; oc1<outer_d1; oc1++)

for (mc1=0; mc1<mid_d1; mc1++)

for (ic1=0; ic1<inner_d1; ic1++)

{ old_rank = ic1 + inner_d1*ic0 + (mc1 + mid_d1 *mc0)*idim

+ (oc1 + outer_d1*oc0)*idim*mdim;

c0 = ic0 + inner_d0*mc0 + inner_d0*mid_d0*oc0;

c1 = ic1 + inner_d1*mc1 + inner_d1*mid_d1*oc1;

new_rank = c1 + dim1*c0;

ranks[new_rank] = old_rank;
}

/* Establishing new_comm with the new ranking in a array "ranks": */

MPI_Comm_group(MPI_COMM_WORLD, &world_group);

MPI_Group_incl(world_group, world_size, ranks, &new_group); free(ranks);

MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
dims[0] = dim0; dims[1] = dim1;
MPI_Cart_create(new_comm, 2, dims, periods, 0 /*=false*/, &comm_cart);

T
h

is
 a

lg
o

ri
th

m
 r

e
q
u

ir
e

s
 s

e
q
u

e
n

ti
a
l
ra

n
k
in

g
 i
n
 M

P
I_

C
O

M
M

_
W

O
L

R
D

For an alternative with MPI_Comm_split, see MPI-3.1, Sec. 7.5.8, page 313, lines 7-13.

/* final output */

Niethammer, RabenseifnerSlide 21

Topology aware MPI process grid mapping

MPI_Dims_create optimizing 𝒊=𝟏
𝒅 𝒏𝒊

• Based on Jesper Träff’s algorithm tuwdims.c developed for [4]

– Jesper’s optimization criterion:

• Minimizing ∆ = 𝑛𝟏 − 𝑛𝒅

• New optimization criterion (three criteria)

– 1st criterion: a factorization is better if 𝒊=𝟏
𝒅 𝒏𝒊 is smaller

– 2nd criterion: if the 𝑖=1
𝑑 𝑛𝑖 is the same then

a factorization is better if ∆= 𝑛𝟏 − 𝑛𝒅 is smaller

– 3rd criterion: if 𝑖=1
𝑑 𝑛𝑖 and ∆= 𝑛𝟏 − 𝑛𝒅 are the same then

a factorization is better if 𝑛𝟏 is smaller

• Both algorithms have nearly same execution time: ~O(10µs/call)

• For n=2..10,000,000 and ndims=2..10

– 4630x different factorization: with same 𝜮 and ∆ and smaller 𝑑𝑖𝑚𝑠[0]
• e.g., ndims=3: N=360 = (old) 10x6x6 = (new) 9x8x5 (both 𝛴=22 and ∆=4)

– 6066x different factorization: with better 𝜮 and mostly worse ∆
• e.g., ndims=3: N=35200 = (old) 40x40x22 (𝛴=102, ∆=18) = (new) 44x32x25 (𝛴=101, ∆=19)

• N=37044 = (old) 42x42x21 (𝛴=105, ∆=21) = (new) 49x28x27 (𝛴=104, ∆=22)

[4] Jesper Larsson Träff and Felix Donatus Lübbe. 2015. Specification Guideline

Violations by MPI Dims Create. In Proceedings of the 22Nd European MPI Users’

Group Meeting (EuroMPI ’15). ACM, New York, NY, USA, Article 19, 2 pages.

2018

Next below 10,000 are:

• ndims=3:

22x14x12 = 21x16x11

21x16x15 = 20x18x14

26x16x15 = 24x20x13

• ndims=4:

10xFx6x6 = 9x8xFx5

with F=6,7,8,9

All other larger than 50,000

