
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel® oneAPI HPC Toolkit

Intel® Advisor

Multiarchitecture Programming for Accelerated Compute, Freedom of Choice for Hardware

Intel® Advisor
Vectorization Optimization

3

Intel® Advisor Vectorization Optimization

⚫ Data Driven Vectorization:
• What vectorization will pay off most?

• What’s blocking vectorization? Why?

• Are my loops vector friendly?

• Will reorganizing data increase
performance?

• Is it safe to just use pragma simd?

Have you:
Recompiled for AVX2 with little gain?

Wondered where to vectorize?

Recoded intrinsics for new arch.?

Struggled with compiler reports?

4

The Lab Activities

⚫ Activity 0: Building N-body

⚫ Activity 1: Doing Survey

⚫ Activity 2: Fixing compilation option

⚫ Activity 3: Doing roofline analysis

⚫ Activity 4: Dealing with data type conversions

⚫ Activity 5: Checking memory access patterns

⚫ Activity 6: Using SDLT

⚫ Activity 7: Comparing roofline charts

⚫ Activity 8: Adding threading

N-BODY

6

N-body gravity simulation

⚫ Let’s consider a distribution of point masses located at r_1,…,r_n and have masses m_1,…,m_n

⚫ We want to calculate the position of the particles after a certain time interval using the Newton law of
gravity

struct Particle
{

float pos_x, pos_y, pos_z;
float vel_x, vel_y, vel_z;
float acc_x, acc_y, acc_z;
float mass;

};

class GSimulation
{
…
private:

std::vector<Particle> particles;
…
};

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

float distance, dx, dy, dz;
float distanceSqr = 0.0;
float distanceInv = 0.0;

dx = particles[j].pos_x - particles[i].pos_x;
…
distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);

particles[i].acc_x += dx * G * particles[j].mass *
distanceInv * distanceInv * distanceInv;

particles[i].acc_y += …
particles[i].acc_z += …

Activity 0: Building N-body

8

Build & Run

Purpose: Build an application, observe the performance

⚫ Setup:

$ source /opt/intel/oneapi/setvars.sh

$ cd ~/day1/lab4/ver0

⚫ Build & run

$ make

$ make run

9

Activity 0. Screenshot

Activity 1: Doing Survey

11

Advisor SURVEY Analysis

Purpose: Run Survey analysis in Advisor to get the baseline version

⚫ Launch Advisor GUI:

$ advisor-gui

⚫ Setup project and run Survey analysis

12

Activity 1. Screenshot

13

Create a snapshot

Activity 2: Fixing compilation option

15

Intel® AVX-512

⚫ Extends previous AVX and SSE registers to 512 bit:

• 32 bit: 8 ZMM registers (same as YMM/XMM)

• 64 bit: 32 ZMM registers (2x of YMM/XMM)

⚫ 8 mask registers (K0 is special)

ZMM0-31

512 bit

K0-7

64 bit

XMM0-15

128 bit

YMM0-15

256 bit3
2

 b
it

6
4

 b
it

16

Activity 2

Purpose: Fix compilation options to use the highest available ISA

⚫ Build a version with new compilation flags

$ cd ~/day1/lab4/ver1

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous activity

17

Activity 2. Screenshots

Activity 3: Doing roofline analysis

19

Roofline model

A roofline model helping you answer these
questions:
Does my application work optimally on the
current hardware? If not, what is the most
underutilized hardware resource?
What limits performance? Is my application
workload memory or compute bound?
What is the right strategy to improve
application performance?

20

Collect FLOP data to GET ROOFLINE
CHART

Purpose: Characterize the application
using roofline model
Click “FLOP” checkbox on workflow
Press “Collect” button in “1.1 Find Trip
Counts and FLOP” section
Create a snapshot

21

Activity 3. Screenshot

Activity 4: Dealing with data type
conversions

23

Activity 4

Purpose: Identify and fix data type conversion issue

⚫ Build version without data type conversions

$ cd ~/day1/lab4/ver2

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results

24

Activity 4. Screenshots

Activity 5: Checking memory access
patterns

26

Types OF MEMORY Access patterns

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i++)

A[i] = C[i]*D[i]

for (i=0; i<N; i++)

point[i].x = x[i]

Unit-Stride access

Constant stride access

Variable stride access

27

Check Memory Access Patterns

Purpose: Investigate if poor memory
access patterns are cause of poor
vectorization efficiency
Mark the hottest loop using checkbox in
Survey report
Press “Collect” button in “2.1 Check Memory
Access Patterns” section
Create a snapshot
Investigate collected results
Review “Recommendations” tab

28

Activity 5. Screenshot

Activity 6: Using SDLT

30

SIMD Is Effective With Unit Stride Access

Getting Array of Structures (AoS) in memory data
layout loaded into a vector register is a “strided”
load/store operation requiring multiple
load/shuffle/insert or gather instructions

A properly aligned Structure of Arrays (SoA) in
memory data layout provides SIMD compatible
Unit-Stride memory accesses

vector register

X

A[i+0]

Y Z X

A[i+1]

Y Z X

A[i+2]

Y Z X

A[i+3]

Y Z

0 1 2 3

A

Z[i+0] Z[i+1] Z[i+2] Z[i+3]

Y[i+0] Y[i+1] Y[i+2] Y[i+3]

X[i+0] X[i+1] X[i+2] X[i+3]

vector register0 1 2 3

31

N-body SDLT code example

auto particles = _particles.access();
…

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

float distance, dx, dy, dz;
float distanceSqr = 0.0;
float distanceInv = 0.0;

dx = particles[j].pos_x() -
particles[i].pos_x();

…
distanceSqr = dx*dx + dy*dy + dz*dz +

softeningSquared;
distanceInv = 1.0f / sqrtf(distanceSqr);

particles[i].acc_x() += dx * G *
particles[j].mass() *

distanceInv * distanceInv * distanceInv;
particles[i].acc_y() += …
particles[i].acc_z() += …

#include <sdlt/sdlt.h>
struct Particle
{

float pos_x, pos_y, pos_z;
float vel_x, vel_y, vel_z;
float acc_x, acc_y, acc_z;
float mass;

};
SDLT_PRIMITIVE(Particle, pos_x, pos_y, pos_z,
 vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, mass)

class GSimulation
{
…
private:

sdlt::soa1d_container<Particle> _particles;
…
};

32

ACTIVITY 6

Purpose: Use SDLT library to change a AOS to SOA format, thus improving
vectorization

⚫ Build version with optimized memory access pattern

$ cd ~/day1/lab4/ver3

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results

33

Activity 6. Screenshots

Activity 7: Comparing roofline charts

35

ACTIVITY 7

Purpose: Graph roofline chart for
optimized version, and compare
with initial chart
Press “Collect” button in “1.1 Find Trip
Counts and FLOP” section
Create a snapshot
Compare with chart created in Activtiy
3

36

Activity 7. Screenshot

Activity 8: Adding threading

38

Activity 8

Purpose: Use OpenMP directives to enable threading
parallelisation

⚫ Build threaded version

$ cd ~/day1/lab4/ver4

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results

39

Activity 8. Screenshots

41

Legal Disclaimer & Optimization Notice

⚫ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

⚫ Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

⚫ Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

41

	Title
	Slide 1

	Vectorization Optimization
	Slide 2: Intel® Advisor Vectorization Optimization
	Slide 3: Intel® Advisor Vectorization Optimization

	Agenda
	Slide 4: The Lab Activities

	About NBody
	Slide 5: N-BODY
	Slide 6: N-body gravity simulation

	Activity 0
	Slide 7: Activity 0: Building N-body
	Slide 8: Build & Run
	Slide 9: Activity 0. Screenshot

	Activity 1
	Slide 10: Activity 1: Doing Survey
	Slide 11: Advisor SURVEY Analysis
	Slide 12: Activity 1. Screenshot
	Slide 13: Create a snapshot

	Activity 2
	Slide 14: Activity 2: Fixing compilation option
	Slide 15: Intel® AVX-512
	Slide 16: Activity 2
	Slide 17: Activity 2. Screenshots

	Activity 3
	Slide 18: Activity 3: Doing roofline analysis
	Slide 19: Roofline model
	Slide 20: Collect FLOP data to GET ROOFLINE CHART
	Slide 21: Activity 3. Screenshot

	Activity 4
	Slide 22: Activity 4: Dealing with data type conversions
	Slide 23: Activity 4
	Slide 24: Activity 4. Screenshots

	Activity 5
	Slide 25: Activity 5: Checking memory access patterns
	Slide 26: Types OF MEMORY Access patterns
	Slide 27: Check Memory Access Patterns
	Slide 28: Activity 5. Screenshot

	Activity 6
	Slide 29: Activity 6: Using SDLT
	Slide 30: SIMD Is Effective With Unit Stride Access
	Slide 31: N-body SDLT code example
	Slide 32: ACTIVITY 6
	Slide 33: Activity 6. Screenshots

	Activity 7
	Slide 34: Activity 7: Comparing roofline charts
	Slide 35: ACTIVITY 7
	Slide 36: Activity 7. Screenshot

	Activity 8
	Slide 37: Activity 8: Adding threading
	Slide 38: Activity 8
	Slide 39: Activity 8. Screenshots

	Backup
	Slide 40

	Legal
	Slide 41: Legal Disclaimer & Optimization Notice

