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From Machine Learning to Deep Learning: A concise introduction
March 26-28, 2024, HLRS
Day 1: 
Pre-processing, Feature Engineering and Machine Learning (Lorenzo Zanon)
Day 2: 
Focus on supervised Deep Learning to classify images of waste in the wild 
(Khatuna Kakhiani)
… continues…
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From Machine Learning to Deep Learning: A concise introduction
March 26-28, 2024, HLRS
Day 3: 
- Guest Lecture: Towards Data-Driven Computational Fluid Dynamics  (A. Beck, A. Schwarz 
IAG)
- Generalization and the problem of leakage (Nico Formanek)
- Data Compression of numerical data sets with the BigWhoop library (Patrick Vogler)
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• Pre-processing:

– Read-in, transform and merge datasets,

– Derive new features,

– Correlation analysis,

– Implicit data processing: 
Vectorisation, Normalisation, Assembling.

Learning outcomes

Part I
Part II
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• Supervised learning algorithms:

‒ Linear regression,

‒ Random forest (classification).

• Steps of the Machine Learning pipeline:

‒ Training, regularisation and cross validation, 

‒ Prediction/Inference on a test dataset.

• Working on a cluster.

• Parallel Spark.

Learning outcomes

Part II
Part III
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+
Machine Learning concepts requires in Deep Learning 
and applications (e.g., CFD in Day 3).

–
Delay prediction of Stuttgart metropolitan trains:
We focus on the general concepts.
We will not outperform existing tools provided by the 
Deutsche Bahn or the public transport in Stuttgart 
(VVS).

Learning outcomes
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Focus on Pre-processing, Feature Engineering and
Machine Learning

• Part I: Introduction
– Pre-processing

• Part II: Example on the Jupyter Notebooks
– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

• Part III: HLRS Systems and Example as a Python script
– Work on a cluster, parallel Spark

Tue, March 26, 2023  09:00 – 17:xx
Lunch break 13:00 – 14:15

Part I
Part II
Part III

B
outcomes.
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Focus on Pre-processing, Feature Engineering and
Machine Learning

• Part I: Introduction

– Pre-processing

« General Introduction

« Source Data

Main index

Part I
Part II
Part III

More learning outcomes
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Focus on Pre-processing, Feature Engineering and Machine 
Learning

Stuttgart S-Bahn Example 

Lorenzo Zanon, Oleksandr Shcherbarkov, Dennis Hoppe (HLRS), 
Li Zhong (former HLRS)

Introduction
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• Origin of this example: Project “Simulated Worlds”, a 
cooperation between:

– HLRS,

– Steinbuch Centre for Computing (SCC),

– Stuttgart Research Center for Interdisciplinary Risk and 
Innovation Studies (ZIRIUS).

• Ahmed Masood (HLRS working student 01/07/2020 –
30/06/2021)

Further acknowledgements

https://simulierte-welten.de/ 
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Main reference

• Python Data Science Handbook
by Jake VanderPlas (O’Reilly).
Copyright 2017 Jake VanderPlas, 
978-1-491-91205-8.

• Abbreviated as [PHB, page]

• Online (with code of the examples):
https://jakevdp.github.io/PythonDataScienceHandbook
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General objectives of the example

Can I improve my travel experience in the Stuttgart S-Bahn 
with the help of Machine Learning?

1. Predict the S-Bahn delays accurately to the minute: 
is that feasible?

2. Is my train going to be late at all?

• How to deal with a given set of data? 
→ data preparation and data manipulation

• ML pipeline: Training and Validation, Test.

• ML quality optimisation.

Picture 
needed???
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Explorative analysis / Manipulation

• Explorative / statistical analysis:

– make a first interpretation,

– extract first simple statistical values for the delay.

• Problem: The initial set of features is small,

the data are not ready for use!

S-Bahn-line S-Bahn-line

Friday Saturday

D
el

ay
 (

m
in

s)

D
el

ay
 (

m
in

s)
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Explorative analysis / Manipulation

Naming convention

• Sample: Each observation as an entry in the dataset.

• Features and feature vectors quantitatively describe a 
sample and are used to obtain a prediction.

Weather Day of 
Week

Line Duration Pollution Delay

Rainy Monday S2 35 Low Delayed

Storm Tuesday S3 40 High On time

Sunny Thursday S60 30 Medium On time

sample

feature 
vector
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Explorative analysis / Manipulation

Naming convention (cont’d)

• … quantitatively: Numbers, but also
categorical data, (texts), images! (→ part 2)

• DataFrames: Each row corresponds to a feature vector 
describing a sample.

Weather Day of 
Week

Line Duration Pollution Delay

Rainy Monday S2 35 Low Delayed

Storm Tuesday S3 40 High On time

Sunny Thursday S60 30 Medium On time

sample

feature 
vector

SCA: 
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Explorative analysis / Manipulation

Naming convention (cont’d)

• … Label or target: “Special” feature that must be 
predicted from the data (dependent variable).

Weather Day of 
Week

Line Duration Pollution Delay

Rainy Monday S2 35 Low Delayed

Storm Tuesday S3 40 High On time

Sunny Thursday S60 30 Medium On time

label or 
target

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf

[PHB from p. 375]
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Pre-processing and Feature engineering

What do we do with the data:

Before building the ML model:

• Clear-up noisy data / outliers,

• Perform data augmentation / fusion,

• Partition the data between a training and a test set,

• Further explorative analysis:
Find out linear relations with a correlation map.

After having built the ML model:

• Evaluate which features deliver the best model quality.

Example: next slide / Details: later on.
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Pre-processing and Feature engineering

a) Train schedule features b) Weather features
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Predicting Train Delays with Machine Learning

• ML/DL Models…
will learn how to solve our problem on our data without 
need of explicit programming (Arthur Samuel, 1959). 

• The model is defined by a (large in DL) set of 
parameters or weights. 

• The weights are learnt and progressively improved
through training.

• The feedback received from the data corresponds to 
different learning types.

[Vivienne Sze et al., Efficient Processing of Deep Neural Networks, 2017.]
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Predicting Train Delays with Machine Learning

Active Learning:

• The training samples can be labelled by a “teacher”.

Supervised Learning:

• All training samples are already labelled.

• Discriminative classifiers partition test data by 
predicting given labels.

→ This example: The true delay is known for all training 
samples.

[Vivienne Sze et al., Efficient Processing of Deep Neural Networks, 2017.]
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Predicting Train Delays with Machine Learning

ML/DL Models:
Unsupervised Learning:
• The training samples are 

not labelled (→ no feedback).
• The algorithm will identify the 

label 
– as a pattern or structure, 
– or a subdivision into clusters of 

the data 

(generative classifiers and clustering).
• Model reduction or compression are further examples.
→ Day 3

[Vivienne Sze et al., Efficient Processing of Deep Neural Networks, 2017.]
[code adapted from: PHB Notebooks]
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Predicting Train Delays with Machine Learning

ML/DL Models:
Semi-supervised Learning:
• Only a small subset of the training data is labelled.
• The (few) labelled data can define the cluster regions. 
• Unlabelled data can be used to define the cluster 

boundaries.
Transfer Learning:
• Use a model trained on one task and re-train to use it on a 

different (or more specific) task.
• E.g. in computer vision, use a CNN to extract basic features 

and FCLs for the final goal (detection, segmentation etc.).

[Vivienne Sze et al., Efficient Processing of Deep Neural Networks, 2017.]

For
computer
for
(DLI).
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Predicting Train Delays with Machine Learning

ML/DL Models:

Reinforcement Learning:

• Rather than to predict an information, the ML/DL model 
predicts an action…

• …leading to a reward or to a cost.

• The weights of the model are trained to 
maximise the payoff.

[Vivienne Sze et al., Efficient Processing of Deep Neural Networks, 2017.]
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Predicting Train Delays with Machine Learning

In our Supervised Learning example:

• Regression to predict the continuous delay in minutes
– Tools: (linear) regression models [PHB from p. 390].

– Problems: Un-detected nonlinear relations, relevant 
features missing, …

– Success guaranteed only at “short notice”.

• Classification of a binary discrete label (delay {yes, no}):
– Tools: Random Forest as an ensemble of Decision Trees

[PHB from p. 421].

– … yields better results.
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Example of classification result & visualisation

• Accuracy of classification of the line S1 at every station:

– Green: > 80% of correct prediction

– Orange: >= 50%
(binary case 
= coin flip! )

– Black: < 50% 

Results obtained with Urika-GX, 90% training 10% test data(Q1/2020)

24
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Focus on Pre-processing, Feature Engineering and
Machine Learning

• Part I: Introduction

– Pre-processing

« General Introduction

« Source Data

Main index

Part I
Part II
Part III

More learning outcomes
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Source Data

In this section, we will cover:

• What are the source data for this example,

• What are the label and features for this example,

‒ Small digression →ML/DL with engineering data.

• Which tools we use to run this example.

26
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Source Data

Which format do the data have:

• .csv and .xls files are read-in from the S-Bahn code.

• You can find and download some of these files at
https://fs.hlrs.de/projects/par/events/2021/DL3/S-Bahn-data/

• You can also have a look at them in your workspace:
>  cd $MYSCR
>  ll sbahn_data

SCA / DLX: … 
files
page
Dateien

27
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Source Data

What do the data represent:

20170901-20171019_scheduled_S-Bahn_Stuttgart.csv

20170901-20171019_actual_S-Bahn_Stuttgart.csv

• All Stuttgart S-Bahn journeys over 50 days.

→ 1.639 journeys are analysed (complete dataset).

• S-Bahn events:
– scheduled timetable (Soll-events),

– actual times (Ist-events),

each with information about the station, the line, the 
(planned) journey, …

https://data.deutschebahn.com/organization/s-bahn-stuttgart
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Source Data

StationData.csv

• All Stuttgart S-Bahn stations with their 3 attributes
(numeric ID; short name as DS100 code; full name).

S-Bahn-coordinates.xlsx

• Geographical coordinates of the stations.

S-Mitte-SZ-30min-values_2017.xls

• Weather and fine particles, measured every 30 minutes.

Total size : O(1GB)

Picture next slide.

https://de.wikipedia.org/wiki/Betriebsstellenverzeichnis
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Source Data

• During the manipulation part, the data will be structured 
into DataFrames (DF) for the ML algorithms.

• Each row of the DF is a sample corresponding to an event:

– A train’s departure from a particular station:
1.639 journeys x ca. 20 stations / line = ca. 33.000 events,

– each characterised by one label (= delay of the event),

– … and > 30 features (about time, weather, station 
characteristics):
33.000 events x 32 qualifiers = ca. 1M data in different 
formats.
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Source Data

• From the source data, 31 features and 1 label are derived in 
the pre-processing phase:
– Features: E.g. (x,y) positions of points on the plane.

– Label or target: E.g.
colour of these points.

Image recognition (day 2)

– Features: clusters of
pixels,

– Label or target:
information from the
picture.
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Source Data

• The features are columns of the DataFrames used for the ML 
algorithms to predict the delay of the S-Bahn.

• See the next 3 slides for a list of all features, and the label, i.e. 
the delay.

34



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Data preparation: feature columns (1)
|-- MONAT: month
|-- TAG: day
|-- STUNDE_SOLL: sched. event hour
|-- MINUTE_RANGE: 0 or 30
|-- ZUGEREIGNIS_LINIE: S-Bahn line number
|-- SERVICE_START_ZEIT: unix time for scheduled service start
|-- ZUGEREIGNIS_ISTZEIT: unix time for actual event
|-- ZUGEREIGNIS_TYP: 40=departure
|-- ZUGEREIGNIS_SOLLZEIT: unix time for scheduled event
|-- SERVICE_ID: service unique ID
|-- ZUGEREIGNIS_ZUGNUMMER: train number
|-- ZUGEREIGNIS_DS100: station code

German name in the DataFrame

English version

Some selected 
relevant features

35
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Data preparation: feature columns (2)

|-- MINUTE_SOLL: scheduled minute

|-- STUNDE_SER: scheduled service start hour

|-- MINUTE_SER: scheduled service start minute

|-- WOCHENTAG_SER: scheduled service start day of week

|-- WOCHENTAG_SOLL: scheduled day of week

|-- VERSPAETUNG: delay (minutes)

|-- LAUFSZEIT: diff. sched. event - sched. service start (min.)

|-- Datum: date

|-- prev0_VERSPAETUNG: delay (minutes) at the station -1

|-- prev1_prev0_VERSPAETUNG: delay (minutes) at the 
station -2

Label or target

36
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Data preparation: feature columns (3)

|-- Mittelwerte_Temperatur: temperature

|-- Mittelwerte_Rel_Feuchte: humidity

|-- Mittel_WG: avg. wind speed

|-- Max_WG: max wind speed

|-- Summe_Niederschlag: total precipitation (as L/m2)

|-- Mittel_NO: avg. pollution data…

|-- Mittel_NO2: …

|-- Mittel_O3: …

|-- Mittel_PM10: 

|-- TimeUnix: unix time of the weather forecast To

SCA: 
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Source Data: Engineering

Alternative data sources:

• They could be the result of a numerical simulation, 

• or of several FEM simulations (bundle) with varying parameters.

• An example of data augmentation is combining

– representative data such as measurements and experiments +

– simulation and computation (e.g., when extreme scenarios must be 
included).

• For time-dependent problems: 

– ML models: Methods to extract input data,

– In DL: Sequence models or recurrent NN.
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Source Data: Engineering

→Unsupervised learning methods for:

• compact representation / model surrogates 
→ dimension reduction

• automatic categorisation of controller results → clustering

… for improved (human) interpretability of the results (e.g., detect 
anomalies).

→ Also supervised learning methods play a role 
E.g. day 3: shock detection in a turbulence model → binary classifier

Beck, Flad, Munz. ”Deep neural networks for data-driven LES closure models.” 

Journal of Computational Physics 398 (2019): 108910.

Kurz, Beck. ”A machine learning framework for LES closure terms”, arXiv, 2020.

Beck, Kurz. ”A perspective on machine learning methods in turbulence modeling”, 

GAMM Mitteilungen, 2021.

SCA: 
Day 3
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Source Data: Engineering

Example: 
Dimension reduction of an automotive FEM simulation (3 modes), 
and clustering (= colour, quantity of interest).

Rodrigo Iza-Teran / Fraunhofer SCAI

https://www.hlrs.
de/training/2024/
ml4simx
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Source Data: Engineering

Some challenges:

• Coupling of engineering code (C, C++, Fortran) with ML/DL 
libraries and instructions (Python).

• Data storage.

• HPC: data- and model-parallelism on CPU and GPUs.

• …
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Data preparation: Tools

Programming language:

• Python:
https://docs.python.org/3/tutorial/

Main tools for data manipulation and ML:

• Numpy:
Efficient interface to store and operate on dense data buffers:
https://numpy.org/doc/stable/reference/index.html

Q 
Debugging 
tool
Python???
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Data preparation: Tools

• Apache Spark
Analytics and ML framework released in 2014:

– Originally from Berkeley AMPLab/BDAS stack, now Apache project.

– Native APIs in Scala; Java, Python, and R APIs available as well.
https://spark.apache.org
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Data preparation: Tools

“Spark is a fast and general cluster computing system for Big Data. 
It provides high-level APIs in Scala, Java, Python, and R, and an 
optimized engine that supports general computation graphs for 
data analysis. It also supports a rich set of higher-level tools 
including Spark SQL for SQL and DataFrames, MLlib for machine 
learning, GraphX for graph processing, and Spark Streaming for 
stream processing.“

https://pypi.org/project/pyspark/
Compare to Scikit-learn! 
Similar tools with some 
differences: Article.
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Data preparation: Tools

• Pandas
https://pandas.pydata.org
Data Manipulation with Pandas [PHB pp. 97-215]

– Built on Numpy,

– Provides useful structures for ML such as Series and DataFrames.

– DataFrames (DFs): 
2D objects with flexible row and column indices:

states.columns

states.index
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Data preparation:  Basic Structures

Other (simpler) data structures (cf. EX 1 in NB 1):

• Python dictionary: 
Maps keys to values of arbitrary type.

• Numpy array [PHB pp. 33-96]:
Multi-dimensional typed Python array.
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Data preparation:  Basic Structures

• Pandas Series [PHB pp. 97-110]: 
1D-array of indexed, typed data with flexible indices.
More efficient than a dictionary!

• Pandas DataFrames:
Aligned Series sharing the same row index:
states.index indices of the rows,
states.columns indices of the columns.

DataFrames support a variety of different data types (vectors, text, images 
and structured data) on which ML algorithms can be applied.

https://spark.apache.org/docs/latest/ml-pipeline.html
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Data preparation: Tools

Why use both Spark and Pandas?

• Pandas: 
User-friendly, more flexible, better for visualisation.

• Spark: Better for parallelism.

→ In the exercises: 

• Spark is the default framework,

• Pandas DataFrames will be marked with _pd .
• Most commands are quite intuitive. Helping text is provided.
→ Proficiency in these tools is not required.
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Source Data and I/O: HDFS

HDFS was available on Urika GX. Vulcan: Work in progress.

• I/O files are (usually large) DataFrames which are read from and 
written to through the Hadoop Distributed File System (HDFS). 

• HDFS allows for distributed storage in an HDFS cluster (provided 
in the Urika-GX systems).

+ : Speed of parallel execution

– : HDFS files cannot be handled as “normal“ files.

See:

https://hadoop.apache.org/docs/r2.8.5/hadoop-project-
dist/hadoop-hdfs/HdfsUserGuide.html
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Source Data and I/O: Small HDFS guide

Basic commands to perform operations on these files:

https://hadoop.apache.org/docs/r2.8.5/hadoop-project-
dist/hadoop-hdfs/HDFSCommands.html

and

https://hadoop.apache.org/docs/r2.8.5/hadoop-project-
dist/hadoop-common/FileSystemShell.html

PRACTICAL (e.g. on the Urika system)

In particular:

>   hadoop  fs  -ls

displays your local hdfs files (none or Trash folder).
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Source Data and I/O: Small HDFS guide

PRACTICAL (e.g. on the Urika system)

Copy an HDFS file to your directory:

>  hadoop fs  -cp 
hdfs://192.168.0.1:8020/user/hpclzano/df_ts.csv df_ts2.csv

You can now see the file with (in chronological order)

>  hadoop fs  -ls  -t

Check out more -ls options in 
https://hadoop.apache.org/docs/r2.8.5/hadoop-project-
dist/hadoop-common/FileSystemShell.html
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Source Data and I/O: Small HDFS guide

PRACTICAL (e.g. on the Urika system)

Remove the df_ts2.csv file with: hadoop fs -rm [name_of_file]

>  hadoop fs  -rm  df_ts2.csv

ERROR! since hdfs files are treated like directories.

In fact:

>  hadoop fs  -ls  df_ts2.csv

… shows?
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Source Data and I/O: Small HDFS guide

PRACTICAL (e.g. on the Urika system)

… it shows the many smaller parts in which the file is now 
distributed, now as files:

…

-rw-r--r-- 3 hpclzano s29931     470189 2020-03-18 14:28 
df_proper.csv/part-… .csv

…

To properly remove the file:

>  hadoop fs  -rm  -R  df_ts2.csv
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Source Data and I/O: Small HDFS guide

Later in Spark, I/O is done in such a way:

df_test5_5.write.mode('overwrite').csv('df_test5_5.csv', header = 
True)

df_train_classification = spark.read.option('header', 
True).option('inferSchema', True)\
.csv('df_train_classification.csv').cache()

Writing/reading are done locally by default to/from HDFS files!

-> Manually adapted to Lustre I/O.
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Requirements for the hands-on exercises

• Login: Sheet on your desk.

• This & all other files can be found in:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs

– DL-HLRS-all-exercises.pdf :

➢ Create the workspace,

➢ Download the data needed for all days (?).

– DL-HLRS-day1-lectures.pdf : These slides

– DL-HLRS-day1-exercises.pdf : Exercise instructions

DLX 
Kurs

Time 
go
have
content
ready
of
SLACK

We do this set-up now. 
Careful with c/p from pdf!
Use right-click in terminal.
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Focus on Pre-processing, Feature Engineering and 
Machine Learning

• Part II: Example on the Jupyter Notebooks

– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

« Notebook 1 (Ex.)

« Notebook 2 (Ex.)

« Notebook 3 (Ex.)

« Notebook 4 (Ex.)

« Notebook 5 (Ex.)

Main index

Part I
Part II
Part III

More learning outcomes
SCA: 
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Notebook 1: NB1_manipulation.ipynb

• Jupyter Notebook how-to, see slides:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs/DL-
HLRS-day1-exercises.pdf

• A few slides to sum up the content of this Notebook follow.

Go 
slides
(
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Data preparation:  Basic Structures exercise

EX 1: 

Recap of basic structures:

Pandas DataFrame

Pandas Series

Dictionary
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Data preparation: Objectives

• Feature engineering:

– Deal with missing data, outliers, NaNs, …

– Obtain derived features that have an impact on the model.

– Vectorisation → NB 2, 3, 4

• Explorative Data Analysis → NB 2

– Apply statistical tools

– Data interpretation

– Find out existing correlations
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Data preparation

1. Weather data:

• We start with a .csv file:

– Read in the file.

– Create a usable Pandas DataFrame df_pd_weather (EX 2).

• Manipulation of the Pandas DataFrame:
Drop columns, delete or replace rows with damaged entries (EX 3).

• The Pandas DataFrame is converted into a Spark DataFrame
(df_weather), then manipulated further (EX 4).
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Data preparation

2. S-Bahn data:

• They are split into

– “act“ (actual or real, containing delayed journeys), and 

– “sched“ (scheduled, timetable) data.

• We merge them into one unique Spark DataFrame (df_all : EX 5).

• First manipulation of this Spark DataFrame : EX 6.
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Data preparation

• EX 7-8: Time operations: 

E.g.: 2017-09-01 00:30:00

– Transform all “act“ and “sched“ times into Unix-times:

– Unix-time = number of seconds since 01/01/1970:
1.504.218.600

→ Unix-time allows to perform operations on the time 
entries:
→ e.g. compute the delay and the duration of travel.

https://www.unixtimestamp.com
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Data preparation

• EX 7-8: Time operations: 

1.504.218.600

– Further new features can be obtained, such as

→month, day of week : September, Friday
→ weekday/-end, peak hour, holiday, which season, …
are relevant to predict the delay!

https://www.unixtimestamp.com
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Data preparation

3. Merge train and weather data:

• Create a merged DataFrame (df_proper).

• Filter out delays that are not considered (EX 9):

‒ negative delays (= train is early),

‒ delays more than 3 hours (outliers).

• Add delay at stations -1 and -2, and
create a new DataFrame (df_ts) with this information:

eventstation -1station -2

Features Label / Target

+ : Much higher 
probability of predicting 
the delay.
– : This information is 
available only at very 
short notice!

64



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Data preparation

• Generate df_ts_classification (EX 10):

– It includes a binary {0, 1} column = delay {no, yes}.

– This is the label / target for the classification algorithm.

– The threshold is set to 0 minutes, i.e. all delays are included.

Advanced methods to define the threshold in classification 
problems in DL (computer vision applications), e.g. the Area Under 
the Curve (AUC) score calculated from the Receiver Operating 
Characteristic (ROC).
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Data preparation

4. Split the DataFrames into training and test:

• Split df_ts and df_ts_classification for the ML pipeline later 
(using random split, EX 11):
df_train, df_train_classification → 50% training 
df_test, df_test_classification → 50% test 

• The seed for random split has been fixed at the beginning 
(to have reproducible results).

.
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Hands-on

• Execute all NB1_manipulation.ipynb (Notebook 1):

• EX1 → introduction

• … until EX4: Pandas → “basic”

• … until EX11: Spark → “advanced”

• Remember to shut down the kernel at the end.
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Focus on Pre-processing, Feature Engineering and 
Machine Learning

• Part II: Example on the Jupyter Notebooks

– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

« Notebook 1 (Ex.)

« Notebook 2 (Ex.)

« Notebook 3 (Ex.)

« Notebook 4 (Ex.)

« Notebook 5 (Ex.)
Main index

Part I
Part II
Part III

More learning outcomes
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Notebook 2: NB2_vis-man.ipynb

• Jupyter Notebook how-to, see slides:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs/DL-
HLRS-day1-exercises.pdf

• A few slides to sum up the content of this Notebook follow.
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JN: AFTER the exercise

You can download any created plot in the plot folder and sub-folders:
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Data Visualisation

Main tools for visualisation of manipulated data:

• Matplotlib (as plt):
A comprehensive library for creating visualisations in Python:
https://matplotlib.org/

• Seaborn (as sns): 
“A Python data visualization library based on matplotlib. 
It provides a high-level interface for drawing […] statistical graphics”:
https://seaborn.pydata.org/
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Data Visualisation

1. Compute first statistical data and obtain a pie-plot:

• Read-in the training Spark DataFrame df_train, with 
manipulated:

– S-Bahn time-features,

– Weather-features,

– Delays at the stations 0, -1, -2 :

» in minutes

» as {0, 1} classification

Timing (V
hsw
100g/20c):
a few 
seconds
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Data Visualisation

1. Compute first statistical data and obtain a pie-plot:

EX 1: Obtain and visualise the Pandas DataFrame df_train_pd.

• df_pd_stats contains:

– statistical information on the number of events (count) and the 
delay (max, mean, min)

– … clustered by S-Bahn line number.

• Plot the count and mean information into two pie-plots.

73



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Data Visualisation

Exerc
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Data Visualisation

2. Frequency with a bar-plot

• Goal: Highlight the frequency of three types of delays 
(in minutes):

delay<2; 2<=delay<=10; delay>10

• …using a Lambda function:
a compact anonymous function that does not need an identifier.

• A numbered code is assigned to each category of delay:

0; 1; 2
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Data Visualisation 

• Apply the Lambda function to the delay column of the Pandas DataFrame
(to obtain a column of  {0, 1, 2} ),

• and plot using Seaborn.

delay<2; 2<=delay<=10; delay>10

Exerci
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EX 2: Change the threshold delays and generate a new plot.

Data Visualisation 

delay<4; 4<=delay<=15; delay>15

Exer
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Data Visualisation
3. Correlation map

+
• Find out linear relations between the features and the target

(delay)…
• …to identify a subset of features on which the ML algorithms 

could run successfully.
–
• Nonlinear relations are not detected!
• Some potentially relevant features are missing from the catalogue:

– Number of passengers,
– Delay of the following train,
– …
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Data Visualisation

• Additional tools for the correlation map:

– Scikit-learn: ML library with pre-processing tools,

– … such as the LabelEncoder for vectorisation (EX 3):
Transform categorical features into numerical features (see 
also NB 3, with Spark).

https://scikit-learn.org
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Data Visualisation

• We consider 4 sets of feature columns to observe a possible 
correlation to the delay:

– Features of the S-Bahn journeys (original dataset)

– … including derived features from time manipulation

– … including the delay at the previous stations (-1, -2) → EX 5

– Only weather features

• Accordingly, 4 Pandas DataFrames are generated.
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Data Visualisation

The Pearson’s correlation coefficient is used by default:

𝑟 =
σ(𝒚𝒊 − ത𝑦)(𝒙𝒊 − ҧ𝑥)

σ 𝒚𝒊 − ത𝑦 2 𝒙𝒊 − ҧ𝑥 2

• Where do we see a correlation to the delay?
Green or purple: Pearson’s coefficient is close to
+1 or -1 (perfect direct and inverse correlation).

• EX 4: How to choose a different correlation coefficient?

• EX 5: Produce one correlation plot, then the plots for all four 
feature combinations.

feat. vectors
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Data Visualisation

Features of the S-Bahn 
journeys (original dataset)
+ features from 
time manipulation:

(Slight) correlation to delay: 

• Start of service,

• Duration of travel,

• Month.

Time (s) 
from start 
to event 
station.

Unix time of 
departure 
from 1st

station.
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Data Visualisation

Including the delay at the 
previous stations (-1, -2):

• Very high correlation of 
delay and the 
delay at previous 
stations (-1, -2)!
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Data Visualisation

Only weather
features:

• No clearly visible 
correlation of delay with
weather data,

• Some weather data are 
highly correlated 
among themselves 
(wind, humidity, NO1-NO2-O3)
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Data Visualisation

All 4 
combinations…
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Hands-on

• Execute all NB2_vis-man.ipynb (Notebook 2)

• EX 1-3 → “basic”

• EX 4-5 → “advanced”

• You can download the plots obtained.

• Remember to shut down the kernel at the end.
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Focus on Pre-processing, Feature Engineering and 
Machine Learning

• Part II: Example on the Jupyter Notebooks

– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

« Notebook 1 (Ex.)

« Notebook 2 (Ex.)

« Notebook 3 (Ex.)

« Notebook 4 (Ex.)

« Notebook 5 (Ex.)
Main index

Part I
Part II
Part III

More learning outcomes
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Notebook 3: NB3_linreg.ipynb

• Jupyter Notebook how-to, see slides:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs/DL-
HLRS-day1-exercises.pdf

• A few slides to sum up the content of this Notebook follow.

Steps until 
“Please stop 

here 
(introduction)” 
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Machine Learning LinReg

1. Read-in the data from manipulation

DataFrames after Manipulation:

• Training: df_train (50% of all data)

• Test: df_test (remaining 50%)

Timing (V
hsw
100g/20c): 
ca. 35 sec
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Machine Learning LinReg

2. Run the regression algorithm

• Define the combinations of feature columns to run the model:

– 5 combinations: details later

– Notice that the feature columns are listed twice in the Notebook:

« cols_to_inx = feature columns as input to the ML pipeline

« cols_inx = output of StringIndexer in the ML pipeline

• The execution of the ML pipeline is explained step by step in the next slides.

→ Open handlers.ipynb Notebook and go to the function
linReg (Linear Regression Pipeline).

You do not need to modify/execute the handlers.

The ML workflow corresponds to the steps in the handlers.
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Machine Learning LinReg

Feature Engineering steps:

• Vectorisation with StringIndexer: 
Encodes a string column of categorical features to a column of (numerical) 
indices {1,2,3, …}

• Similarly, one-hot-encoding is 
used in DL: next slide

https://spark.apache.org/docs/latest/ml-features
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Machine Learning LinReg
One-hot encoding: A text is turned into a sparse {0, 1} matrix:

• Dictionary

small_dict = ['EOS', 'a', 'my', 'jumps', 'on', 'squirrel', 

'chicken', 'desk', 'sequoia']

• Input as numerical arrays
X=np.array([[2,6,3,4,2,8,0],[1,5,3,4,7,9,0]],dtype=np.int32)

• One-hot encoded input for X[1](the first sentence):
array([[0., 0., 1., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 1., 0., 0.],

[0., 0., 0., 1., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 1., 0., 0., 0., 0.],

[0., 0., 1., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0., 1.],

[1., 0., 0., 0., 0., 0., 0., 0., 0.]])

In Spark: Use OneHotEncoder or OneHotEncoderEstimator (version 2.4).
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Machine Learning LinReg
One-hot encoding (cont’d):

Example in Natural Language Processing (NLP) : 
Predict a new word in a sequence.

• In DL, this would be done with a Neural Network with a one-hot encoded 
matrix as input. 

• Let us have a random prediction instead:
x = np.random.rand(9)

as an array of real numbers as large as the dictionary.

• One more step is needed to use this result!

• The last layer is the softmax function to obtain from x a probability vector:

y = np.exp(x)/sum(np.exp(x))
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Machine Learning LinReg
One-hot encoding (cont’d):

Example in Natural Language Processing (NLP) : 
Predict a new word in a sequence.

• The entries of the resulting probability vector y sum to 1:

>>> y

array([0.12889101, 0.07738281, 0.1064542 , 0.11356852, 

0.16539288,

0.11980596, 0.07341816, 0.13642974, 0.07865672])

• np.argmax(y)

provides the dictionary position of the predicted word → “on”
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Machine Learning LinReg

• VectorAssembler:

• All needed features are condensed into a single vector for 
each sample.

• The resulting vector is appended to the training DataFrame.
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Machine Learning LinReg

• Normalisation:

• Each feature vector is normalised to have unit norm

• It takes a parameter 𝑝 ∈ 1, ∞ : which specifies the 𝐿𝑝-norm
used for normalization (𝑝 = 2 by default, changed to 𝑝 = 1):

𝒗𝑛𝑜𝑟𝑚 =
𝒗

𝒗 𝑝

𝒗 𝑝 =  𝑣𝑖
𝑝

1/𝑝

 

In computer vision applications: 
The pre-processing usually includes decoding, resizing, and normalizing to a standardized 
format accepted by the neural network [DLI].
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Machine Learning LinReg

• Normalisation aids generalisation, standardises the input data 
and improves the behaviour of the learning algorithm.

• DL: Neural Networks can contain several intermediate 
normalisation layers (see e.g.  Local Response Normalization for 
CNN).

• DL: Batch normalisation in NN

• Normalise the inputs to all layers in every batch

• Q: Can Spark also normalise across mini-batches or on the 
whole dataset?

[https://spark.apache.org/docs/1.4.1/ml-features.html#normalizer]

Why normalisation?

[Krizhevsky et al., ImageNet Classification 

with Deep Convolutional Neural Networks, 2012]

[arXiv:1502.03167]
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Machine Learning LinReg

Define the estimator (= the architecture of the model):

https://spark.apache.org/docs/latest/ml-classification-regression

• Define the model class as:

– LinearRegression

– with the model hyperparameters (here: maxIter, regParam),

– specifying the features and the label / target.

• All steps so far (feature engineering + model definition) are collected 
into a pipeline (next slide).

https://spark.apache.org/docs/latest/mllib-linear-methods.html
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Machine Learning LinReg

Estimator vs. Transformer

Estimator: DataFrame Model
fit()

LinearRegressionModel
(i.e., the weights)

https://spark.apache.org/docs/latest/ml-pipeline.html

Transformer: DataFrame DataFrame
transform() This is a 

transformer.

predictionData = LRmodel.transform(testData)

LRmodel = pipeline.fit(trainingData)

The training Pipeline is an Estimator
The PipelineModel is a Transformer
→ Same as the pre-processing of data (sequence of transformers).

ML model

inference dataframe
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Machine Learning LinReg

Define the evaluator:

• The fitted ML model can now make predictions.

• A suitable metric is defined to evaluate the model performance
(and assess the quality) after training: 

‒ Mean Absolute Error (MAE)

‒ Mean Squared Error (MSE)

‒ Root Mean Squared Error (RMSE)

‒ Polynomial approaches …

https://spark.apache.org/docs/latest/mllib-evaluation-
metrics.html#regression-model-evaluation

Large deviations are 
emphasised  through S, 
then the original scale 
restored through R
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Machine Learning LinReg

Details of the ML algorithm:
• Basic idea of supervised learning is to learn a function:

where 𝐰 are the parameters of 
the model (weights).

• The training samples
x𝑖 , yi  (blue points) are

used to build the model.

𝒚 = 𝑓(𝒙; 𝒘)

[code adapted from: PHB Notebooks]
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Machine Learning LinReg

• The idea of linear regression is
similar to (linear) dimension
reduction in unsupervised learning

• Embedding in a latent space:

• Maintain topological properties
(e.g., distance)

• Minimise the loss at reconstruction

• Here: 2D →1D, 
both dimensions are features

[code adapted from: PHB Notebooks]
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Machine Learning LinReg

Linear regression:

• Basic idea: Fit to a line in 2D, to a plane in 3D, or to a hyperplane in n-D 
(affine subspaces).

• 1D feature and 1D target
→ 1D polynomial regression (line)

• Score 𝑅2 ∈ ሾ1, )−∞ : next slide

• This model is not very accurate!
We will see the opposite case.

[code adapted from: PHB Notebooks]
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Machine Learning LinReg

• Perfect match 
observed value – prediction.

• Prediction matches the mean 
of all true values.

• Prediction arbitrarily bad.

𝑅2 = 1 −
σ𝑖=0

𝑁−1 𝑦𝑖 − ො𝑦𝑖
2

σ𝑖=0
𝑁−1 ො𝑦𝑖 − ො𝑦 2

[code adapted from: PHB Notebooks]

𝑅2 = 1

𝑅2 = 0

𝑅2 ∈ 0, −∞

https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html?highlight=

score#sklearn.linear_model.LinearRegression.score

true

prediction
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Machine Learning LinReg

Linear regression:

• In our case:

Feature combinations with each:

5, 11, 1 (line), 2 (plane), 8 features 

1D label 
(range of the regression function: delay in minutes)

Q: Does LinReg always predict a linear relation (line, plane, …) between the label 
and the features?

to predict
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Machine Learning LinReg

The input vector can be a nonlinear function of the feature vector:

• E.g., the polynomial mapping of a feature vector 𝒙𝑖 (1D case):

𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝑤2𝑥𝑖
2 + ⋯

• Transformation of multi-dimensional features, e.g. 𝑥𝑖𝑗
𝑗

• Interaction among multi-dimensional features, e.g. cross-
products 𝑥𝑖1 ∙ 𝑥𝑖5

(e.g. the day of week X humidity).

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-linear-regression.pdf

The index 𝑖 refers to 
the observation!
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In the prediction…
𝑦𝑖 = 𝜎(𝒘𝑇 ෝ𝒙𝑖)

… linearity must be preserved in the coefficients or weights 
(𝑤0, 𝑤1, 𝑤2, … ), not in the feature transformations ෝ𝒙𝑖:

For one observation 𝑖:

• 𝑦𝑖: real-valued prediction of this linear function,

• ෝ𝒙𝑖: is the input vector of the transformations of the feature 
vector 𝒙𝑖  for each sample 𝑖.

→Corresponds to one (dense) layer in a Neural Network:

input X weights → (activation) → output / prediction

Machine Learning LinReg

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-linear-regression.pdf
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Machine Learning LinReg

In practice, linear regression in Spark:

• The predicted output

‒ follows a Gaussian distribution,

‒ is a realisation of the normal function.

For each observation 𝑖, the prediction has the normal distribution:

𝑓 𝑦𝑖 = ൗ1
2𝜋𝜎2

exp −

1
2

𝑦𝑖 − 𝜇𝑖
2

𝜎2

The Gaussian model assumes mutually independent observations:

→ This is in our case a significant simplification, since the train journeys do 
influence each other!

expected value
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• The relation between the expected value 𝜇𝑖 and the features depends on the 
chosen distribution.

• This relation can be expressed through the link function 𝑔(∙) between the 
expected value 𝜇𝑖  and the linear predictor 𝜂𝑖  :

𝑔(𝜇𝑖) = 𝜂𝑖 ≔ 𝒙𝑖
𝑇𝒘

• The canonical link function for the Gauss distribution is the identity:
𝜇𝑖 = 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + ⋯

→ which yields a fully linear model.
Bias-term 
omitted

Rodríguez, G. (2007). Lecture Notes on Generalized Linear Models. 

URL: https://grodri.github.io/glms/notes/ 

https://data.princeton.edu/wws509/notes/c2.pdf
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Variations:

• Simple (1D feature) vs. multiple (n-D features) Linear Regression

• Generalised Linear Regression: 
The response variable follows a different distribution 
(e.g. Binomial, Poisson, Gamma, Tweedie functions).

https://spark.apache.org/docs/latest/ml-classification-

regression.html#generalized-linear-regression ,

https://en.wikipedia.org/wiki/Generalized_linear_model
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Define the validation:

• Define the hyperparameter grid to:

‒ add or overwrite already defined hyperparameters

‒ fit a new model for each “point of the grid”

– here: 2x2 hyperparameters (regParam, elasticNetParam)

Search in the grid is done through cross validation → next slides.

Careful :

» parameters = weights (esp. in DL context).

» hyperparameters = knobs to tweak for tuning the model. 

Overview of all the regularisation hyperparameters in Spark:

https://spark.apache.org/docs/latest/ml-classification-

regression.html#linear-methods 

Once the model is 
defined, we look for 
the best combination 
of weights.
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ML as minimisation problem:

• The LinReg algorithm is the minimisation of a (convex) function (objective) of 
the weight vector 𝒘:

min
𝒘

𝑓(𝒘)

This minimum balances:

• The loss function (next slide) → Guarantees that the model is correct, i.e. each 
training sample is closely mapped to the correct label (effectiveness)

𝑓(𝒘): =
1

𝑛
σ𝑖=1

𝑁 𝐿(𝒘; 𝒙𝑖 , 𝑦𝑖)+ 𝜆𝑅(𝒘)

• … and the regularisation function, i.e. a penalisation term to minimise the 
model complexity → Avoid overfitting (next slides).

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf
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For a linear model, the loss function is the squared residual, computed for every 
sample in the dataset:

𝐿𝑖 =
1

2
𝒘𝑇 ෝ𝒙𝑖 − ෝ𝑦𝑖

2

The regression error (or misclassification) for validation is the Root Mean Squared 
Error:

RMSE = σ𝑖=0
𝑁−1 𝑦𝑖− ො𝑦𝑖

2

𝑁

.

𝑦 =weights X features  
Prediction of the model
(estimated value)

known label for 
training and test data
(observed value)



Total 
number of 
samples

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-linear-regression.pdf
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Minimising the loss function:

The minimisation of squared residuals is a least squares problem.

It can be solved through:

• Direct methods (computing the pseudo-inverse):

‒ Normal equation (numerically unstable, not for big data!)

‒ Methods based on the QR decomposition and
the singular value decomposition (SVD)

• Iterative methods: Gradient Descent → next slides.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf

We will actually minimise 𝑓
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Gradient Descent:

• 𝑡 denotes the iteration number

• 𝒘 are the weights before and after the update

• 𝑓𝑤
′ is the gradient of the loss function (in DL: result of backpropagation)

• 𝛾 is the step size (learning rate in DL literature): 
In Spark, it has both a fixed (𝑠) and a variable component: 𝛾 = ൗ

𝑠
𝑡

→While 𝑡 increases, the step size is reduced.

𝒘(𝑡+1) ← 𝒘(𝑡) − 𝛾𝑓
𝒘(𝑡)
′

https://spark.apache.org/docs/latest/mllib-optimization.html

𝑤

𝑓
𝛾 Adjustable 

learning rate 
to catch the 
global 
minimum!1 2

(sub

next slides

Adjustable 
learning rate 
to escape 
local 
minima!

Direction of 
the gradient

saddle point

See 
warmup 
arXiv:1706.02677
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Backpropagation:

• Training input 𝑥𝑖 are fed forward, generating corresponding activations 𝑦𝑖.

• 𝐸 is the error between the final output (𝑦3) and the target (ෞ𝑦3, in the paper: 
𝑡), same as the loss function. 

• Through the chain rule:

𝜕𝐸

𝜕𝑤5
=

𝜕𝐸

𝜕𝑦3

𝜕𝑦3

𝜕𝑤5

𝜕𝐸

𝜕𝑤1
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑤1
=

   = 
𝜕𝐸

𝜕𝑦3

𝜕𝑦3

𝜕𝑦1

𝜕𝑦1

𝜕𝑤1

…

Machine Learning LinReg

Baydin et al., Automatic Differentiation in Machine Learning: a Survey, 2018

Mathieu et al., Fast Training of Convolutional Networks through FFTs, 2014

Following 
one 
“branch”…

116



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Backpropagation:

• … we get the final gradient with respect to all weights:

∇𝒘𝐸 =
𝜕𝐸

𝜕𝑤1
,

𝜕𝐸

𝜕𝑤2
, … ,

𝜕𝐸

𝜕𝑤6

• The gradient can be subsequently used in a Gradient Descent procedure. 

• In the context of Physics Informed Neural Networks (PINN): 
The gradient with respect to the inputs ∇𝒙𝐸 can be also computed in the same 
backward pass.

Machine Learning LinReg

Baydin et al., Automatic Differentiation in Machine Learning: a Survey, 2018

Mathieu et al., Fast Training of Convolutional Networks through FFTs, 2014
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Very important for optimisation, also on (multi-)GPU architectures: 
How often are the weights updated for each training dataset?

• Stochastic Gradient Descent (SGD): 
Update at each sample in the training set: The gradient of the loss function is 
computed ∇𝒘𝐿 𝒘; 𝒙𝑖 , 𝑦𝑖  and the weights are updated 𝑵 times.

• Gradient Descent:
The gradient is computed only once for the averaged loss function:

∇𝒘

1

𝑁


𝑖=1

𝑁

𝐿(𝒘; 𝒙𝑖 , 𝑦𝑖)

https://spark.apache.org/docs/latest/mllib-optimization.html
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• Mini-batch : One update for every batch 𝑆 (intermediate scenario):

‒ 𝑆 = 𝑚𝑖𝑛𝑖𝐵𝑎𝑡𝑐ℎ𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∙ 𝑁

« The default miniBatchFraction is 1: 
One update for the complete training set (GD method).

« A small miniBatchFraction 1/𝑁 corresponds to the SGD method:
Update for each sample.

‒ A stochastic component is introduced through the choice 
of mini-batches 𝑆.

∇𝒘

1

𝑆


𝑖∈𝑆

𝐿(𝒘; 𝒙𝑖 , 𝑦𝑖)

[http://ufldl.stanford.edu/tutorial/supervised/OptimizationStoch

asticGradientDescent/]
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Machine Learning LinReg
Training with GD:
• One iteration or step

= One update of the weights.
• One epoch (in DL-literature) 

= One prediction (forward pass) and one gradient compute (backward pass) of all 
training samples.
Small batches => Many steps per epoch.
Large batches => Risk of overfitting
Linear scaling of batch size & learning rate

More advanced methods of (stochastic) optimisation: AdaGrad, RMSProp, Adam

What should we actually minimize?
→ The minimisation of the loss function could lead to overfitting .

[Kingma and Ba, Adam: A Method for stochastic optimization, 2015]

[arXiv:1609.04836]

[arXiv:1404.5997]
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Overfitting: The model is 

• overly precise for the training samples, but

• poorly precise for new data (test data) → huge oscillations, poor prediction.

[code adapted from: PHB Notebooks / link to R2]

?
?

• 1D feature and 1D target
→ 20D polynomial regression
vs. 1D regression (line).

𝑅2 ∈ ሾ1, )−∞
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Reasons for Overfitting

• Overly complex models (“exploding” absolute values of the weights), 

• … but also the training data:

‒ A lot of noisy / incorrect data,

‒ Dominant biased data, non representative outliers 
(e.g., the event line S11, traffic during COVID lock-down or Christmas),

‒ Too small set with data properties that do not reflect the general 
behaviour (e.g. too few journeys).

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf
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How to prevent overfitting: 

• Increase the quality of the training data for more robust models:
Artificially increase the size of the dataset, e.g.:

• Extract random patches, apply translations, rotations…

• Alter the intensity of RGB channels

• Use regularisation

→ Build a penalised, sub-optimal model: 
The loss function will be only “partially minimised”.

→ In practice, the loss function is augmented .

𝑓(𝒘): =
1

𝑁
σ𝑖=1

𝑁 𝐿(𝒘; 𝒙𝑖 , 𝑦𝑖)+ 𝜆𝑅(𝒘)

[Krizhevsky et al., ImageNet Classification 

with Deep Convolutional Neural Networks, 2012]

computer 
vision in DL
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Regularisation in practice: 𝜆𝑅(𝒘) is made of:

• 𝜆 : Fixed regularisation parameter to tune the impact of 𝑅 𝒘 , times

• 𝑅 𝒘 : Elastic Net function:

𝑅 𝒘 = 𝛼 ∥ 𝒘 ∥1 + 1 − 𝛼
1

2
∥ 𝒘 ∥2

2

which combines:

‒ LASSO regression: 𝐿1 regularisation for sparsity in the weights
(simpler models with some 𝑤𝑗 = 0→ some features are neglected)

‒ Ridge regression: 𝐿2 regularisation for a smoother function

The two approaches influence the trajectory towards the minimum of 𝑓(𝒘).

The coefficient 𝛼 tunes the impact of either 𝐿1 or 𝐿2 regularisation.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf
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Regularisation in practice:

1D-feature prediction through 30 basis functions (Gaussian) without 
regularisation:

[code adapted from: PHB Notebooks]

Coefficients 𝑤𝑗

at each 
Gaussian basis 
centre.

Overfitting!

“Exploding” 
coefficients 𝑤𝑖

5*105

0

-5*105
coeffs. cancel 
each other out.

Basis functions / polynomial 
approach different than in Spark.
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Regularisation in practice:

30 basis functions (Gaussian) with Lasso (𝐿1) regularisation:

[code adapted from: PHB Notebooks]

Sparse model with
18x 𝑤𝑗 = 0

Regression on 
12 bases
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Regularisation in practice:

30 basis functions (Gaussian) with Ridge (𝐿2) regularisation:

[code adapted from: PHB Notebooks]

Smooth model with
𝑤𝑗 ≠ 0 ∀𝑗

Very similar 
result to 𝐿1.
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Regularisation techniques in Deep Learning:

• Normalisation layers: already discussed.

• Dropout: 
“Switch off” neurons (i.e. weights) at a random rate. This way, there will be no 
co-adaptations of neurons (or lazy weights). 
Compensates for overfitting!
The final model for prediction will use all weights.

• Pooling: 
Reduces the size of images at intermediate layers in different ways, helping 
generalisation. 
Compensates for shifts.

[Krizhevsky et al., ImageNet Classification with Deep 

Convolutional Neural Networks, 2012]
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Define the cross validation:

Idea: Improve training with continuous validation.

For each hyperparameter combination:

• The original training dataset is partitioned 
into k non-overlapping subsets (development sets)

• One subset (hold-out set) is left out of the training 
and used for validation

• The training is repeated k times

• The evaluation metric is computed on all hold-out sets
and averaged.

…

In the code, the CrossValidator object contains the whole pipeline 
(estimator, parameter grid, evaluator) and calls the fit over the training data.

How the parameter 
grid is used in practice.
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Cross validation:

In our case:

→ (2x2) x 10 = 40 models are being trained and 
evaluated

→ The best combination of hyperparameters is chosen (lowest averaged error)

→ The estimator is finally re-fitted on the whole training dataset to determine 
the final weights.

grid search over hyperparamers

folding of the 
training dataset

…

Test vs. validation:

https://machinelearningmastery.com/difference-test-validation-datasets/
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Cross validation:

• Extreme case: k is close to the total number or samples:

‒ “Leave-one-out” and singleton-tests.

‒ All samples but one are trained in each trial 
(cf. minibatches of size 1 in DL context)

https://spark.apache.org/docs/latest/ml-tuning.html#cross-validation

Tuning of hyperparameters 
through cross validation can 
be done in parallel.
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Cross validation:

To evaluate a model, we can consider prediction errors (the evaluation metric) on 
different datasets. For the same model, it typically holds:

• The error on the training set on which the model is finally trained <

• The error of the cross-validation (as average of several holdout sets)  ≲ 

• The error on one holdout set  <

• The unknown truth error on test, new data.

→ The first 3 errors are lower bounds of the truth error.
SEE F36 of 
Nicer, pictures…?!

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf

Requires the 
“ideal classifier”.

For this example,
the RMSE.
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From the main Notebook:
Call the ML pipeline defined in handlers (linReg) to

• fit the model class to the training data and

• … return the obtained model (i.e., the weights) and the evaluator (i.e., RMSE)

→ This corresponds to training the model.

Not executed!

Since it takes long, pre-
trained models have already 
been loaded for you to use.
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Now you can:

• Define the evaluator outside the pipeline (EX 1).

• Load the pre-trained ML model (EX 2).

• Call the ML pipeline linRegTest defined in the Handlers to 

‒ Apply the model to predict the delays on the test dataset,

‒ Evaluate the quality of the prediction by computing the RMSE.

EX 2 is repeated 
twice: Over 1 feature 
set, and as a loop 
over 5 feature sets.

Hands-on = EX 1-2. 
Stop at “End of ex. 
2” (bar-plot).
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3. Evaluate the regression algorithm (LR)

Which features give the best/worse RMSE?

Machine Learning LinReg

1) Basic information of the 
original train dataset (5)

2) Basic information, weather 
data (11)

3) Delay at station -1 (derived 
features) (1)

4) Delay at stations -1,-2 
(derived features) (2)

5) Basic information, delays -
1, -2, and duration (derived 
features), weather data (8)

Number 
of feature 
columns
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Machine Learning LinReg

• ML prediction: Best average 
error of ca. 1,5 minutes 

• Most delays below 2 minutes

=> 
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Machine Learning LinReg

Strategies to evaluate/optimise the ML algorithm (1)

• Choose different combinations of features→ done

• Analyse the influence of ratio training vs. test data
→ learning curve

• Modify (e.g., filter) the samples 
→ feature engineering

Next exercise

next slides

SCA vs. DLX
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Machine Learning LinReg

Strategies to evaluate/optimise the ML algorithm (2)

• Modify the architecture, e.g. by using different regression 
algorithms.

• Use a more appropriate evaluator (MSE, MAE, …) specific for the 
problem.

• Tune the hyperparameters: Regularisation parameters, number 
of iterations, …

– Heuristic approach or cross-validation.

– More complex models could lead to better results or to 
overfitting.
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Machine Learning LinReg

Learning curve: 
Ideal behaviour: From overfitting to convergence

– Size of test set stays the same

– Complexity of the model stays the same

[code adapted from: PHB Notebooks]

Evaluation 
metric: Score as 
inverse of the 
error (RMSE).
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Machine Learning LinReg

Learning curve: 
A simple example: From overfitting to convergence

[code adapted from: PHB Notebooks]

Score should 
drastically 
improve for 
the test data!
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Machine Learning LinReg

Learning curve:

In our example:

• Test set is fixed to 50% of the total data.

• Training slices:

– From 50% of the total data, training subsets are obtained as 
further random splits. 

– They correspond to 2, 18, 30, 50% of the total data.

• The random seed is fixed for reproducibility.

Lecture
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Machine Learning LinReg

Learning curve:
Results for the classification algorithm (feature set 2):

Test Dataset: Fixed as 50% of 
the total data. 
Random seed = 
4561767182015543883

Reason
(same 
samples
Accuracy
(
(

?The arrows represent the 
ideal behaviour, which we 
do not see!

?
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Machine Learning LinReg

About the learning curve of training and test sets:

• Loss function during training could have unexpectedly(?) higher 
values than during validation (data unseen from the model).

Reasons in DL, e.g. after each epoch:

• Values of the weights: The training loss is computed at each 
batch, then averaged (the model improves with batches). The 
validation loss is computed only with the final model.

• Structure of the model: Regularisation mechanisms are turned 
on only at training time (dropout: some weights are turned off to 
zero).

https://keras.io/getting_started/faq/#why-is-my-training-loss-much-higher-than-my-testing-loss
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Machine Learning LinReg

In ML with Spark:

• After fitting with cross validation, the bestModel of 
CrossValidatorModel is available for prediction, I/O of the best 
fitted model etc.

• Collecting other sub-models while training at cross validation is 
also possible. To do that, switch on the attribute 
collectSubModels of the CrossValidator estimator. 
This may cause large memory consumption!

→We only use the resulting bestModel in the examples.

https://spark.apache.org/docs/latest/api/python/refe

rence/api/pyspark.ml.tuning.CrossValidator.html

144



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Modify (e.g., filter) the samples:

• Filter both the training and test datasets: EX 3 → You can use the solution!

– Filter 1: S-Bahn line 1 only

– Filter 2: Only Wednesday

– Filter 3: Delay > 5 mins

– Filter 4: Combination of 
F1-3

• (Train or) read-in 
4 new models.

• Inference on the test data set.

• Plot the prediction error: EX 4.

Machine Learning LinReg

ONLY TEST 
DATASET
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Focus on Pre-processing, Feature Engineering and 
Machine Learning

• Part II: Example on the Jupyter Notebooks

– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

« Notebook 1 (Ex.)

« Notebook 2 (Ex.)

« Notebook 3 (Ex.)

« Notebook 4 (Ex.)

« Notebook 5 (Ex.)
Part I
Part II
Part III

More learning outcomes
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Notebook 4: NB4_class.ipynb

• Jupyter Notebook how-to, see slides:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs/DL-
HLRS-day1-exercises.pdf

• A few slides to sum up the content of this Notebook follow.

147

https://fs.hlrs.de/projects/par/events/2023/sst/SST-part1-exercises.pdf
https://fs.hlrs.de/projects/par/events/2023/sst/SST-part1-exercises.pdf


:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Machine Learning RandomForest

Through linear regression, we predicted the delay:

• in minutes,

• on the dataset as a whole.

We aim now to predict:

• the delay as class {yes, no},

• on the data 

– of the line S1 (first splitting block in the Notebook)…

– clustered by station (second splitting block in the Notebook).

• The training will be done on the complete dataset.

→ Goal:

Can we predict a delayed departure from a particular station of the line S1?
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Machine Learning RandomForest

1. Read-in the data from manipulation

DataFrames after Manipulation:

• Training: df_train_classification (50% of all data)

• Test: df_test_classification (remaining 50%)

which contain the columns delay {y, n} at the stations:

eventstation -1station -2

Features Label / Target
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Machine Learning RandomForest

1. Read-in the data from manipulation

For the evaluation after training:

• Select the data corresponding to the line S1:
df_test_S1, df_train_S1

• Create a list of DataFrames, one DF for each station:
df_arr_test_ds, df_arr_train_ds

EX 1

All lines in 
the dataset: 
work in 
progress…
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Machine Learning RandomForest

2. Run the classification algorithm

• Define the feature columns and 
the target, different than in LinearRegression:
delay in minutes→ delay {y, n} at the stations (0, -1, -2)

• Execute the ML pipeline:
Similar to the LinearRegression one 
→ step by step in the next slides.
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Machine Learning RandomForest

→ Please do EX1 & all steps until “Please stop here (introduction)”

→ Then, you can open the handlers.ipynb Notebook and go to the 
function clfcTrain (Classification Pipeline).

You do not need to modify/execute the handlers.
The ML workflow corresponds to the steps in the handlers.
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Machine Learning RandomForest

The ML pipeline for classification is defined in the handlers 
(clfcTrain) and takes as arguments the training DataFrame and the 
feature columns.

Feature Engineering steps:

https://spark.apache.org/docs/latest/ml-features

• StringIndexer

• VectorAssembler same as LinearRegression

• Normaliser
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Machine Learning RandomForest

Define the estimator (= the architecture of the model):
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-
forest-classifier

https://spark.apache.org/docs/latest/mllib-ensembles.html#random-forests

• Define the model class as:
– RandomForestClassifier

– with the model hyperparameters (numTrees: see next slides),

– specifying the features and the label / target.

• All steps so far (feature engineering + model definition) are 
collected into a pipeline.
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Machine Learning RandomForest

Define the evaluator:
• MulticlassClassificationEvaluator:

Evaluation Metric is the accuracy:
1

𝑁
σ𝑖=1

𝑁 𝛿0(𝑦𝑖− ො𝑦𝑖),

where:

– 𝐲 : predictions vs.  ෝ𝒚 : true output    (one-dimensional vectors of integers)

– with 𝑁 entries: 𝑁 number of samples 
(e.g., for the whole dataset, or for each station of the S1 line).

1 if the prediction is 
correct, 0 otherwise
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Machine Learning RandomForest

• The MulticlassClassificationEvaluator
can be used in case of multiple choices, e.g. digits {1, 2, …, 10}, or 
as binary evaluator {0, 1} .

https://spark.apache.org/docs/latest/mllib-evaluation-metrics.html
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Machine Learning RandomForest

Define the evaluator:
• Through the accuracy, we do not seek to perform better in evaluating either 

late or on-time.

• For particular applications, one tries to improve how the model classifies one 
class only (e.g. undetected defected artefacts: false negatives) 

• Based on the confusion matrix, other evaluation measures are defined:

precision = TP
TP+FP

recall = TP
TP+FN

True positive False negative

False positive True negative

Positive Negative

Positive

Negative
ACTUAL

CLASSIFIER
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Machine Learning RandomForest
Details of the ML algorithm: Decision Tree

• Ideal classifier (x,c) 

• A decision tree is one approximation of the ideal classifier.

Weather Day of 
Week

Line Duration Pollution Delay

Rainy Monday S2 35 Low Delayed

Storm Tuesday S3 40 High On time

Sunny Thursday S60 30 Medium On time

Set of feature 

vectors (X)

Set of 

classes (C)

Ideal classifier 

Training 
dataset

On time

Delayed

On time

Decision Tree

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf

X

…

Ideal/True classifier: E.g. the 
combination of an automatic 
inspection machine and a human 
annotator (costs, reduced 
throughput, …).
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Machine Learning RandomForest

Decision Tree: Feature-based Splitting

• The set X of feature vectors is decomposed into disjoint / unique sets.

• The root and each non-leaf node defines a (non-)binary splitting of a 
feature of X (e.g. all Storm+Rainy and Sunny, …).

• For each feature vector x, there is a unique path from the root to a leaf 
node.

• Monothetic 
tree: 
One feature at 
a time is 
evaluated 
at non-leaf 
nodes.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf

Weather Day of 
Week

Line Duration Pollution Delay

Rainy Monday S2 35 Low Delayed

Storm Tuesday S3 40 High On time

Sunny Thursday S60 30 Medium On time
…
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Machine Learning RandomForest

Feature: Weather

Target: DelayedFeature: Day of week Feature: Line

Target: Delayed Target: On time Target: Delayed Target: On time

rainy storm sunny

S1 S60Monday Sunday

Decision Tree 
(categorical features, 
non-binary splits)

Unique root

Leaf node = class 
(or target)

Splitting

Non-leaf node

• In Spark, the split is 
always binary.

• The same feature can be 
evaluated several times.
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Machine Learning RandomForest

Decision Tree

• Hypothesis space: Given a set of examples (training set of feature 
vectors + corresp. classes)→ set of possible decision trees.

• How to evaluate a tree? Minimize:
1. Classification error (→ correct association of feature vector and class)

2. Size of the tree

Criteria for the size of the tree:

• number of leaf nodes (5)

• tree height (= number of evaluations: 3)

• (weighted) path length: sum of all lengths of all paths between the root and 
any leaf (2*4 +1 = 9)

• depth: maximum path length (2)

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf
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Machine Learning RandomForest

Decision Tree: Overfitting

Continuous features, binary splits:

• Each decision tree is constructed during the training phase.

• Each point in the picture (sample) 
= one feature vector (x,y)
with their class (colour).

• The space of feature vectors 
(all points) is iteratively split 
according to the coordinate values.

[code adapted from: PHB Notebooks][T. Hastie et al., The Elements of Statistical Learning, Springer]
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Machine Learning RandomForest

Decision Tree: Overfitting

• Features with continuous values can be evaluated many times 
in the tree, e.g.
𝑥 ≤ 𝑡1 , 
𝑡1 < 𝑥 ≤ 𝑡2, 𝑥 > 𝑡2  …

• At the end of the splitting, a class is 
associated to each region (in the picture: 

4 classes = colours; in our case: 
delay: {yes, no} )

[code adapted from: PHB Notebooks]

t1 
t2 
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Machine Learning RandomForest

Decision Tree: Overfitting

• After some iterations, noisy or 
non-representative data are considered
(e.g., an overcrowded journey 
on a peak-hour on a rainy day, 
that is on time).

• This generates overfitting!

• It is hard to establish how many iterations
are needed before overfitting is reached!

• Improvement is needed where the classification is non-unambiguous, i.e. 
where the clusters get close together.

[code adapted from: PHB Notebooks]

A region is associated to 
a class based on only 1 
or few training samples!
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Machine Learning RandomForest

Decision trees: Weak classifiers

Not only overfitting…:

• Decision trees with fixed number of leaves are unstable: A small
change in the training data implies a significant change in the resulting
classifier.

• From the same training data, several decision trees can be derived as
classifiers with comparable accuracy (computational problem).

• The learning procedure can hardly detect the optimal classifier.

• Decision trees cannot reach an acceptable degree of accuracy.

https://webis.de/downloads/lecturenotes/machine-learning/unit-de-ensemble-methods-basics.pdf
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Machine Learning RandomForest

Ensemble Methods

Goal: 
Counterbalance the disadvantages of individual classifiers and improve 
their performance using the information of a group of classifiers of the 
same kind.

Challenges: 

• During training, the same algorithm to construct a decision tree will 
produce the same tree for the same dataset.
→ Different datasets are needed to have different classifiers.

• How to extract one decision from many classifiers?

https://webis.de/downloads/lecturenotes/machine-learning/unit-de-ensemble-methods-basics.pdf
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Machine Learning RandomForest

Ensemble Methods

Solution :

• Produce different training sets through bootstrap
aggregating (non-overlapping subsets of the main set,
cf. cross-validation).

• The final decision is taken by a majority vote.

Other ensemble methods (different: training sets and final decision):

Adaptive Boosting, Cascading.

https://webis.de/downloads/lecturenotes/machine-learning/unit-de-ensemble-methods-basics.pdf

Baggingnext slide
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Machine Learning RandomForest

Weath. W-day Line Dura-
tion

Poll. Delay Tree1 Tree2 Tree3 Prediction

Rainy Mo S2 35 Low Delayed D O O 67% O

Storm Tue S3 40 High On time O O D 67% O

Sunny Thu S60 30 Med On time O O O 100% O

Prediction by majority vote:

𝑦 𝒙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈ 1,…,𝐽 𝑡 ∈ 1, … 𝑇 ∶ 𝑦𝑡 𝒙𝑖 = 𝑗

Classification 
result of the 
bagging method

Range of labels 
(binary: J=2)

Feature vector 
or sample

Indexing of the 
weak classifiers 
(trees)

The max number 
of equal decisions 
j is counted

Result of argmax
is j corresponding 
to the majority

168



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::    :::::   :::::   :::::   :::::   :::::   :::::   

::DL-HLRS-day1-lectures.pdf lorenzo.zanon@hlrs.de

Machine Learning RandomForest

• Bagging: 

– An ensemble of trees are trained (possibly in parallel),

– Classification of the samples through majority vote.

[PHB pp. 421-432 + code adapted from: PHB Notebooks]
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Machine Learning RandomForest

Random Forest

• A stochastic component is crucial for a good outcome of training:

• Both are done automatically in RandomForest:

– Fast method (training and prediction), given the simplicity of decision trees.

– Available as both RandomForestClassifier and RandomForestRegressor.

the training dataset is fitted by each tree.

features is considered for splitting by each tree.

A (random) subset of

[PHB pp. 421-432 + code adapted from: PHB Notebooks]
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Machine Learning RandomForest

Additional topics…

• Algorithms for decision trees.

• Which problems are suitable for decision trees / random forests?

• Other ensemble methods.

• …

https://webis.de/downloads/lecturenotes/machine-learning/unit-de-ensemble-methods-basics.pdf
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-algorithms.pdf
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Machine Learning RandomForest

Define the validation:

• Define the parameter grid: none in this case

– numTrees (here: 100): 
Number of trees increase→ (Linear) increase of compute time & accuracy

– maxDepth (here: 5 (default)):
Max depth of each tree can be tuned to produce some degree of 
overfitting.

In the handlers Notebook…
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Machine Learning RandomForest

Digression: Unsupervised learning→ Generative classifier

Additional hyperparameters as the number of clusters can be set in classification 
tasks (e.g. in partitioning, hierarchical, and spectral algorithms).

→ Same constellation as in the 
previous examples.
→ How many clusters?

• Other hyperparameters: 
size and radius of clusters, 
…
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Machine Learning RandomForest

Define the cross validation:

• Define the cross validation, to cross-validate N-folds over the training dataset 
(cf. Linear Regression). In our case, N=10 models are being trained.

In the code, the CrossValidator object contains the whole pipeline 
(estimator, parameter grid, evaluator) and calls the fit over the training data.

→ This step could be skipped without hyperparameter map!
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Machine Learning RandomForest

From the main Notebook:
Call the ML pipeline defined in the handlers (clfcTrain) to

• fit the model class to the training data, and

• … return the obtained model (the weights) and the evaluator (the accuracy).

→ This corresponds to the training of the model (full training 
dataset).

In the main Notebook…

Timing (V
This training requires too 
much memory space and 
usually crashes.

Not executed!

Since it takes long, pre-
trained models have already 
been loaded for you to use.
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Machine Learning RandomForest

Now you can:

• Define the evaluator outside the pipeline (EX 2).

• Load the pre-trained ML model.

• Call the ML pipeline clfcTest defined in the Handlers to: 

‒ Apply the model to predict the delay classification on the test dataset,

‒ Evaluate the quality of the prediction by computing the accuracy.

→ The last step corresponds to the evaluation of the model (one S1 DataFrame
for each train station).

Clx
CRASH!!! (works 
only with 2 nodes 
as script!!). 
OK.
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Machine Learning RandomForest

Hands-on 

- EX2→ “basic”

- EX3→ “advanced” (Python)

Proceed until the end of the Notebook (bar-plot).
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Machine Learning RandomForest

3. Evaluate the classification algorithm

EX 3 → option to use the solution

Goal: Collect the accuracy results
(a 2D list) in a DataFrame
ordered by

• feature combination (columns),

• train station (rows),

for the test dataset.

…

SCA
option to use 
the solution.

VERALTET? SCA
for the test 
for both the test and 
the training 
dataset (
DataFrames
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Machine Learning RandomForest

Visualise the results of the classification accuracy:

• Averaged accuracy of the test data for the 5 different 
feature sets (→ next slide);

• Clustered by stations, on a geographic map: dedicated 
visualisation section in Notebook 5.
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We selected 5 sets of feature columns to run the model in several combinations:

1) Basic information of the original train dataset (5)

2) Basic information, weather data (11)

3) Delay at station -1 (derived features) (1)

4) Delay at stations -1, -2 (derived features) (2)

5) Basic information, delays and duration (derived features), weather data (8)

Machine Learning RandomForest
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• Options 3, 4, 5 give very similar results, better than options 1, 2.

• Options 3, 4, 5 include the delay at the previous station(s)…

– … which allows only for inference at short-term!

• Option 3 contains 1 feature column (= delay at station -1).
It is therefore the “cheapest” 
(training runtime and memory).

Machine Learning RandomForest

ONLY TEST 
DATASET
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Machine Learning RandomForest

Outlook in the choice of the model class: 

• ML: More advanced (and comp. expensive) regression 
models or classifiers such as SVM [PHB from p. 405].

• DL:

‒ LSTM (Long Short-Term Memory) Networks for prediction of 
the continuous delay,

‒ Convolutional and Recurrent Neural Networks for 
classification.

DL Tools 
→ Day 2

For this example, DL results were not significantly better than
ML ones and will not be discussed.

Tests run in 2019.
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SVM

Support Vector Machines:
• Powerful classification 

method
• 2D: Maximise the margin 

between two sets
• Points lying on the margins:

support vectors
• Points far from the margins do not contribute to the loss 

function:
– compact model, fast prediction
– suitable for high dimension

[p. 409]
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SVM

Support Vector Machines:

• Can also be applied to 

overlapping datasets 

(i.e. similar features, 

different label):

Softening parameter

• Can be combined with kernels to go beyond the linear case 
(and still be efficient)

• Training phase: expensive, cross-validation necessary!

[p. 415]
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Machine Learning RandomForest

-

-

(Digression) Interpretability: Coupling of ML and DL 
methods:

• Problem of NN as “black boxes“:

– Examples: selection processes (personnel or at the 
bank…) or grading.

– Make NN more transparent via ML methods (e.g., extract 
a decision tree from a NN).

• Transparency from data collection and manipulation to 
visualisation?

JUST MENTION!!!

https://www.iff.uni-stuttgart.de/

Roscher et al., “Explainable ML for Scientific Discoveries”, 2020.
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Machine Learning Scalability
Goal: Parallelise and improve the scalability of ML algorithms.

Performance on Urika-GX (system shut down on Feb 1st, 2021):

• Hadoop YARN resource manager 

• Parallel I/O with HDFS

• Local disk space (scratch) 
for Spark communication

• 3, 2, 1 nodes à 36 cores have been used respectively to train the random 
forest:

– %spark 108 450g

– %spark 72 450g

– %spark 36 450g

Optimised:
No bottlenecks and 
successful scalability.
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Machine Learning Scalability

Performance (strong scaling) of the 
classification algorithm:

• Average time (sec.) of 3x training
on the same data,

• for 5 feature combinations.

• 1,2,3 nodes in parallel with Spark.

Results obtained with Urika-GX Q1/2020

25%

19%

22%

26%

29%

Speed-up 
1 to 3 nodes
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Machine Learning Scalability

Disclaimer on this benchmark: 
The performance depends on the number of cores in a Spark session, but also…

• on the communication overhead between the nodes: 
max. efficiency by using all cores inside each node (this case),

• on the balance between dimension of the dataset and number of threads,

• on the local scratch available for Spark.

https://researchcomputing.princeton.edu/

faq/how-do-i-use-local-scratc
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Machine Learning Scalability

… Using instead compute nodes
on Vulcan/Training Cluster :

– clx-25 or -21: CascadeLake (Intel) 2x20 core-CPU 

– hsw: Haswell (Intel) 2x10 or 12 core-CPU

on the TC:

– skl: Skylake (Intel) 2x20 core-CPU

– clx-ai: 2x18 core-CPU, and GPUs

• No Hadoop YARN resource manager.

• No I/O with HDFS.

• Little local storage: Cf. this slide

Scalability results 
could not be 
reproduced.

Work in 
progress…

https://kb.hlrs.de/platforms/index.php/NEC_Cluster_Hardware_and_Architecture_(vulcan)

clx-21 and clx-ai are CS-Storm nodes with 
larger local storage:
https://kb.hlrs.de/platforms/index.php/Urika_CS
https://www.hlrs.de/solutions/systems/cray-cs-storm

SCA vs. DLX:
Little local 
storage: Cf. 
section
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Focus on Pre-processing, Feature Engineering and 
Machine Learning

• Part II: Example on the Jupyter Notebooks

– Pre-processing

– Supervised learning techniques in a Machine Learning pipeline

« Notebook 1 (Ex.)

« Notebook 2 (Ex.)

« Notebook 3 (Ex.)

« Notebook 4 (Ex.)

« Notebook 5 (Ex.)

Main index

Part I
Part II
Part III

More learning outcomes
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Notebook 5: NB5_vis-class.ipynb

• Jupyter Notebook how-to, see slides:

https://fs.hlrs.de/projects/par/events/2024/dl-hlrs/DL-
HLRS-day1-exercises.pdf

• A few slides to sum up the content of this Notebook follow.

Go through NB5 
slides.
This part will be 
executed as 

IF time is short: The 
NB5 stays available 
for self
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Visualisation of Classification Prediction

Goal: Visualise the classification results on a map.

• Additional plot packages:

– geopy: Python client to locate coordinates using geocoders:

https://geopy.readthedocs.io/en/stable/

– folium: Library to visualise data on an interactive map 
(e.g., OpenStreetMap):

https://python-visualization.github.io/folium/
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• Read-in the results of ML Classification (prediction on the test dataset)…

• ... and convert this Spark DataFrame into a pandas DataFrame (EX 1)

• … which contains the accuracy of the 
predicted delay:

– computed on all test samples of the 
S1 test dataset,

– averaged for each station 
(ca. 30 accuracy values),

– For the five models (sets of features),

– … in order to have five different maps.

Visualisation of Classification Prediction

…
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Visualisation of Classification Prediction

• Generate two lists of stations:

– All ordered stations on the S1 line

– A non-ordered list of S1 stations according to the accuracy DataFrame (EX 2)

• Produce a python dictionary of stations

as DS100 : station name, e.g. TB :  Backnang

• Define a threshold for the accuracy colour-code on the map: 

acceptable (>=0.8), borderline (0.5<= t < 0.8), poor (<0.5)

→ A colour is assigned to each station.

Only
threshold
needed
Vortrag 
skipped

info not in the dataset
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Visualisation of Classification Prediction
• The plot functions are defined in handlers.ipynb

(class “PredictionVisualize”):
– getCoordsNoInt : 

« Read-in* (EX 3) (EX 4) the location of 
every station.

« Associate a colour to each station based on the accuracy.
– drawMapDic: Draw the map with folium.

* courtesy N. Güttler (Fraunhofer) and 
https://de.wikipedia.org/wiki/Liste_der_Stationen_der_S-Bahn_Stuttgart

No general web access from 
cluster: This function cannot run.

optional exercise, 
since it cannot run
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Visualisation of Classification Prediction

5 sets of feature columns→ 5 plots

1) Basic information of the original train dataset (5 features)

2) Basic information, weather data (11)

3) Delay at station -1 (derived features) (1)

4) Delay at stations -1, -2 (derived features) (2)

5) Basic information, delays and duration (derived features), 
weather data (8)
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Visualisation of Classification Prediction

To open and see the plots:

• Browse to the folder  NB_plot/ClassificationPlot

• Download the html files of the plots.

• Then, right-click on each plot file and “Open with” a browser 
(not the JN browser profile)!

next slide
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Visualisation of Classification Prediction: Feature set 2

S-Bahn blue line: ordered 
sequence of stations needed

OpenStreetMap openstreetmap.org/copyright
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Visualisation of Classification Prediction: Feature set 2

Pop-up 
station 
names 

• Set 2: Basic 
information and 
weather data (11)

• Not very satisfactory 
prediction
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Visualisation of Classification Prediction: Feature set 5

• Basic information, delays and 
duration (derived features), 
weather data (8)

• Best performing set 
• Delay at the previous stations
→ only very short-term 
predictions are possible!
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JN: AFTER the exercise

These are the 5
classification plots
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Hands-on

• Execute all NB5_vis-class.ipynb (Notebook 5).

• EX1-2 → “basic”

• EX3-4 → “advanced”

• You can download the plots obtained as explained.

• Remember to shut down the kernel at the end.
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Focus on Pre-processing, Feature Engineering and
Machine Learning

• Part III: HLRS Systems and Example as a Python script

– Working on a cluster, parallel Spark

« HLRS Systems

« Example on script (Ex.)

« Parallel Spark

Main index

Part I
Part II
Part III

-

More learning outcomes
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Overview HLRS Systems

This example has been tested at HLRS on 

• the Vulcan NEC Cluster, and 

• the Training Cluster (TC).

Goal of this section:

• Overview of AI resources at HLRS,

• Get insights on using cluster resources,

• Get ready to run the example as a batch job.
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Overview HLRS Systems
HLRS CPUs for DataScience: Urika-GX:
https://kb.hlrs.de/platforms/index.php/Urika_GX
Two systems:

• Gilgamesch
Used by several HLRS partners in different projects.
48 Nodes in total (2 Login, 2 IO, 3 Service, 41 Compute Nodes)
• Enkidu
Used for test and training.
16 Nodes in total (2 Login, 2 IO, 3 Service, 9 Compute Nodes)
Jupyter Notebook with Spark kernel and HDFS
[oleksandr.shcherbakov@hlrs.de] 

OLD SYSTEM!!!
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Overview HLRS Systems (for AI)

Big Data and AI at HLRS (Nov 2022 + update 2024):
Cray CS Storm and Cray CS500 [2] with Cray Urika CS software stack [3] on Vulcan / TC
Hawk [4] and Vulcan [5] clusters
Hawk AI expansion [6]

If you need any support, feel free to ask:
rt-ai@hlrs.de - CS Storm/500 related issues;
rt@hlrs.de - any other topics;

or use our ticket submission form [7].

(( 1. https://kb.hlrs.de/platforms/index.php/Urika_GX )) → system shut down Feb 1, 2021
2. https://www.hlrs.de/solutions/systems/cray-cs-storm
3. https://kb.hlrs.de/platforms/index.php/Urika_CS
4. https://www.hlrs.de/solutions/systems/hpe-apollo-hawk
5. https://www.hlrs.de/solutions/systems/vulcan/
6. https://www.hlrs.de/news/detail/hawk-upgrade-artificial-intelligence
7. https://www.hlrs.de/for-users/trouble-ticket-submission

https://kb.hlrs.de/platforms/index.php/Big_Data,_AI_Aplications_and_Frameworks
See also:

(nodes clx-21 
and clx-ai)(nodes rome-ai)
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Overview HLRS Systems (for AI)

• The CS partition in detail:
– CS-500 [clx-21] = 8 nodes (Vu) 2 x 20 core-CPU per node and

384gb memory and local scratch

– CS-Storm [clx-ai] = 4 (Vu) + 4 (TC) nodes 2 x 18 core-CPU + 8 GPUs 
per node and 768gb memory and local scratch

• Additionally in the CS partition :

– Singularity container 
(currently not available: https://websrv.hlrs.de/cgi-bin/hwwweather )

– … to start the (outdated) Urika-CS container (Cray)
https://kb.hlrs.de/platforms/index.php/Urika_CS

Not 
training
nodes
Refer to the guide to 
start the container 
these nodes.

On all other nodes, 
spark has been 
installed manually.

No HDFS anywhere at 
the moment!

Spark: 
technical
parallel 
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→
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Overview HLRS Systems
What is needed for the eaxmple:
1. Store and use source data.
2. Apply specific software.
3. Running a job either as a batch job (e.g. for a script) or as an 

interactive batch job (e.g. for Jupyter Notebook):
– Frontend nodes: are intended as single point of access to the entire

cluster. Here you can set your environment, move your data, edit
and compile your programs and create batch scripts. [Direct]
interactive usage like run your program which leads to a high load
is NOT allowed on the frontend/login nodes.

– Compute nodes for running parallel jobs are only available through
the batch system.

https://kb.hlrs.de/platforms/index.php/NEC_Cluster_access_(vulcan) 

Short HPC
guide
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Vulcan / Training Cluster DATA

• Source data are stored in the Lustre filesystem NEC_lustre: 
https://kb.hlrs.de/platforms/index.php/NEC_Cluster_Disk_Storage_(vulcan)

• On Vulcan: Lustre accessible only via workspaces: 
https://kb.hlrs.de/platforms/index.php/Workspace_mechanism

On TC: Lustre not available: NFS with workspaces.
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Vulcan / Training Cluster DATA

• Workspaces…

– allocate disk space for your jobs

– have an identifier (a name)

• A workspace can be generated with ws_allocate and its 
path stored to an environmental variable:
MYSCR=$(ws_allocate workspaceFavouriteName #days) 
echo $MYSCR
(the workspace path is a Lustre path!)

• Workspaces expire! Can be extended, retrieved from trash,  
reminders can be sent automatically.
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Vulcan only: DATA

• The tool ws_exchange allows for the flexible exchange of 
data among users within their workspaces: 
https://kb.hlrs.de/platforms/index.php/CAE_utilities#ws_ex
change_procedure
It creates by default:
– a new temporary workspace with protected content 

– a subdirectory with random name (but public rwx
permission).

• This is what we are going to use to exchange data.

• ws_cp2exchange is a special command which enables 
copying your data directly in the exchange subdirectory.
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Vulcan only: DATA

PRACTICAL (optional)

>  module  load  cae

• Create a sample file:

>  cat  >  sample.txt

Input some text and type ctrl+D to quit

• Create the private exchange directory and public subdirectory 
(id is displayed as exchange2020…):

>  ws_exchange

• Move sample.txt to exchange (replacing id with the 
corresponding output of ws_exchange):

>  ws_cp2exchange  mv  sample.txt id
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Vulcan / Training Cluster MODULES

The module system:
https://kb.hlrs.de/platforms/index.php/NEC_Cluster_Software_Environment_(vulcan)

• Modules can be loaded / unloaded.

• The environmental setting (= loaded packages) will not be 
saved and will be lost for a new session:
… A new session (login, new submitted job, compute node) 
will have the default environment.

• Modules support multiple versions of a software.
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Vulcan / Training Cluster MODULES

• Display the modules available in the system:

>  module  avail

• Modules already loaded in your environment:

> module  list

• Modules needed for the example are loaded through the 
init_….sh scripts.

• How to install python packages that need to be 
downloaded / are not available on the system?
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Vulcan / Training Cluster MODULES

• General Internet is not available in the clusters!

• Instead, use an ssh tunnel to a local machine:

https://kb.hlrs.de/platforms/index.php/Secure_Shell_ssh

• … for pip install, see in particular:
https://kb.hlrs.de/platforms/index.php/Secure_Shell_ssh#pip_.28Python_package_installer.29

• The additional packages will be locally available on the 
python module used for the pip install (e.g. 
python/3.6).
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Vulcan / Training Cluster Compute nodes

• Compute nodes have 4 main characteristics:

– node_type: node ID

– node_type_cpu: CPU name

– node_type_mem: memory on this node

– node_type_core: number of cores on this node

• Vulcan: Allocated nodes will not be shared with other jobs!
vs.
Training Cluster: Node-sharing is possible (-q smp).

• How to monitor jobs running on the compute nodes:
https://kb.hlrs.de/platforms/index.php/Batch_System_PBSPro_(vulcan)
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Vulcan / Training Cluster Compute nodes
• At least three features must be specified:

– Number of nodes
– At least one node variable (of the four above)
– Walltime

• This can be done as an interactive batch job or
• …in a job script for submission:
#!/bin/bash

#PBS -N LZ_sbahn

#PBS -l 
select=4:node_type=hsw:node_type_mem=128gb:node_ty
pe_core=24c

#PBS -l walltime=00:20:00

…

No
during
course
for 
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Vulcan / Training Cluster Compute nodes
An overview of the available nodes is provided:

E.g. selecting 4 nodes of type hsw, one would have:
• 4 X 20 cores = 80 total core-CPUs
• Executor memory up to 128 GB per node

type type_CPU type_mem type_core # of 
nodes

Current table at: 

https://kb.hlrs.de/platforms/index.php/Batch_System_PBSPro_(vulcan) 
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Vulcan / Training Cluster Compute nodes

• The job characteristics should at least match the resources 
required by the Spark session!

• E.g., our 1 (or 4) hsw Vulcan nodes would allow at the most:

spark-submit 

--name SBahn_script 

--executor-memory 128g (128g)

--total-executor-cores 20 (80)

Memory/executor = 
Memory/node (default).

Total number of cores 
used in the cluster.
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Focus on Pre-processing, Feature Engineering and
Machine Learning

• Part III: HLRS Systems and Example as a Python script

– Work on a cluster, parallel Spark

« HLRS Systems

« Example on script (Ex.)

« Parallel Spark

Main index

Part I
Part II
Part III

More learning outcomes
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Spark memory management

Spark is a parallel application:

https://spark.apache.org/docs/latest/cluster-overview.html

In short, it can run on:

• 1 node: Spark can run locally on one compute node with as 
many worker threads as cores in the node

• Multiple nodes: A cluster manager (master) is needed, for 
example:
– Standalone cluster (on Vulcan/TC)

or third-party managers, such as:

– Hadoop YARN ( )
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Spark memory management

Moreover:

• Options that can be set: 
needed resources (memory, executors).

• The master option can be managed through a configuration 
file. See for an overview of all options:
https://spark.apache.org/docs/latest/submitting-applications.html#master-urls
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• Data parallelism: Spark revolves around the concept of a 
resilient distributed dataset (RDD):

– “A collection of elements partitioned across the nodes of the 
cluster that can be operated on in parallel”.

– In practice, DataFrames and Datasets extend this abstraction.

• There are two ways to create RDDs: 

– parallelising an existing collection in your driver program,

– referencing a dataset in an external storage system, such as a 
shared filesystem → HDFS

Spark memory management

https://spark.apache.org/docs/latest/rdd-programming-guide.html

HDFS 
(Hadoop 
distributed
file
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Parallel operations on a cluster: driver-worker parallelism

• Driver node: Executes the user’s main function and 
distributes work to executors;

• Executors on a worker node: 
– Lazily execute tasks (local operations on partitions of the 

RDD).

– Rely on local disk (when available) for:
• storing shuffle data 

(= data exchanged at the end of a stage),

• spilling data that are too large.

Spark memory management

Courtesy Cray Urika-XC Training materials

Or
master

next slide
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Spark operations inside a node:

Spark stage: Tasks are executed on all RDD partitions 
(executors), ending with:

• A shuffle, i.e. an all-to-all communication (or an output, or 
data sent back to the driver).

• Then, a global barrier, i.e. a synchronisation before the next 
stage.

Spark memory management

Courtesy Cray Urika-XC Training materials
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The communication (shuffle) is coordinated within each node 
by a Block Manager:

• Locally writes the data needed for reduction. 

• Sends the requested data to the receiver.

Assumption for efficiency: 
Large, fast local block storage devices on the executor nodes!
“AI and HPDA workflows can require local storage. 
However, HPC nodes usually do not have any local drive except 
for particular nodes.”
https://kb.hlrs.de/platforms/index.php/Big_Data,_AI_Aplications_and_Frameworks

Spark memory management
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Spark communication 
model: Shuffle

Local storage on AI nodes
(clx-ai, clx-21) must be 
configured for Spark! 
See the procedure:

Spark memory management

Courtesy Cray Urika-XC Training materials

https://kb.hlrs.de/platf

orms/index.php/Big_Data,

_AI_Aplications_and_Fram

eworks#Spark
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$ grep SPARK_WORKER_DIR /opt/bigdata/spark_cluster/spark-2.4.6-bin-
hadoop2.7/bin/init-spark 
SPARK_WORKER_DIR="/tmp/${USER}_spark"

clx-ai $ df -h /tmp /localscratch

Filesystem Size Used Avail Use% Mounted 
on
/dev/sda 220G 61M 209G 1% /tmp
/dev/md0 7.3T 93M 6.9T 1% /localscratch

clx-21 $ df -h /tmp /localscratch

Filesystem Size Used Avail Use% Mounted 
on

none 512M 49M 464M 10% /var/tmp
/dev/nvme0n1 1.8T 77M 1.7T 1% /localscratch

Example: Spark memory management (Vulcan 2021)

Limited!

/tmp is the storage for shuffle/spilling in 
the current configuration!

OK

• Here, Spark is not using the local scratch for 
shuffling/spilling!

• In most nodes, /tmp is RAM-disk and quite small.
• Total RAM given by free -h : Look for 

available in the output.
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Spark memory management

The quick red  fox looks at  the red robin.

the(1) quick(1) red (1)

fox(1) looks(1) at(1)

the(1) red(1) robin(1)

quick(1) red(1+1) the(1+1) robin(1)

fox(1) looks(1) at(1)

A job is split among executors:

Each task is executed + writing of shuffle data:

Communication among executors:

quick(1) red(2) the(2) robin(1)

fox(1) looks(1) at(1)

Execution again (count):
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Data traffic through Lustre instead of local storage 

→Would create a major bottleneck!
→ Could be configured.

Spark memory management

Courtesy Cray Urika-XC Training materials
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Provided as RAMDisk (all non-AI nodes)

• This space could be small,

• … taking away memory that could otherwise be allocated to Spark execution.

• Communication will be slow, no scaling.

Spark memory management

Courtesy Cray Urika-XC Training materials
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More on Spark memory management…

1. https://0x0fff.com/spark-memory-management/

2. https://stackoverflow.com/questions/30797724/how-to-
optimize-shuffle-spill-in-apache-spark-application

Spark memory management
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Summary

What we have done:

• We went through Machine Learning workflow from data 
manipulation to visualisation,

• … using  the ML framework Spark.

• The same example was executed on a Linux cluster within an 
interactive batch job:

– on a Jupyter Notebook,

– as a script
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Summary

We have gone through:

• Machine and Deep Learning basic concepts 

‒ features, overfitting, learning curve, hyperparameters, …

• Some Machine Learning methods and algorithms 

‒ linear regression, decision trees, random forest.

https://developers.google.com/machine-learning/glossary
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Outlook
• Use Spark, Pandas, other ML frameworks for your own 

applications.
• Parallelisation and performance depend on the architecture 

available, the software, the expertise.
• Neural Networks / Deep Learning → Day 2
• CFD Applications / Data compression / Reproducibility?
→ Day 3

Thank you!
https://www.hlrs.de/training
https://www.hlrs.de/training/2024/SCA-DA-MGNT
https://www.hlrs.de/training/2024/IKILEUS-NLP
https://www.hlrs.de/training/2024/BC-AI-NV
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