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CFD solver FLEXI*:

OpenSource HPC solver for unsteady

compressible Navier–Stokes eq.

High order discontinuous Galerkin (DG)

spectral element method

Applications and features:

LES and DNS of multiscale,

multiphysics and multiphase flows

Complex geometries

Explicit/implicit global time-stepping

Shock capturing based on FV subcells

Sharp/diffuse interface methods

4-Way Euler–Lagrange particle tracking

Relexi : RL framework for HPC‡

hp-refinement, …
‡ https://github.com/flexi-framework/relexi

*N. Krais et al. In: Computers & Mathematics with Applications 81 (2021)
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Machine learning

enhanced solution of

PDEs



Problem definition

PDEs are generally non-linear and can fulfil certain constraints:

conservation, stability, invariances, symmetries, …

PDE solvers can guarantee these, but what about ML models?

ML models must converge,

have to at least weakly guarantee the physical and mathematical constraints of the underlying PDE

and must come with interpretability, error bounds and regions of trustworthiness

ML methods will not replace PDE solvers

However, they are useful for

abstracting empirical knowledge and improving physical understanding

accelerating the solution of PDEs

developing enhanced models
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Applications in CFD

Enhancing closure terms for multiscale problems, e.g.,

turbulence closure, diffusion processes, …

Improving numerical tools, e.g., Riemann solver, iterative

solvers, shock capturing …

Accelerating solution of PDEs

Developing enhanced models, e.g., optimal parameter

estimation, reduced-models, …

Flow control, …

*J. Zeifang et al. In: Journal of Computational Physics 441 (2021)

†Kurz2023
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Short introduction to

ML



Rationale for Machine Learning

“It is very hard to write programs that solve problems like recognizing a three-dimensional object from a

novel viewpoint in new lighting conditions in a cluttered scene.”

We don’t know what program to write because we don’t know how its done in our brain.

Even if we had a good idea about how to do it, the program might be horrendously complicated.”

– Geoffrey Hinton, computer scientist and cognitive psychologist (h-index:140+)
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Definitions and concepts

Learning concepts:

Unsupervised learning

Supervised learning

Reinforcement learning

Artificial neural networks:

General function approximators

Graph neural networks, feed-forward / convolutional /

recurrent neural networks, …

AlphaGo, Self-Driving Cars, Face recognition

Incomplete theory, models are difficult to interpret

NN design: more an art than a science
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Types of ML

Different types of learning:

Unsupervised learning:

Discover a good internal representation of the input. ⇒ “segmentation / clustering model”

Reinforcement learning:

Learn to select an action to maximize payoff. ⇒ “behavioral model”

Supervised learning:

Learn to predict an output when given an input vector. ⇒ “predictive model”
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History of ANNs

Some important publications:

McCulloch-Pitts (1943): First compute a weighted sum of the inputs from other neurons plus a bias:

the perceptron

Rosenblatt (1958): First to generate MLP from perceptrons

Rosenblatt (1962): Perceptron ConvergenceTheorem

Minsky and Papert (1969): Limitations of perceptrons

Rumelhart and Hinton (1986): Backpropagation by gradient descent

Cybenko (1989): An ANN with a single hidden layer and finite neurons can approximate continuous

functions

Fukushima (1982): Neocognitron: convolutional networks

LeCun (1989,1995): “LeNet”, learning convolutional networks

Hinton (2006): Speed-up of backpropagation

Krizhevsky (2012): Convolutional networks for image classification

Ioffe (2015): Batch normalization

He et al. (2016): Residual networks

AlphaGo, DeepMind...
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Neural Networks

Artificial Neural Network (ANN): A non-linear mapping from inputs to outputs M : X̂ → Ŷ

An ANN is a nesting of linear and non-linear functions arranged in a directed acyclic graph:

Ŷ ≈ Y = M(X̂) = σL

(
WL

(
σL−1

(
WL−1

(
σL−2

(
...W1(X̂)

)))))
, (1)

with W being an affine mapping and σ a non-linear function

The entries of the mapping matrices W are the parameters or weights of the network, which are

improved by training

Cost function C as a measure for
∣∣Ŷ − Y

∣∣, (MSE / L2 error) convex w.r.t to Y , but not w.r.t W : ⇒
non-convex optimization problem requires a lot of data
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Advanced Architectures

Convolutional Neural Networks

Local connectivity, multidimensional trainable filter kernels, discrete convolution, shift invariance,

hierarchical representation

Current state of the art for multi-D data and segmentation
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Convolutional Neural Networks

Filter kernels, feature extraction
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What does a CNN learn?

Representation in hierarchical basis

from: H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. “Convolutional deep belief networks for scalable unsupervised learning of

hierarchical representations”. In ICML 2009.
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Residual Neural Networks (ResNN)

He et al. recognized that the predictive performance of CNNs may deteriorate with depths (not an

overfitting problem)

Introduction of skip connectors or shortcuts, most often identity mappings

A sought mapping, e.g. G(Al−3) is split into a linear and non-linear (residual) part

Fast passage of the linear part through the network: hundreds of CNN layers possible

More robust identity mapping

He, K., et al. ”Deep residual learning for image recognition.” Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016.
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Advances and failures

in the ML enhanced

solution of PDEs



Examples for ML guided CFD

1. Data-driven shock capturing

High-order methods are superior ...

in smooth regions of the solution

since they enable an exponential convergence

for multi-D / smooth multi-scale problems

High-order methods suffer ...

from spurious oscillations at strong discontinuities

(Gibbs’ phenomenon)

Solution:

Adding numerical/artificial viscosity to

discontinuities to ensure stability

Two-step approach: Detecting discontinuities and

apply local viscosity
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Examples for ML guided CFD

1. Data-driven shock capturing

High-order methods are superior ...

in smooth regions of the solution

since they enable an exponential convergence

for multi-D / smooth multi-scale problems

High-order methods suffer ...

from spurious oscillations at strong discontinuities

(Gibbs’ phenomenon)

Solution:

Adding numerical/artificial viscosity to

discontinuities to ensure stability

Two-step approach: Detecting discontinuities and

apply local viscosity

2. Data-driven turbulence closures

Turbulence is a …

a multiscale problem in space and time

non-local, highly non-linear phenomena

Problem:

No universal closure models

Aliasing through under-resolved turbulence leads

to stability issues

DNS not feasible for high Re-number flows

Solution:

LES, RANS, …with “optimal” closure model
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Supervised learning



*J. Zeifang et al. In: Journal of Computational Physics 441 (2021)

Data-driven shock

capturing

Joined work with:

Jonas Zeifang



Problem Statement I: Detection of ShockWaves

Shock waves in compressible flow:

Govern flow in transonic / supersonic / hypersonic regime
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Problem Statement I: Detection of ShockWaves

Shock waves in compressible flow:

Require special numerical treatment
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Problem Statement I: Detection of ShockWaves

Shock waves in compressible flow:

Must be detected / tracked: empirical, parameter-dependent indicators
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Problem Statement II: Localization of ShockWaves

Localizing ShockWaves

Grids for low-order (gray) and high-order (black) schemes: large elements
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Problem Statement II: Localization of ShockWaves

Localizing ShockWaves

Inner-element localization: add locally dissipation
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Problem Statement III: Shock Capturing /Treatment

Shock capturing strategies for high-order (HO) schemes

Operator-based: h/p-schemes, Finite Volume (FV)-hybrid schemes, reconstruction with limiters,...
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Problem Statement III: Shock Capturing /Treatment

Shock capturing strategies for high-order (HO) schemes

Artificial viscosity-based: add numerical dissipation
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Local shock locator for DG

1. Shock detection / localization:

For high-order: detecting “troubled cells” is not enough

Localizing local shock front within a DG element

⇒ Shock capturing and detection are interdependent

2. Solution approaches:

Artificial viscosity

Filtering / limiting

TVD orTVB stable finite volume scheme

Blending of a high- with a low-order scheme

A priori approach:

Based on heuristic indicators

Linked to numerical scheme, resolution & test cases

Parameter tuning

Zeifang, Beck (2021)

dummy

Sonntag, Munz (2017)

dummy

Dumbser, Zanotti, Loubère, Diot (2014)
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Hybrid DG/FV operator for shock capturing

Introduce virtual FV grid within each

DG element

Solve a TVD finite volume method in

troubled cells

Keep high order accuracy wherever

possible

Switch DG2FV and vice versa

⇒ Experience / parameter tuning

required
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Shock detection/localization through ML*

Idea: Decouple the shock localization and the shock capturing to ameliorate parameter tuning

1. Task: Train a CNN-based binary classifier on element data to detect shocks without regarding their

numerical representation

Training data: Smooth and non-smooth functions

*A. D. Beck et al. In: Journal of Computational Physics 423 (2020)
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Shock detection through ML: Double mach reflection
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Shock localization through ML†

Shocks can be safely detected by the CNN indicator, without additional parameter tuning

Consistent detection, which is only weakly dependent on numerical scheme

2. Task: Localize shock within an element: Holistic edge detection*

*Xie2015
†A. D. Beck et al. In: Journal of Computational Physics 423 (2020)
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Shock localization through ML: Double mach reflection
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Shock localization through ML: Flow around a NACA0012

Works also on real meshes:
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So far…

1. Detection of shock waves: ML ⇒ CNN classifier

2. Localization of shock waves: ML ⇒ Edge Detector

3. Guiding mesh refinement: ML-informed (from 1. and 2.) mesh refinement

4. Guiding shock capturing: ML-informed (from 1. and 2.) HO artificial viscosity
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NN-guided mesh adaptation: Double mach reflection

Evaluate indicator on baseline grid (left), then refine accordingly (right)*

*A. D. Beck et al. In: Journal of Computational Physics 423 (2020)
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NN-guided mesh adaptation: Double mach reflection

Evaluate indicator on baseline grid (left), then refine accordingly (right)*

*A. D. Beck et al. In: Journal of Computational Physics 423 (2020)
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Shock capturing based on artificial viscosity*

Artificial viscosity approach: Euler equations with second order term

∂tw + ∇ · F(w) = ∇ · µa∇w

Shape, amplitude and location of µa are subject to user specification

In DG and related methods: element-wise constant µa with linear C0

continuous reconstruction, PDE- or filter based smoothing methods

We seek: A highly localized, smooth distribution of µa

Use binary edge map from ANN and smooth with radial basis function

(RBF) interpolation

µa(x) = µascale

ns∑
i=1

αiφr‖x − xsi ‖2

Support radius is defined in terms of the length of a grid element ∆x

*J. Zeifang et al. In: Journal of Computational Physics 441 (2021)
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High-order artificial viscosity: Sod’s shock tube

Comparing results* with elementwise-constant artificial viscosity† with linear reconstruction‡

*J. Zeifang et al. In: Journal of Computational Physics 441 (2021)

†P.-O. Persson et al. In: AIAA paper 2 (2006)

‡A. Klöckner et al. In: Mathematical Modelling of Natural Phenomena 6.3 (2011)
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High-order artificial viscosity: Shu-Osher shock interaction
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High-order artificial viscosity: 2D Riemann problem - configuration 4*

*C Schulz-Rinne. In: SIAM Journal on Mathematical Analysis 24.1 (1993)
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High-order artificial viscosity: Double mach reflection

Hybrid DG/FV scheme vs. artificial viscosity
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High-order artificial viscosity: Flow around a NACA0012

Results: Unstructured grid

Amplitude µa proportional to ∆x

Smooth artificial viscosity field also on unstructured grids
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To summarize…

Summary:

Proof-of-Concept: Supervised learning can be used for shock detection / localization and yields accurate

results

Binary edge map of shock can be used for local mesh refinement / artificial viscosity / …

Problems / failures:

Analytical functions in training set have to be chosen wisely!

NNs are data hungry and computationally expensive…

What about generalization to other test cases or polynomial orders?

And in turn, what about long-term stability, symmetries, …?

A. Schwarz, A. Beck, University of Stuttgart: ML for PDEs 39/85



Data-driven

turbulence closures
Joined work with:

Marius Kurz



Turbulence in a nutshell

Turbulent flow is a multiscale problem in space and time

Full scale resolution (DNS) rarely feasible: Coarse scale

formulation of NSE is necessary

Filtering the NSE: Evolution equations for coarse scale

quantities, but with a closure term / regularization dependent

on the filtered full scale solution

⇒ Model depending on the coarse scale data needed!

Two filter concepts: Averaging in time (RANS) or low-pass

filter in space (LES)

Important consequence: RANS can be discretization

independent, LES is (typically) not!

50 years of research: Still no universal closure model
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Problem definition

Choice of LES formulations

Scale separation filter: implicit/explicit,

linear/non-linear, isotropic/non-isotropic,…

Numerical operator part of the LES

formulation or negligible

Subgrid closure: implicit / explicit,

deconvolution / stochastic modelling, …

Essential for ML methods

Well-defined training data (both input and output)

Is U known explicitly? ⇒ For grid-dependent LES, it is not most of the time!

Definition: Perfect LES

All terms must be computed on the coarse grid

Given U(t0, x) = UDNS(t0, x) ∀ x, then U(t, x) = UDNS(t, x) ∀ x and ∀ t > 0
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Turbulence Closure

Filtered NSE:

∂U

∂t
+ R(F (U)) = 0

Imperfect closure with Û 6= U :

∂Û

∂t
+ R̃(F (Û)) = M̃(Û , Ck)︸ ︷︷ ︸

imperfect closure model

Perfect closure with U (optimal LES)*

∂U

∂t
+

coarse grid operator︷ ︸︸ ︷
R̃(F (U)) =

coarse grid operator︷ ︸︸ ︷
R̃(F (U)) −R(F (U))︸ ︷︷ ︸

perfect closure model

The specific operator and filter choices are not

relevant for the perfect LES

Note that the coarse grid operator is part of the

closure (and cancels with the LHS)

*Moser, R., et al.: ”Optimal LES formulations for isotropic turbulence.” JFM 398 (1999): 321-346.
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Closure terms are discretization-specific!

The closure terms are a function of the filter

In implicitly filtered LES, the filter is induced by the discretization

Hence, the closure terms are a function of the applied discretization

*M. Kurz. PhD thesis. University of Stuttgart, 2023
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Perfect LES

Perfect LES runs with closure term from DNS

Decaying homogeneous isotropic turbulence

DNS-to-LES operator (): L2 projection from DNS grid onto LES grid via discrete scale-separation filter

DNS: 643 elements with N = 7 ; LES operator (̃): 83 elements with N = 5 and split flux

DNS Filtered LES Perfect LES
LES with Smagorinsky

model Cs = 0.17

*M. Kurz et al. In: ETNA - Electronic Transactions on Numerical Analysis 56 (2022)
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Perfect LES

Perfect LES runs with closure term from DNS

Decaying homogeneous isotropic turbulence

DNS-to-LES operator (): L2 projection from DNS grid onto LES grid via discrete scale-separation filter

DNS: 643 elements with N = 7 ; LES operator (̃): 83 elements with N = 5 and split flux
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⇒ Perfect LES gives well-defined target and input data for supervised learning with NN

*M. Kurz et al. In: ETNA - Electronic Transactions on Numerical Analysis 56 (2022)
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Supervised learning of closures

Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional input

data to an output ⇒ ANN / supervised learning

Supervised learning from consistent data: predict subfilter terms or fit model constants

However: What to do if the filter is unknown?
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Supervised learning of closures

Dataset:

Ensemble of DNS runs of forced homogeneous isotropic

turbulence (“Turbulence-in-a-box”)

Compute coarse grid terms from DNS-to-LES operator

Features and labels:

Each sample: A single LES grid cell with 63 solution points

Input features: velocities and LES operator: ui, R̃(F (U))

Output labels: DNS closure terms on the LES grid R(F (U))

Iso-contours of the 2-criterion*

*M. Kurz. PhD thesis. University of Stuttgart, 2023
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Networks and training

CNNs with skip connections (RNN), ADAM optimizer, …

Different network depths (no. of residual blocks)

For comparison: MLP with 100 neurons in 1 hidden layer*

Implementation in Python /TensorFlow, training on K40c and

P100 at HLRS

Split in training, semi-blind validation and blind test set

Cost function: RNNs outperform MLP, deeper

networks learn better

*Gamahara et al.: ”Searching for turbulence models by artificial neural network.” Physical Review Fluids 2.5 (2017)
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Homogeneous isotropic turbulence

”Blind” application of the trained network to unknown test data

Cut-off filter: no filter inversion / approximate deconvolution

CC ≈ 0.47 CC ≈ 0.34

*M. Kurz et al. In: ETNA - Electronic Transactions on Numerical Analysis 56 (2022)
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Can we do better?

So far:

Neglecting the temporal evolution of turbulence and the closure terms

Solution:

NNs that model dynamic temporal behaviours are

called sequence models or recurrent NNs

General form (of a uni-directional RecNN):

Ŷ t+1 = f(Xt+1︸︷︷︸
input

, m(Ŷ t, Ŷ t−1, ...))︸ ︷︷ ︸
”memory”

RecNN-Architectures: Gated Recurrent Unit (GRU) /

Long ShortTerm Memory (LSTM)

Drawback:

Predicting long term sequential input can lead to

exponential error growth

⇒ Long term stability is currently a problem

General layout of an RNN

Outline of a GRU cell

*M. Kurz. PhD thesis. University of Stuttgart, 2023
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Recurrent NNs

GRU and LSTM: learning long range connections through memory lanes

Differ in terms of gates: How and when the memory lane is written, updated or forgotten:

Update gate (GRU, LSTM): How much of the past should matter now?

Relevance gate (GRU, LSTM): Drop previous information?

Forget gate (LSTM): Erase memory?

Output gate (LSTM): How much to reveal of a cell?

Many more technical details, here are some suggestions:

https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short term memory.” Neural computation 9.8

(1997): 1735-1780.

Cho, Kyunghyun, et al. ”Learning phrase representations using RNN encoder-decoder for statistical

machine translation.” arXiv preprint arXiv:1406.1078 (2014).

Greff, Klaus, et al. ”LSTM: A search space odyssey.” IEEE transactions on neural networks and

learning systems 28.10 (2016): 2222-2232.
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Stability of Recurrent NNs

Recurrency introduces possible source of trouble: predicting long term sequential input can lead to

exponential error growth.

Simplified: Ŷ T = A(Ŷ T −1, XT ), of course Ŷ T −1 = A(Ŷ T −2, XT −1), ...: AD stability w.r.t. to small

errors?

Long term stability is currently a problem, some fixes are:

”Scheduled Sampling” by Bengio et al.

”Auto-conditioned recurrent networks” by Zhou et al.

”StabilityTraining” by Goodfellow et at.

from: Li, Z., Zhou,Y., Xiao, S., He, C., Huang, Z., & Li, H. (2017). Auto-conditioned recurrent networks for extended complex

human motion synthesis. arXiv preprint arXiv:1707.05363.
A. Schwarz, A. Beck, University of Stuttgart: ML for PDEs 52/85



Back to LES closure predictions

Dataset:

Ensemble of DNS runs of forced

homogeneous isotropic turbulence

(“Turbulence-in-a-box”)

Compute coarse grid terms from DNS-to-LES

operator

Features and labels:

Each sample: A single LES grid cell with 63

solution points

Input features: time series of velocities Ui

Output labels: DNS closure terms on the LES

grid R(F (U))

LSTM LSTM LSTM LSTM
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Performance of network architectures

RNNs outperform MLP and CNN architectures by a lot!

Network # Parameter Time (GPU) Time (CPU) L2-Error CC

MLP 6, 720 6 ms 28 ms 3.0 · 10+1 66.0%

CNN 187, 088 72 ms 198 ms 2.1 · 10+1 78.7%

LSTM (3∆t) 39, 744 62 ms 340 ms 1.3 · 10−1 99.9%

GRU (3∆t) 31, 578 59 ms 319 ms 1.1 · 10−1 99.9%
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Performance of network architectures

*M. Kurz et al. In: ETNA - Electronic Transactions on Numerical Analysis 56 (2022)
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However …

Perfect LES is possible, but the NN-learned mappings are approximate

∂U

∂t
+ R̃(F (U)) = R̃(F (U)) −R(F (U))︸ ︷︷ ︸

ANN closure

.

Our process is data-limited, i.e., learning can be improved with more data

No long term stability, but short term stability and dissipation
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Issues with supervised learning

Discretization not inherently considered by supervised learning

Approach is data-limited! NNs are very data-hungry!

Bad prediction, bad training set

For multiscale models: data-dependence on the scale definition

Works well with static, independent snapshots, but not in dynamical feedback systems

-> stability problems

Instead: Reinforcement learning

A. Schwarz, A. Beck, University of Stuttgart: ML for PDEs 56/85



Reinforcement

learning



Reinforcement learning

at: Action at step t

st: State at step t

rt: Reward at step t

πθ(at|st): Policy with
parameters θ

A. Schwarz, A. Beck, University of Stuttgart: ML for PDEs 58/85



Reinforcement Learning

Finding a policy

π: a ”control strategy” or a behavioral model

Many strategies for finding π: policy-based or value (Q-)based: We use a policy-based approach (allows

continuous state/action spaces and is more robust)

π = πθ and model it as a neural network (”policy net” with parameters θ).

The objective for the MDP can be defined as the expected discounted reward per episode (if started at

state s0 with a fixed policy π.)

max
θ

J(θ) = max
θ

Eθ

T∑
k=1

γkrk (2)

This can be solved by a ”gradient ascent” method: θ′ = θ + λ∇θJ(θ)
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Reinforcement learning - training

Task: find θ∗ such that πθ∗ (at|st) maximizes the collected reward rt

Use good old gradient ascent!

θnew = θold + α∇θJ(θ)

We have to estimate the steepest gradient with respect to the weights θ: *

∇θJ(θ) = Eτ∼πθ

[ ( N∑
k=1

γkrk

)
︸ ︷︷ ︸
Cum. reward over τ

∇θlog πθ(τ)︸ ︷︷ ︸
Grad. of the policy

]

Approximate Eτ∼πθ by sampling some discrete trajectories τ (i):

τ (1) = {(s0, a0) , (s1, a1, r1) , .... , (sN , aN , rN )}

*D. Silver et al. In: 31st International Conference on Machine Learning. Vol. 32. PMLR, 2014
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*J. Zeifang et al. In: Journal of Computational Physics 441 (2021)

Data-driven shock

capturing

Joint work with:

Jens Keim



Motivation

Solution approaches:

Artificial viscosity

Filtering/Limiting

TVD orTVB stable finite volume scheme

Blending of a high- with a low-order scheme

A priori:

Based on heuristic indicators

Test case and setup dependent

Parameter tuning

A posteriori:

Based on the admissibility of the solution

Re-computation of invalid solutions

Zeifang, Beck, (2021)

dummy

Sonntag, Munz, (2017)

dummy

Dumbser, Zanotti, Loubère, Diot, (2014)
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Second-Order FiniteVolume Schemes

Conservation law:

qt + f(q)x = 0

dummy
MUSCL-Hancock:

Q∗
i = Qn

i −
1
2

∆t

∆x

(
f(q+

i ) − f(q−
i )
)

,

Qn+1
i = Qn

i −
∆t

∆x

(
g∗

i+ 1
2

− g∗
i− 1

2

)
dummy
Reconstruction:

q±
i = Qn

i ±
∆x

2
sn

i ,

sn
i =

qn
i+1 − qn

i

∆x
φ(rn

i ), rn
i =

qn
i − qn

i−1
qn

i+1 − qn
i

TVD region:

0 1 2 3 4
0

1

2
superbee

minmod

OSPRE*

r

φ
(r

)

Goal:

Goal:

An a priori limiter which has ...

the properties of an a posteriori limiter, ...

following the idea of the MOOD approach, ...

by the use of reinforcement learning.

*Waterson, Deconinck, Num. Meth. in Laminar andTurb. Flow 9 (1995)
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Reinforcement Learning

Markov decision process:

M = (S, A, P, ra)

MUSCL

ANN

sn
ij aij

sn+1
ij

ra,ij

Environment:

Second-order MUSCL-Hancock scheme

applied to the Euler equations

Agent:

”Learns”/predict an optimal/admissible slope

State:

Integral mean values of the present, the

adjacent and the diagonal cells

Action:

Blending parameters between a fully right

and a fully left sided slope

Reward:

Immediate value of the present action as a

function of the state and the action
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State

The state at tn is composed of an extended

nine-point stencil, given as

sn
i,j =

(Vi−,j+ , Vi,j+ , Vi+,j+ )
(Vi−,j+ , Vi,j+ , Vi+,j+ )
(Vi−,j− , Vi,j− , Vi+,j− )



• with

i = 1, . . . , Nx and j = 1, . . . , Ny

and

(·)− := (·) − 1 and (·)+ := (·) + 1.

dummy
The components of V = {ρ, p} are defined as the density and the pressure, respectively.

Use of a min-max normalization, defined as

NORMALIZE(sij) =


(

sij −min(sij )
)(

max(sij )−min(sij )
) : max(sij) − min(sij) > ε1 max(sij),

1 : otherwise

which maps the state space to a bounded interval s̃ij ∈ [0, 1]3×3×2
.

Distinguish constant from non-constant states by the additional parameter ε1 = 10−5.
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Action

Goal:

The definition of the action has to maintain

the second-order character of the scheme.

Idea:

Use a convex blending of a fully left- and a

fully right-sided slope. 0 1 2 3 4
0

1

2
ak,ij = 1

ak,ij = −1

r

φ
(r

)

The slopes of the primitive variables Vk = (ρ, uk, p)T in each dimension are defined as

δVk,ij =
1
2

[(
1 − ak,ij

) Vl+ − Vl

∆xk
+
(

1 + ak,ij

) Vl − Vl−

∆xk

]
with l =

{
i : k = 1,

j : k = 2,

where ak,ij ∈ [−1, 1].

Constant states are always treated with ak,ij = 1.
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Reward

Goal:

Design of an a priori limiter which has the properties of an a posteriori limiter based on the MOOD

approach*†

Check the admissibility of the solution in terms of the positivity and the boundedness.

Positivity:

Sij = SANITY(sn+1
ij ) =

{
1 : min(sn+1

ij ) < ε2

0 : otherwise
with ε2 = 10−6

Boundedness:

Mij = M(sn
ij , sn+1

ij )

=

{
1 : sn+1

ij < (1 − ε3) min(sn
ij) ∨ sn+1

ij > (1 + ε3) max(sn
ij)

0 : otherwise
with ε3 = 10−3

*Clain, Diot, Loubère, J. Comput. Phys. 230(10), (2011)

†Dumbser, Zanotti, Loubère, Diot, J. Comput. Phys. 278 (2014)
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Reward

This enables the definition of a reward in

each direction

REW = REW(sn
ij , sn+1

ij , aij , k) as

REW =



c1 : Sij = 1,

c2|ak,ij | : Mij = 1 ∧ ¬Jk,

|ak,ij | : Mij = 1 ∧ Jk,

ak,ij : Mij = 0 ∧ |rk|> 1,

−ak,ij : Mij = 0 ∧ |rk|< 1.

0 1 2 3 4
0

1

2
ak,ij = 1

ak,ij = −1

rk

φ
(r

k
)
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Reward

This enables the definition of a reward in

each direction

REW = REW(sn
ij , sn+1

ij , aij , k) as

REW =



c1 : Sij = 1,

c2|ak,ij | : Mij = 1 ∧ ¬Jk,

|ak,ij | : Mij = 1 ∧ Jk,
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−ak,ij : Mij = 0 ∧ |rk|< 1.

0 1 2 3 4
0

1

2
ak,ij = 1

ak,ij = −1

rk

φ
(r

k
)

The additional criterion

Jk = (ak,ij < −1 + ε4 : |rk|> 1) ∨ (ak,ij > 1 − ε4 : |rk|< 1) with ε4 = 0.1

is used to avoid an invalid penalization in the limit case of the minmod.

The tuning parameters are fixed to c1 = −50 and c2 = −10.
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Reward

This enables the definition of a reward in

each direction

REW = REW(sn
ij , sn+1

ij , aij , k) as

REW =



c1 : Sij = 1,

c2|ak,ij | : Mij = 1 ∧ ¬Jk,

|ak,ij | : Mij = 1 ∧ Jk,

ak,ij : Mij = 0 ∧ |rk|> 1,

−ak,ij : Mij = 0 ∧ |rk|< 1.

0 1 2 3 4
0

1

2
ak,ij = 1

ak,ij = −1

rk

φ
(r

k
)

The additional criterion

Jk = (ak,ij < −1 + ε4 : |rk|> 1) ∨ (ak,ij > 1 − ε4 : |rk|< 1) with ε4 = 0.1

is used to avoid an invalid penalization in the limit case of the minmod.

The tuning parameters are fixed to c1 = −50 and c2 = −10.

The final reward reads as ra,ij = REWARD(sn
ij , sn+1

ij , aij) =
∑

k
REW(sn

ij , sn+1
ij , aij , k)
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Training

2D Riemann problems: *

Euler equations + ideal gas EoS (γ = 1.4)

Ω = [0, 1]2, tend = 0.2

Nel = Nx × Nx = 50 × 50

CFL = 0.99, HLL flux

Initialization:

ρ ∼ U(0.01, 4),

u1, u2 ∼ U(−2, 2),

p ∼ U(0.01, 10)

Training:

Epochs: 1000 for 2h

GPU: NVIDIATesla K40c

Multi-agent twin-delayed deep deterministic

policy gradient (TD3, off-policy): *

Actor:

Convolutional neural network (CNN)

Two input channels: (p, ρ)

Window kernel size: 2 × 2

Output: aij = (a1,ij , a1,ij)T

Trainable parameters: 4482

Critic:

Multilayer perceptron (MLP)

Output: Q(s̃n, a)

Trainable parameters: 96901

*C Schulz-Rinne. In: SIAM Journal on Mathematical Analysis 24.1 (1993)

†G. Fu et al. In: Journal of Computational Physics 347.347 (2017)
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2D Riemann Problem: Configuration 4

Figure: RLindi Figure: OSPRE
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2D Riemann Problem: Configuration J

Figure: RLindi Figure: OSPRE
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2D Riemann Problem: Configuration B

Figure: RLindi Figure: OSPRE

⇒ In reinforcement learning the definition of the reward is crucial!
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Data-driven

turbulence closures
Joint work with:

Marius Kurz



Explicit closure model

Baseline: Smagorinsky’s model:

νt = (Cs∆)2
√

2SijSij with S =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
Adapt parameter dynamically in space and time:

Cs = Cs(x, t)

First step: elementwise constant Cs

Second step: elementwise quadratically

distributed Cs

*Kurz2023
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Implicit closure model*

Elementwise, convex blending between DG and FV operator

Ût = α RF V(Û) + (1 − α) RDG(Û)

Blending parameter α ∈ [0, 1]

Originally proposed for shock capturing purposes† −1 0 1

ωi

U(ξ )

ξ

*A. Beck et al. In: Physics of Fluids 35.12 (2023)
†S. Hennemann et al. In: Journal of Computational Physics 426 (2021)

‡Kurz2023
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Stating the RL problem

Environment

Implicitly filtered LES with high-order DG

scheme

Homogeneous isotropic turbulence

(“Turbulence-in-a-box”)

Periodic boundaries

Forcing for statistically stationary flow
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Stating the RL problem

Environment

Implicitly filtered LES with high-order DG

scheme

Homogeneous isotropic turbulence

(“Turbulence-in-a-box”)

Periodic boundaries

Forcing for statistically stationary flow

Reward

Reward based on error in spectrum of turbulent

kinetic energy

Spectrum of precomputed DNS as target

Reward scaled to rt ∈ [−1, 1] with exponential

function

100 102
10−3

100

k−5/3

k

E
D

N
S
(k
)
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Stating the RL problem

Actions

Actions are elementwise and either

1. Cs constant

2. Cs quadratic

3. α constant
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Stating the RL problem

Actions

Actions are elementwise and either

1. Cs constant

2. Cs quadratic

3. α constant

Policy

Elementwise convolutional architecture
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Computational setup

RL training loop implemented within Relexi†

RL algorithm: Proximal Policy Optimization (PPO,

on-policy)*

LES computed with high-order DG code FLEXI‡

Different resolutions: 24, 32, 36, 48 DOF per

directions

Different pol. degrees: N = 3, 5, 8

Using up to 1024 cores in parallel for simulations

*J. Schulman et al. In: (2017)

†https://github.com/flexi-framework/relexi

‡https://github.com/flexi-framework/flexi
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Relexi* - An RL framework for high-performance computing

Implemented in cooperation with HLRS and HPE

Distribution on hybrid HPC systems via the SmartSim library

Dedicated GPU node for training and model evaluation withTensorFlow

FLEXI instances distributed across multiple CPU nodes („Workers“)

*M. Kurz et al. In: Software Impacts (2022)
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Results - training
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Smago Const
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36 DOF, N = 8
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0 500 1,000 1,500 2,000

Iterations

The agent’s policy improves and

converges

Policy improves steadily and

consistently

Improved performance for the

quadratic model

Larger elements profit more from

quadratic Cs

*Kurz2023
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Results - Explicit model*

*A. Beck et al. In: Physics of Fluids 35.12 (2023)
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Results - Explicit model*

Observation: The RL model consistently adds more dissipation within the DG element and none at the faces.

ButWhy?

−1 0 1

ωi

U(ξ )

ξ

Hypothesis: This homogenizes the dissipation, which is only added at the element faces by the Riemann

solver!

*A. Beck et al. In: Physics of Fluids 35.12 (2023)
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Results - Implicit model*

Agent learns successfully blending

between DG and FV methods

RL-informed hybrid scheme yields

better energy spectrum than both

individual schemes

Performance at minimum on par

with dynamic Smagorinsky model

1 2 4 8 16
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10−1

100

4
pp

w

k m
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k
E
(k
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36 DOF, N = 5

DNS
DG
FV
RL-Blend

*A. Beck et al. In: Physics of Fluids 35.12 (2023)
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To summarize …

Proof-of-Concept: Reinforcement learning can be applied for non-linear phenomena such as turbulence

modeling / shock capturing and can give accurate and long-term stable results

What about generalization? RL model trained on 36 DOF case applied to 48 DOF case:*

1 2 4 8 16

10−2

10−1

100

4 ppw kmax

k

E
(k

)
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10−1

100

k
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E
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)
E

D
N

S
(k

)

∣ ∣ ∣ ∣ ∣
0 0.2 0.4

0

5
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Cs

P
(C

s)

DNS
RL - 48 DOF
RL - 36 DOF

→ Systematic difference in predictions!

→ Reinforcement learning better than supervised learning, however, still good enough in terms of stability,

accuracy and efficiency?

*Kurz2023
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