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Focus on supervised Deep Learning
to classify images of waste in the
wild

From Machine Learning to Deep Learning: a concise introduction
Dr. Khatuna Kakhiani
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Agenda - March 27, 2024

9:00-17:30 CEST

* Waste Image Classification - Neural Networks
Tutorial 3: Sigmoid Neural Model; Simple Neural Networks
Tutorial 4: Image Classification with Multilayer Perceptron (MLP)

* Convolutional Neural Networks (CNN)

Tutorial 5: Image Classification with CNN

Lunch break: 13:00 — 14: 00 PM; 15 min Breaks @ 11:00 AM & 15:45 PM
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Validation set Testing set

e Modelis trained e Modelis assessed * Modelis tested
e ~80% of the dataset * ~ 10% of the dataset * ~ 10% of the dataset

The ground truth: train, validation & test label sets

[Jo ~ Wm/ exer/ work_data_50

5

. N\
test images.npy

test labels.npy )
1rain_images.npy? Data

frain_labels.npy )

val_images.npy )

O 00000
jrilix

{
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Learning a model

Conflgurg the Model Compile the model Train the Model
Architecture

* Artificial Neural * Loss (to measures how ¢ Performance at Task
Networks (ANN) accurate the model is improves with an

* Multilayer during training) Experience
Perceptron (MLP) e Optimizer (to minimize e Train to classify images

e Convolutional Neural Loss with respect of e Track epochs, let model
Networks (CNN) parameters) see every pictures many

* Metrics (to evaluate times; babysit process
performance)
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Neural Networks
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Brain Neurons

Neurons are excitable cells which chemically transmit electrical signals through
connections called synapses.
* Human brain: ~ 100 billion Neurons > 20 types

e Cortex: ~29,800 synapses/neuron
Synapse
/

Axon

_/
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Artificial Neuron

A very coarse model of a biological neuron

* The smallest unit of a neural network: a single neuron

>@ »  Output

e Such a neuron can handle input with several values, where each values can be

Input

weighted differently

* A neuron has the functionality of a logistic regression
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Artificial Neuron

* InputofaNeuron Z = X, - W, + X, - W, + X - W_+D

X

<

ANeuronj
W

m
Xm
* The affine transformation, a linear transformation of input features via
weighted sum, combined with a translation via the added bias.
* Neuron calculates output if we apply activation function f on an input
functionz: y = (2).
* Combining & connecting of many neurons = Neural Network
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Feedforward Neural Networks

In Feedforward Neural Networks(FNN)/Multilayer Perceptrons (MLPs):
— set of neurons make one layer; interlayer nodes - fully connected,;
— transform an input through a series of hidden layers
— every input influences every neuron in the hidden layer, and each of these
—> every neuron in the output layer
— output layer represents the class scores (i.e., in classification)

Hidden Hidden Hidden

MLP with 3 inputs, 3 hidden layers of 5 neurons (nodes) each, and 1 output layer.
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Feedforward Neural Networks

Examples of usage:
— Convolutional NNs (object recognition from photos)

— Recurrent NNs (in many natural language applications)
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Feedforward Neural Networks

* The goalin FNN is to approximate some function fr Weights

* Foraclassifier Y = f (X) maps an input X to a category Y. & Biases

* AFNN defines a mapping Y = f (X; (9), learns the value of the parameters &
that result in the best function approximation.

* Networks is represented by many different functions (i.e., 3 here) connected
in a chain to form:

e With f (1), f (2), f (3)being the first, second & third network layers respectively.

 During neural network training we drive f (X) to match f *(X).
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Feedforward Neural Networks

e Let start with linear models and their limitations. *
* Linear models, i.e., logistic regression and linear regression
— can be fit efficiently either in closed form or with convex optimization;

— are limited to linear functions, no understanding about the interaction
between any two input variables;

— Iff ®)were linear:
* the FNN as a whole would remain a linear function;
 stacking of neurons in network would be useless;
* its derivative with respect to X will be constant; constant gradient ...

* To extend linear models to represent nonlinear functions of X apply the
linear model not to X but to a transformed input O'(X , Where O is a
nonlinear transformation.

* Goodfellow et. al., Deep Learning, MIT Press, 2016.
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Activation functions

* |Introduces non-linearity to Neural Network

* Non-linear transformation of input to allow complex tasks

Sigmoid Function & Derivative RELU & Derivative tanh & Derivative
101 — o(2) & 100
a'(2) 5 0.75
08 |
0.50 A
4 -
06 4 0.25
3 0.00
04 1 2] -0.25
- ~0.50 A
02 1 L )
/ \\ ! V 075 1
0.0 1 T 0 -1.00
-5 -4 -2 0 2 4 6 -5 - -2 0 2 1 6 -5 - -2 0 2 1 B
Sigmoid Rectified linear unit (ReLU) Hyperbolic tangent (tanh)
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Activation functions - RelLU

e Rectified linear unit activation function
RELU & Derivative

e Fast convergence (sparse activations) ]

—_— G(.Z)
e Constant values | o@
e Negative values do not get activated 4
e For CNN RelLU performs faster * 3

Problem: s V
e Dying ReLU: neurons get stuck at 0

e Can lead to model not learning

o(z) = max{0, z}

Solution: Leaky ReLU w/ small slope for negatives
*1906.01975.pdf (arxiv.org)
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https://arxiv.org/pdf/1906.01975.pdf

Softmax

— used as the output of a classifier (last output layer)
— to represent the probability distribution over n different classes

— receives vector as an input and returns a normalized probability
distribution of a list of outcomes

In [11]: |def softmax(x): # x is vector
return (np.exp(x))/sum{np.exp(x})

¥ = np.array([1, ©.3, 3, &8.5])

prob = softmax(x) # converts List of numbers to a List of probabilifies
print({prob) # output - probabilifie
print({sum{prob)) # sum of the probabilifies gives 1

[2.18534997 @.85231524 2.77843681 @.86389798]
1.8
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Activation functions - Sigmoid

e Squashes weighted sum of neurons (real numbers) into range (0,1)
e Problem: vanishing gradient (smaller) and sparsity (dense neurons)
e Solution: ReLU (constant value and sparse activations)

Sigmoid Function & Derivative

10{ — o)
5'(2)
0.8
1
0.6 - O_(Z) —
1+e?

0.4 -

0.2 1

0.0 A
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Feedforward Neural Networks

Given MLP with 3 inputs, 3 hidden layers of 5 neurons each, and 1 output layer.
* 5+5+5+2=17neurons (not counting the inputs),
e [3x5]+[5x5]+[5x5]+[5x2]=75weights,

. Hidden Hidden Hidden
e 5+5+5+2=17 biases. —
Input B = - 3 -
N N N
* Atotal of 92 learnable parameters: ‘//’ N4 \\W \ Output
75+17 = 92 PRSTEINSY S
® 1 K - @ 1 E
ot o TRNE S T o -
\ N
For our tutorial example: \3‘ /4‘ N /4‘ R
X input column vector containing all pixel data of the image [2500x1].

Neurons most commonly do not have an activation function (or you can think of
them as having a linear identity activation function).
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xi eRD;
herei=1...m

mimages, each with D=50x50x1 px
y. €1...n; here n=2;

X[ZSOOX].], W[ZXZSOO],b[ZX]_] Model: "sequential"

Layer (type) Output Shape Param #
f:RD 5 R" flatten (Flattem)  (Nome, 2500) 0
dense (Dense) (None, 128) 320128
dropout (Dropout) (None, 128) 0
dense 1 (Dense) (None, 2) 258

Total params: 320,386
Trainable params: 320,386
Non-trainable params: 0
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Forward Propagation

* Given the weights W, biases B, and the activation of the input layer X =X,, the
output f(X, W, B) of the neural network can be computed using forward
propagation, matrix multiplication followed by a bias offset and an activation

function.
2, =W, X, +B_,
X = G(ZI )

f(x, W,B)=x_, =W, x_+B,

* For MLP with L hidden leyers, each with h, neurons. z, and X, denote the input
and activation of all neurons in layer|.

«  X_; and B,_, are vectors of size h, and W,_; is a matrix of size h, x h,.
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Backpropagation

 The algorithm is used to effectively train a NN through a chain rule method.

* After each forward pass through a network, backpropagation performs a
backward pass while adjusting the model’s parameters (weights and biases)
given through the error.

* The gradient descent algorithm is used to optimize (min/max) some function.

By moving in the opposite direction of the slope, given by derivative of this
function, we can improve this function.

* The speed of movement down the gradient is controlled by the learning rate,
which can be adjusted.

* A higher learning rate might miss the global minimum (optimum), while a low
learning rate may get stuck on a local minimum.

Baydin et al., Automatic Differentiation in Machine Learning: a Survey, 2018
Mathieu et al., Fast Training of Convolutional Networks through FFTs, 2014
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Backpropagation
ﬁtltuto@

* Training input x; are fed forward, generating corresponding activations y;.

Backpropagation:

* Eisthe error between the final output (y3) and the target (y3, in the paper:
t), same as the loss function.

(a) Forward pass -

* Through the chain rule:

1

dE _ OJE dys OE [,
dws  dyz dws R
JE dE dy;y
dwy = dy, 0wy =
_ (aE ay3) dy1
B dyz dyy/ dwy

Following
one
“branch”...

Baydin et al., Rutcmatic Differentiaticon in Machine Learning: a Survey, 2018
Mathieu et a8l., Fast Training of Convolutional Networks through FFTs, 2014
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Tutorial 3 - Simple Neural Network

* Hands-on: Simple Neural Networks with Sigmoid

* Outcome: Basic understanding of how neuron works with non-linear

activation function, feedforward and backpropagation, parameters update.
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Tutorial 3

Jupyter notebook: m
» notebooks/NB-3-1 sigmoid-N-Model.ipynb

» notebooks/NB-3-2 simple NN.ipynb (optional)

Tasks to complete in NB-3-1 sigmoid-neuron.ipynb:

Define sigmoid activation function & its derivative; visualize
Initialize parameters

Define the input data and the ground truth; perform feedforward
calculation; calculate the error, how far are we? adjust the weights
accordingly to minimize error

Get familiar with other activation functions: RelLU etc.

Experiment with the Softmax function
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Tutorial 3

In [ ]: |# We will use Sigmoid funciion for g simple demonsiragtion of Meural Learning.
# Note code might nol work with other data [2]

In [ ]: |#datasel 3 x 4 Mgirix
training_data = np.array([[2,8,1],
[1,1,1],
[1,8,1],
[8,1,1]1)

In [ ]: |#output dataset ground truth - i.e., classes {@, 1, 1, &}
# v vector
ground_truth = np.array([[2,1,1,2]]).T
print{ground_truth}

The goal is to find the combination of weights which minimizes the error function, to get training output that is close to
the ground truth:
z=xl-w1+x2-w2+x - W

m m

xllM€hfs—| b thebiasterm neglected |
.,

MV’Z N

m

Neurcn calculates output if we apply activation function f on an input function zZ:

y=fz)
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Tutorial

NB-sigmoid-N-Model.ipynb
Sigmoid

Given a number N, the sigmeid function would map that number between 0 and 1, which means we can use this as probability distribution.

1
f@) = o(@) = 77
The derivative of the sigmoid function with respect to x:
# lets compute i
_ f(z) =o(z)(1—o(z))
def sig(x): Sigmoid Function & Derivative
return 1/(1l+np.exp(-x)) 10
— {Ix]
# Sigmoidal derivative )
def dsigix): 0B
return sig(x) * (1-sig(x))
# cenerating data to plot 06
¥ = np.arange(-6., 6., 8.1}
y = sig(x) 04
dy = dsig(x)

# Plotting 02
plt.plot(x, y, %, dy}

plt.title( "sigmoid Function & Derivative')

plt.legend([ f(x)"', f\"(x)']) [ , : , , , ,
plt.show() -5 - -2 0 2 4 B
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Tutorial 3 H

NB-sigmoid-N-Model.ipynb
For a Feed forward calculations in Meuron we wil need:

= input data matrix 3 x 4
» weight matr< 3 x 1 (3 input & 1 output nodes)
= activation function (here sigmoid), to apphy on an input function £ (product of the input data with initial weights).

In [ ]: | np.random.seed(1)

put nodes)

In [ ]: | # weight matrix 3 x 1 {3 inpui 1 out
to 1) with mean &
1))-1

t
#Finitialize weights randomly (-
weights = 2*np.random.random((z,

&
-1

print("Random starting weights', )
print{weights)

Training process
1. Feed forward calculation

= Input laver: training data
= calculate training_cutput in Neuron model using sigmoid actreation function (bias term is neglected)

2. "Backpropagation™ basics

« Calculate the error (less), the difference beteween the ground_truth and actual cutput
= Calculate update term

= Adjust the weights accordingly to minimize error

« Hepeat this 10000 times

Khatuna Kakhiani ©: 27.03.2024




Tutorial 3

NB-3-1_sigmoid-N-Model.ipynb

RelLU Softmax

# Plotting

plt.plot(x, ¥, x, dy) In [11]: def softmax{x): # ¥ is vector
plt.title("RELU & Derivative") return (np.exp(x)}}/sum{np.exp(x}}
plt.legend{["F{x}", "\ "(x3"])
plt.show() X = np.array{[1, &.3, 3, 8.5])
plt.savefig('relu.png’, bbox_inches="tight") prob = softmax(x) # converts List of numbers fo a List of probabilifies
print{prob) # output - probabilities
RELL & Derivative print{sum({prob)) # sum of the probabilifies gives 1

,5.

— Ml [@.18534997 2.85231524 2.77843681 2.86389798]
: ] fix} 1.8
44
3.
24
14 .

|

0 .

5 - =3 D 2 H B
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Tutorial 3 H LR[S

Include 2 Jupyter notebook

» notebooks/NB-3-2 simple _NN.ipynb (optional)

Hands-on: Implement simple straight-forward neural network in TF

Outcome: Basic understanding of Neural Network architecture and building

blocks.
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Tutorial 3

Include 2 Jupyter notebook

» notebooks/NB-3-2 simple NN.ipynb

 TensorFlow (TF) origin: Google Brain Team

* Open source software library for numerical computation using data flow
graphs

* It deploys computation to one ore more CPUs / GPUs and TPUs in a desktop,
server, or mobile device with a single API.

* Tensorboard (visualization tool)

Khatuna Kakhiani . 27.03.2024 -




Tutorial 3

NB-3-2_simple_NN.ipynb Main Graph
Xi € RD, r
herei=1...m
m images, each with D =50 x50 x1 px s A e,
y, €1...n; here n=2; e
x[2500x1]; W[2x2500];b[2x1] y
f:RP RN
LT I [ h -_ :] -Er:-:::,m,ﬂ
/ |
L e @D e
LY
rendorm_unif_.
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Tutorial 3

NB-3-2 simple_NN.ipynb

Data Flow Graphs
Representations of the data dependencies between a number of operations

 Graph Nodes - math. Operation Rele
* Edge — multi-dimensional data set
add
TensorFlow (TF) does have its own data structure e
e Tensors - an n-dimensional (n-d) array or list ( o )
& %,
— core of TensorFlow \
— only tensors are passed between operations ( W ] shape st
Order/n 0 1 2 3 %
Scalar Vector Matrix =~

random unif...

100 |[4,5,7, .., 10] [1 2 < Details
3 1 .
skipped
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Tutorial 3 H LR[S

NB-3-2 simple_NN.ipynb

To do calculations:
» Build the graph ... construct all the operation dependencies
» Run the graph ... feed with data and compute result

#Create a graph Relu
# Input parameters

max_height, max_width = 58, 58

num_classes = 2

learning_rate = 0.001 3

batch_size = 32 add

#The bias term b

b = tf.variable(tf.zeros((num_classes)), name='b') Shape and type of data o
# Shape and type of data W(weight) - random uniform distribution between -1 and 1 MatMul
W = tf.Variable(tf.random.uniform((max_height*max_width, num_classes), -1, 1), name ( b )
# x(image input)(m*max_height*max_width) placeholder
x = tf.placeholder(tf.float32, [None, max_height*max_width], name='x") -‘d? t%;
# apply nonlinearity on (Wx+b) via RelLU activation function X 2eros
Z = tf.nn.relu(tf.matmul(x, W) + b) W shape_as t..
Const

#print(b, W, x)
print("Bias shape:", b.shape)

print("Weight shape:", W.shape) %
print("Data shape:", x.shape)
#create the writer out of the sesion random_umf...

writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())

Khatuna Kakhiani ©: 27.03.2024




Tutorial 3 H L R[S

NB-3-2 simple_NN.ipynb

In [6]: #softmax function returns an array of 2 probability scores that sum to 1.
prediction = tf.nn.softmax(Z)
label = tf.placeholder(tf.float32, [batch_size, num_classes], name ="label
# init. variables
init op = tf.variables initializer(tf.global variables())
# loss function
cross_entropy = tf.reduce_mean(-tf.reduce_sum{label * tf.log(prediction),
# training with Gradient Descent (GD) optimizer
train_step = tf.train.GradientDescentOptimizer{learning rate).minimize(cr¢

#create the writer out of the sesion
writer = tf.summary.FileWriter('./graphs’, tf.get_default_graph(})

#Convert training data fr
train_data = np.zeros((le In [7]: #To compute, launch the graph in a session

for i in range (len(train with tf.Session() as sess:
train_data[i] = train #sess.run(tf.initialize_all_ variables())
sess.run{init_op)
max_epochs = 1 # We will run just for 2 epochs
for epoch in range(max epochs):
# Compute gradient and update parameters per batch
for batch_num in range(int(len(train_data)/batch_size)):
. . . batch _data = train_data[batch_num*batch size:min{(batch_num+1’
Define a session, which graph to run batch_label = np.eye(num_classes)[np.int_(train_labels[batch_r
: sess.run(train_step, feed _dict={x: batch_data, label: batch_l:
Run the operation #You can calculate and report how the batch Loss here changes

feed data to the graph loss = sess.run([cross_entropy], feed dict={x: batch _data, lat

Khatuna Kakhiani . 27.03.2024 -




Tutorial 3 H L R[S

NB-3-2 simple_NN.ipynb
TensorBoard Visualization

Mext open TensorBoard at hifp/n0Speoce00E6/ to visualize main graph.

In [ ]: !tensorboard --logdir="./graphs” --bind_all

Main Graph Auxiliary Nodes gradients ~
Subgraph: 43 nodes )
-’ == gadents |+ e : Attributes (0)
i :M-T:z:::e { Gradiempess. | Inputs (8)
" label 2tensors  a
LDg 2 tensors
my/” Softmax 3tensors
3 Relu 2
— 2150 e — B p—— Mathul Ful
2 b/read 2
e W/read 2500x2
| ¥ 22500 W
e Outputs (1)
gt () GradientDescent 2 tensors

Add to main graph
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Learning a model

Conflgurg the Model Compile the model Train the Model
Architecture

e Artificial Neural * Loss (to measureshow ¢ Performance at Task
Networks (ANN) accurate the model is improves with an

* Multilayer during training) Experience
Perceptron (MLP) * Optimizer (to minimize  * Train to classify images

e Convolutional Neural Loss with respect of * Track epochs, let model
Networks (CNN) parameters) see every pictures many

* Metrics (to evaluate times; babysit process
performance)
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Compile the model

 Loss function:

measures how accurate the model is during the training.
_/\

Minimize the loss function

* Optimizer:
the model update based on the data it sees and its loss function.

* Metrics:
used to monitor the training and evaluation steps.
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Compile the model

* Loss function: measures how accurate the model is during the training.

e This can be as simple as MSE (mean squared error) or more complex
like cross-entropy.
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Optimization

* Based on the gradient descent algorithm

* Minimization of error through optimization of function

* Moving in the opposite direction of the gradient

* Backpropagation adjusts parameters (backward) given the error
* Training Data may be iterated multiple times

 Complete pass over the data - ,,epoch”

e Optimizers: GD, SGD, Adam, PMSProp ...

Khatuna Kakhiani . 27.03.2024 -




Classification metrics

 We need a Performance measure P
— to assess the performance of the model
— to monitor the training and evaluation steps

* Default metric for classification is accuracy, the fraction of the images that are
correctly classified

* This metric is not useful when there is a data imbalance

— the distribution of examples in the training dataset across the
supercategories is not equal

— e.g. proportion in supercategory < 50%

27.03.2024 ::




Classification metrics

Problem:

Only 37% of the validation set and 21% test set with bottles .

Predicting every image as not containing a bottle would give ¥63% and ~79 %
accuracy, which is not representative of how well the model is doing on

predicting bottles.
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Classification metrics

The low performance on the minority class (supercategory)
is not captured in the accuracy metric.

model accuracy model loss
1000 1 — train 05 | — main
0975 A
0.950 - h' 04 1
0.925 1
g 03 -
4 (]
é 0.900 E
% 0875 | 032 -
0.850 1
0.1 1
0.825
0.800 - 0.0 1
T T T T T T T T T T T T
0 20 40 &0 80 100 0 20 40 &0 80 100
epoch epoch

Almost perfect accuracy according to the model training history.
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Classification metrics

More complete picture according to the confusion matrix
* how many classes were correctly classified vs misclassified?

* The simplest confusion matrix for a 2-class classification problem, with
negative (0 - no bottle) and positive (1 bottle) classes

* Precision - percentage of relevant results

* While recall is characterized as the percentage relevant results that are
correctly classified

Predictions .
what if FN
+ -
represents
EN one with
TP COVID-19 ?
+ .
" False Negative
True Positive
Type Il error
Actual class
FP
" TN
False Positive :
- True Negative
Type | error

27.03.2024 ::




Classification metrics

Main metrics: Breakdown the accuracy formula even further

AU TP+ TN Overall performance of
TP+ TN + FP + FN model
. TP How accurate the
Precision TP+ FP - I
positive predictions are
Recall TP Coverage of actual
Sensitivity U= positive sample
Specificity TN Coverage of actual
U= negative sample
F1 score 2TP Hybrid metric useful for
2P a7 7747 AN unbalanced classes
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Learning a model

Conflgurg the Model Compile the model Train the Model
Architecture

e Artificial Neural ° loss (to measures how  * Performance at Task
Networks (ANN) accurate the model is improves with an

* Multilayer during training) Experience
Perceptron (MLP) ° Optimizer (to minimize  * Train to classify images

e Convolutional Neural Loss with respect of * Track epochs, let model
Networks (CNN) parameters) see every pictures many

* Metrics (to evaluate times; babysit process
performance)
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Training of a NN

From the training example Inputs get the neurons output (feedforward)
Calculate the error (loss), the difference between the output we got after
calculation and actual output (the ground truth - input labels)

Adjust the weights accordingly to minimize error (Backpropagation)
Backpropagation computes the derivative of the loss with respect of weights
(different optimizer: GD, SGD, Adam, PMSProp ...)

Repeat this many times (i.e., Epoche = 20 or more)

A small loss leads to a good prediction
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Evaluation

* Model performance is evaluated on validation set
* Trained Model gives predictions on unseen data

e Chosen Metrics suffice
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Dropout

Regularization technique

Prevents overfitting making memorization difficult

Method: randomly throw activations away (e.g. p=0.5),

Early dropout coupled with RELU — preventive

@ @
X[2] A DropOut
‘o ()

O/

Source: https://github.com/dair-ai/ml-visuals
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Tutorial 4 - Image Classification with MLP

* Hands-on: Image Classification with Multilayer

Perceptron (MLP)

 Outcome: Basic understanding of Neural Network architecture
and building blocks of an image classification pipeline. Ability
to modify the model architecture, compile, train NN and

visualize.
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Tutorial 4
Jupyter notebook
» Open a notebooks/ NB-4 train_ NN _50.ipynb

Tasks to complete:
* Load saved numpy arrays (3 image sets, 3 label sets)
 Summarize training, validation, and test data.
 Normalize, scale, experiment
* Configure model for MLP
* Experiment with hyperparamenters (learning rate etc.)
* During experiment use number of epochs =30
* Visualize training history
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Tutorial4 .

X. eRD;
NB-4 train_NN_50.ipynb

herei=1...m

mimages, each with D =50 x50 x1 px
y, €1...n; here n=2;

x[2500x1]; W [2x2500];b[2x1]
f:RP RN
_— |
k=2 R o | - — -— Ipa " pm—— Tz = e B __:u— s e (e e B =
3 ;» s ‘&:-L‘m; ‘:;m = — = = T N =
....wF — - L ) e — : -
i . _-o- e T L e )
— gt b - —
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Learning a model

Conflgurg the Model Compile the model Train the Model
Architecture

e Artificial Neural * Loss (to measureshow ¢ Performance at Task
Networks (ANN) accurate the model is improves with an
* Multilayer during training) Experience
Perceptron (MLP) * Optimizer (to minimize ¢ Train to classify images
* Convolutional Neural Loss with respect of e Track epochs, let model
Networks (CNN) parameters) see every pictures many
* Metrics (to evaluate times; babysit process

performance)
Instead of MLP
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Image Classification task

 Dataset 2 annotated, RGB images of different size

* Image Classification task = predict a single label (or a distribution over labels

to indicate confidence) for a given image.

* Resize: 1000 pixels wide, 1000 pixels tall.

* RGB - gray scale images

* Results 2 1000 x 1000 x 1, or a total of 1 Million numbers
* Pixel range: from 0 (black) to 255 (white)

* The task: to turn numbers into a single label, such as “bottle”
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Image Classification challenges

* Viewpoint variation of a single instance of an object (bottle)
* Scale variation - size in the real world vs in the image
 Deformation - i.e., deformed plastic bottle

* Occlusion - only a small portion of an object visible

* lllumination conditions - direct effects on the pixel level
e Background clutter - making hard to identify object

* Intra-class variation - many different types of these objects

» CNNs systematize this idea of spatial invariance, exploiting it to
learn useful representations with fewer parameters.
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Why Convolutions?

Problems:

— Impractical to use ANNs for real-world image classification
 a2Dimage-1 Million numbers per image
 If the first hidden layer has 1000 nodes
* the matrix of input weighs = 1000 x 1000 x 1000
* increasing the number of layers increase numbers rapidly

— Vectorising an image ignores the complex 2D spatial structure

* How to build a system that overcomes both these disadvantages?

— Convolutional neural networks (CNNs) are one creative way
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* Human perception is very accurate

 Computers see images as 2D arrays of pixels :

What the computer sees

* Algorithms need to be trained on lots of images 2% cat

: ; : 15% dog
image classification 2% hat

1% mug

Source: http://cs231n.qgithub.io/classification/

receptive field

* CNN mimics humaneye \WNVT7///

‘ soma of neuron

A a single sensory neuron’s receptive field. axon
Source: http://cs231n.github.io/convolutional-networks/
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CNN - advantages and disadvantages

Pros

* CNN -is aclass of deep feedforward ANN, that contain convolutional layers
* Improves the performance by using spatial information of pixels of an image
e Convolutional layers require fewer parameters than fully-connected layers

* Larger the data, greater the accuracy - the first fully connected layer with
thousands of weights

e Translation invariance in images automatically obtained
— all patches of an image are treated in the same manner
— the same weights across the whole space

* Locality - from a small neighborhood of pixels to the corresponding hidden
representations

Cons

Downside of deep CNN: a bad learning performance could be improved with hyperparameter tuning
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,-f"j INFUT CONVOLUTION + RELU POOLING COMVOLUTION = RELU  POOLING FLATTEM FULLY SOFTMAX

_.)‘ L CONMECTED
Y Y

HIDDEN LAYERS CLASSIFICATION

Source: https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
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C N N IVI O D E L activation - Results of the labels;

a class {1, 0} 555 - .:\
Layer (type) Output Shape Param # |I_||_|I_|_|_|_u |I| E z
______________________________________________ S - Computation ‘ | £
______________________________________________ B 3 N T EE >— &
conv2d (Conv2D) (None, 50, 50,16) 160 et [ 3
disjgent - Regularization |Z - | Y
B
max_pooling2d (MaxPooling2D) (None, 25, 25, 16) & N\ 2 J
S - a single vector A
conv2d_1 (Conv2D) (None, 23,23,16) 2320
- Feature mapping H
max_pooling2d_1 (MaxPooling2 (None, 11, 11, 16) in Convolution layer g
> down-sampling of :
conv2d_2 (Conv2D)  (None, 9,9,16) 2320 own-sampling o i 8
the data 3| %
8z
flatten (Flatten) (None, 1296) 0 2
- I
dense (Dense) (None, 2) 2594
activation (Activation) (None, 2) 0 é
"""""""""""""""""""""""" g )
Total params: 7,394
Trainable params: 7,394 __ g
Non-trainable params: 0 \ -\
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Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flattem)  (Nome, 2500) 0
dense (Dense) (None, 128) 320128
dropout (Dropout) (None, 128) 0

dense 1 (Dense) (None, 2) 258

Total params: 320,386
Trainable params: 320,386
Non-trainable params: 0
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Convolution

Pooling operation
Activation functions
Dropout

Backpropagation

Khatuna Kakhiani
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Convolution Operation

* Combination of 2 functions to produce a third function

* Input, kernel (e.g. 3x3), feature map (output)

e Stride kernel across the input and compute matrix multiplication

to produce output

Striding
in CONV

* Adding zero padding allows
more accurate analysis of images
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Pooling Operation

e Summarizes the output of a region
e Helps reduce the effect of invariants (small changes to the input)

* Max vs mean-pooling

Pooling =
performed with 4
a 2x2 kernel
and a stride of
S 2
Image X
Representation
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CNN Explainer

An interactive visualization system designed to help non-experts learn about
Convolutional Neural Networks (CNNs).

Understanding Hyperparameters

Input Size: 6 Aftler-'.ﬁﬁd(f; 6) Output (3, 3)
ol
Padding: 0
@
Kernel Size: 2
and
Stride: 2
o

% Hover over the matrices to change kernel position.

https://poloclub.github.io/cnn-explainer/
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CNN Explainer

An interactive visualization system designed to help non-experts learn about
Convolutional Neural Networks (CNNs).

Understanding Hyperparameters

o ~ Input (6, 6) Output (4, 4)
IanIt Size: 6 v After-padding (8, 8)
o
Padding: 1 €
L .
Kernel Size: 5
o
Stride: 1.3
o

&% Hover over the matrices to change kernel position.

https://poloclub.github.io/cnn-explainer/
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Activation functions - RelLU

e Rectified linear unit activation function

e Fast convergence (sparse activations)

e Constant values
e Negative values do not get activated

e For CNN RelLU performs faster * 3

Problem:

e Dying ReLU: neurons get stuck at 0 5 4 2 0 2 : 6

o(z) = max{0, z}

e Can lead to model not learning

Solution: Leaky ReLU w/ small slope for negatives
*1906.01975.pdf (arxiv.org)

Khatuna Kakhiani . 27.03.2024 -



https://arxiv.org/pdf/1906.01975.pdf

Dropout

Regularization technique

Prevents overfitting making memorization difficult

Method: randomly throw activations away (e.g. p=0.5),

Early dropout coupled with RELU — preventive

@ @
X[2] A DropOut
‘o ()

O/

Source: https://github.com/dair-ai/ml-visuals
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Deep Learning
Tutorial 5
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Tutorial 5 - Image Classification with CNN

 Hands-on: Image Classification with CNN

* Outcome: Basic understanding of CNN architecture and building blocks.
Ability to explain difference between CNN and FNN; advantages of CNN;
modify the model architecture, compile, train CNN and evaluate.
Experiment with model hyperparemeters and proper metrics for the

unbalanced dataset.
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Tutorial 5 m
Jupyter notebook
> Open a notebooks/NB-5-train CNN_50.ipynb

Tasks to complete:
* Load saved numpy arrays (3 image sets, 3 label sets)
 Summarize training, validation, and test data.
 Normalize, scale, experiment
* Configure model for CNN
* Experiment with the hyperparamenter (learning rate etc.)
* During experiment use number of epochs =30
* Visualize training history
* Observe how changes affecting results in confusion matrix
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Classification metrics

Problem:

Only 37% of the validation set and 21% test set with bottles .

Predicting every image as not containing a bottle would give ¥63% and ~79 %
accuracy, which is not representative of how well the model is doing on

predicting bottles.
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Classification metrics

Detailed report with desired evaluation metrics

Precision:

*  Precision measures the proportion of true positive predictions relative to all positive predictions.
* Itanswers the question: “Of all predicted positive cases, how many are actually positive?”

Recall (Sensitivity):
* Recall measures the proportion of true positive predictions relative to all actual positive cases.
* Itanswers the question: “Of all actual positive cases, how many did we correctly predict?”

precision recall fl-score support precision recall fl-score support
0.0 0.61 0.84 0.71 94 0.0 0.78 0.86 0.81 118
1.0 0.25 0.09 0.13 56 1.0 0.15 0.09 0.12 32
accuracy 0.56 150 accuracy 0.69 150
macro avg 0.43 0.46 0.42 150 macro avg 0.46 0.46 0.46 150
weighted avg 0.47 0.56 0.49 150 weighted avg 0.64 0.69 0.67 150
Validation set Test set
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Outlook

 Data Augmentation:

* Check the influence of data augmentation on the model
performance

* From unbalanced data = balanced data

* Work with RGB channel images in CNN
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Outlook

* Image data augmentation

— Optional data augmenting using
* solution/preprocess.py
 solution/job_preprocessing.pbs
— Used to improve the performance and ability
of the model to generalize

* Transfer Learning and Fine-tuning
important methods to make big-scale model
with a small amount of data.
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Transfer Learning

* Transfer learning leverages knowledge gained while solving one
problem and applies it to a different but related problem.

* |t allows to use pre-trained models and adapt them for specific
tasks with less data and training time
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Fine-Tuning

* Fine-tuning involves taking an already trained neural network
(such as VGG-16) and retraining part of it using a new dataset.

 VGG-16 is a convolutional neural network (CNN) architecture
known for its effectiveness in image classification.

e Stack of multiple, smaller 3x3 convolution kernels, resulting in
fewer parameters and more non-linear transformations,
enhancing feature learning.

* A preprocessing of a new dataset could be necessary.
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Thank youl!
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