
evidence. In addition, engineering applications of ML often oper-

ate in a rapidly changing context and have access to large data-

sets, so small differences in performances are often not as

important, whereas scientific claims are sensitive to small perfor-

mance differences between ML models.

Why do we call it a reproducibility crisis?

We say that ML-based science is suffering from a reproducibility

crisis for two related reasons. First, our results show that repro-

ducibility failures in ML-based science are systemic. In nearly

every scientific field that has carried out a systematic study of

reproducibility issues, papers are plagued by common pitfalls.

In many systematic reviews, a majority of the papers reviewed

suffer from these pitfalls. Similar problems are likely to arise in

many fields that are adopting ML methods. Second, despite

the urgency of addressing reproducibility failures, there are no

systemic solutions that have been deployed for these failures.

Scientific communities are discovering the same failure modes

across disciplines but have yet to converge on best practices

for avoiding reproducibility failures.

Calling attention to and addressing these widespread failures

is vital to maintaining public confidence in ML-based science.

At the same time, the use of ML methods is still in its infancy

in many scientific fields. Addressing reproducibility failures

pre-emptively in such fields can correct a lot of scientific

research that would otherwise be flawed.

Toward a solution: A taxonomy of data leakage
We now provide our taxonomy of data leakage errors in ML-

based science. Such a taxonomy can enable a better under-

standing of why leakage occurs and inform potential solutions.

Our taxonomy is comprehensive and addresses data leakage

arising during the data collection, pre-processing, modeling,

and evaluation steps. In particular, our taxonomy addresses all

cases of data leakage that we found in our survey (Figure 1).

Some of the categories in our taxonomy, e.g., sampling bias

[L3.3], were not considered types of leakage in prior work, but

they have the same cause as other categories of leakage:

spurious correlations between the outcome variables and the

features. They also have the same effect: they lead to overesti-

mates of model performance.

[L1] Lack of clean separation of training and test dataset. If

the training dataset is not separated from the test dataset during

all pre-processing, modeling, and evaluation steps, the model

has access to information in the test set before its performance

is evaluated. Because the model has access to information from

the test set at training time, the model learns relationships be-

tween the predictors and the outcome that would not be avail-

able in additional data drawn from the distribution of interest.

The performance of the model on these data therefore does

not reflect how well the model would perform on a new test set

drawn from the same distribution of data. This can happen in

several ways, such as:

[L1.1] No test set. Using the same dataset for training and

testing the model is a textbook example of overfitting, which

leads to overoptimistic performance estimates.54

[L1.2] Pre-processing on training and test set. Using the

entire dataset for any pre-processing steps, such as imputation

or over/under sampling, results in leakage. For instance, using

oversampling before splitting the data into training and test

sets leads to an imperfect separation between the training and

test sets because data generated using oversampling from the

training set will also be present in the test set.

[L1.3] Feature selection on training and test set. Feature

selection on the entire dataset results in using information about

which feature performs well on the test set to make a decision

about which features should be included in the model.

[L1.4] Duplicates in datasets. If a dataset with duplicates is

used for the purposes of training and evaluating an ML model,

the same data could exist in the training set and the test set.

[L2] Model uses features that are not legitimate. If the

model has access to features that should not be legitimately

available for use in the modeling exercise, this could result in

leakage. One instance when this can happen is if a feature is a

proxy for the outcome variable.10 For example, Filho et al.55

find that a recent study included the use of anti-hypertensive

drugs as a feature for predicting hypertension. Such a feature

could lead to leakage because the model would not have access

to this information when predicting the health outcome for a new

patient. Further, if the fact that a patient uses anti-hypertensive

drugs is already known at prediction time, the prediction of hy-

pertension becomes a trivial task.

The judgment of whether the use of a given feature is legiti-

mate for a modeling task requires domain knowledge and can

be highly problem specific. As a result, we do not provide sub-

categories for this sort of leakage. Instead, we suggest that re-

searchers clearly specify which features are suitable for a

modeling task and justify their choice using domain expertise.

[L3] Test set is not drawn from the distribution of scientific

interest. The distribution of data on which the performance of an

ML model is evaluated differs from the distribution of data about

which the scientific claims are made. The performance of the

model on the test set does not correspond to its performance

on data drawn from the distribution of scientific interest.

[L3.1] Temporal leakage.When anMLmodel is used tomake

predictions about a future outcome of interest, the test set

should not contain any data from a date before the training set.

If the test set contains data from before the training set, the

model is built using data ‘‘from the future’’ that it should not

have access to during training and can cause leakage.

[L3.2] Nonindependence between training and test sam-

ples.Nonindependence between training and test samples con-

stitutes leakage, unless the scientific claim is about a distribution

that has the same dependence structure. In the extreme (but un-

fortunately common) case, training and test samples come from

the same people or units. For example, Oner et al.56 find that a

recent study on histopathology uses different observations of

the same patient in the training and test sets. In this case, the sci-

entific claim is being made about the ability to predict gene mu-

tations in new patients; however, it is evaluated on data from old

patients (i.e., data from patients in the training set), leading to a

mismatch between the test set distribution and the scientific

claim. Similarly, for predicting protein function, the family of the

protein can lead to dependencies if proteins from the same fam-

ily are split across the training and test sets.57 The train-test split

should account for the dependencies in the data to ensure cor-

rect performance evaluation. Methods such as ‘‘block cross-

validation’’ can partition the dataset strategically so that the per-

formance evaluation does not suffer from data leakage and
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overoptimism.58,59 Handling nonindependence between the

training and test sets in general (i.e., without any assumptions

about independence in the data) is a hard problem, because

we might not know the underlying dependency structure of the

task in many cases.60

[L3.3] Sampling bias in test distribution. Sampling bias in

the choice of test dataset can lead to data leakage. One example

of sampling bias is spatial bias, which refers to choosing the test

data from a geographic location but making claims about model

performance in other geographic locations. Another example is

selection bias, which entails choosing a non-representative sub-

set of the dataset for evaluation. For example, Bone et al.61 high-

light that in a study on predicting autism using ML models,

excluding the data corresponding to borderline cases of autism

leads to leakage because the test set is no longer representative

of the general population about which claims are made. In addi-

tion, borderline cases of autism are often the trickiest to diag-

nose, so excluding them from the evaluation set is likely to

lead to overoptimistic results. Cases of leakage caused by sam-

pling bias can often be subtle. For example, Zech et al.62 find that

models for pneumonia prediction trained on images from one

hospital do not generalize to images from another hospital

because of subtle differences in how images are generated in

each hospital.

A model may have leakage when the distribution about which

the scientific claim is made does not match the distribution from

which the evaluation set is drawn. ML models may also suffer

from a related but distinct limitation: the lack of generalization

when we try to apply a result about one population to another

similar but distinct population. Several issues with the general-

ization of ML models operating under a distribution shift have

been highlighted in ML methods research, such as fragility to-

ward adversarial examples,63 image distortion and texture,64

and overinterpretation.65 Robustness to distribution shift is an

ongoing area of work in ML methods research. Even slight shifts

in the target distribution can cause performance estimates to

change drastically.66 Despite ongoing work to create ML

methods that are robust to distribution shift, best practices to

deal with distribution shift currently include testing the ML

models on the data from the distribution we want to make claims

about.52 In ML-based science, where the aim is to create gener-

alizable knowledge, we should take results that claim to gener-

alize to a different population from the one models were evalu-

ated on with caution.

Other issues identified in our survey

Computational reproducibility issues. Computational reproduc-

ibility of a finding refers to sharing the complete code and data

needed to reproduce the findings reported in a paper exactly.

This is important to enable external researchers to reproduce re-

sults and verify their correctness. Five papers in our survey out-

lined the lack of computational reproducibility in their field.

Data quality issues. Access to good-quality data is essential for

creating ML models.67,68 Issues with the quality of the dataset

could affect the results of ML-based science. Ten papers in

our survey highlighted data quality issues such as not addressing

missing values in the data, the small size of datasets compared

with the number of predictors, and the outcome variable being a

poor proxy for the phenomenon being studied.

Metric choice issues. A mismatch between the metric used to

evaluate performance and the scientific problem of interest leads

to issues with performance claims. For example, using accuracy

as the evaluation metric with a heavily imbalanced dataset leads

to overoptimistic results, because the model can get a high ac-

curacy score by always predicting the majority class. Four pa-

pers in our survey highlighted metric choice issues.

Use of standard datasets. Reproducibility issues arose despite

the use of standard, widely used datasets, often because of the

lack of standard modeling and evaluation procedures such as

fixing the train-test split and evaluation metric for the dataset.

Seven papers in our survey highlighted that issues arose despite

the use of standard datasets.

Model info sheets for detecting and preventing leakage
Our taxonomy of data leakage highlights several failure modes

that are prevalent in ML-based science. To detect cases of

leakage, we provide a template for a model info sheet to accom-

pany scientific claims using predictive modeling as a supple-

mental document (supplemental experimental procedures, sec-

tion S4). The template consists of 21 questions that elicit precise

arguments needed to justify the absence of leakage.

Prior work on model cards and reporting standards

Our proposal is inspired by prior work on model cards and

checklists, which we now review. Mitchell et al.40 introduced

model cards for reporting details about ML models, with a focus

on precisely reporting the intended use cases of ML models.

They also addressed fairness and transparency concerns: they

require that the performance of ML models on different groups

of users (e.g., on the basis of race, gender, and age) is reported

and documented transparently. Thesemodel cards complement

the datasheets introduced by Gebru et al.69 to document details

about datasets in a standard format.

The use of checklists has also been impactful in improving re-

porting practices in the few fields that have adopted them.70

Although checklists and model cards provide concrete best

practices for reporting standards,38–40,71 current efforts do not

address pitfalls arising because of leakage. Further, even though

several scientific fields, especially those related to medicine,

have adopted checklists to improve reporting standards, most

checklists are developed for specific scientific or research com-

munities instead of ML-based science in general.

Scientific arguments to surface and prevent leakage

When ML models are used to make scientific claims, it is not

enough to simply separate the training and test sets and report

performance metrics on the test set. Unlike research in ML

methods, where a model’s performance on a hypothetical task

(i.e., one that is not linked to a specific scientific claim) is still of

interest to the researcher in some cases,72 in ML-based science,

claims about a model’s performance need to be connected to

scientific claims using explicit arguments. The burden of proof

for ensuring the correctness of these arguments is on the

researcher making the scientific claims.73

In our model info sheet, we ask researchers to answer 21

questions. These questions help them present three arguments

that are essential for determining that scientific results that use

ML methods do not suffer from data leakage. Note that most

ML-based science papers do not present any of the three
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