

Multiarchitecture Programming for Accelerated Compute, Freedom of Choice for Hardware

Intel[®] oneAPI HPC Toolkit

Intel[®] Advisor

Intel® Advisor Vectorization Optimization

Intel® Advisor Vectorization Optimization

Have you: Recompiled for AVX2 with little gain? Wondered where to vectorize? Recoded intrinsics for new arch.? Struggled with compiler reports?

- Data Driven Vectorization:
 - What vectorization will pay off most?
 - What's blocking vectorization? Why?
 - Are my loops vector friendly?
 - Will reorganizing data increase performance?
 - Is it safe to just use pragma simd?

Ô	Elapsed time: 1462.35s 🚺 Vectorized 🗂 Not	Vector	ized 🍼 FILTER:	All Modules	- All Source	es 🔻 Loops	✓ All Threads ▼		[OFF		Sma	rt Mode®	Q	۲.
Ē 9	Summary 🤣 Survey & Roofline 🛄 Refinement R	eports											INTEL AE	IVISOR 20	J18
S Performance out The Tent Tent Vectorized Loops I FLOPS											^				
ROOFLINE	+ - Function Call Sites and Loops	æ	Issues	Self Time▼	Total Time	Туре	Why No Vectorization?	Vect	Efficiency	Gain	VL (Com	Self GFLOPS	Self Al	
Ē	☑ (loop in runOMPRawLoops\$omp\$parallel_fo		2 Assumed	15.484s 📖	578.046s1	Threaded (Op	vector dependenc						2.235	0.02459	
	☑ [™] [loop in runCRawLoops at runCRawLoops.cxx:		💡 2 Assumed d	11.766s 📖	11.766s l	Scalar	vector dependence						0.9951	0.08333	
	☑ [™] [loop in runCForallLambdaLoops at runCForal		💡 2 Assumed d	11.766s 📖	11.766s I	Scalar	vector dependence						0.9951	0.08333	
	🗵 🗗 [loop in runCRawLoops at runCRawLoops.cxx:		💡 2 Assumed d	5.156s 🗖	5.156s l	Scalar	vector dependence						1.5121	0.11458	
	☑ ♬ [loop in runCForallLambdaLoops at runCForal		💡 2 Assumed d	5.125s 🗖	5.125s l	Scalar	vector dependence						1.5211	0.11458	
	□ ⁽⁵] [loop in runOMPRawLoops\$omp\$parallel@64		💡 1 Ineffective	4.190s 🗖	4.190s I	Vectorized+Thr		AVX	100%	5.10x	4	5.28x	6.7671	0.02486	
	☑ ^[] [loop in runOMPRawLoops\$omp\$parallel@			3.768s 🗖	3.768s I	Remainder+Th							4.1381	0.02083	
	☑ ⁶ [loop in runOMPRawLoops\$omp\$parallel@			0.406s I	0.406s l	Vectorized (Bo		AVX			4	5.28x	27.3681	0.03125	
	☑ ^[] [loop in runOMPRawLoops\$omp\$parallel@			0.016s l	0.016s l	Peeled+Thread							0.1131	0.02083	\sim

The Lab Activities

- Activity 0: Building N-body
- Activity 1: Doing Survey
- Activity 2: Fixing compilation option
- Activity 3: Doing roofline analysis
- Activity 4: Dealing with data type conversions
- Activity 5: Checking memory access patterns
- Activity 6: Using SDLT
- Activity 7: Comparing roofline charts
- Activity 8: Adding threading

N-BODY

N-body gravity simulation

- Let's consider a distribution of point masses located at r_1,...,r_n and have masses m_1,...,m_n
- We want to calculate the position of the particles after a certain time interval using the Newton law of gravity

```
struct Particle
{
    float pos_x, pos_y, pos_z;
    float vel_x, vel_y, vel_z;
    float acc_x, acc_y, acc_z;
    float mass;
};
class GSimulation
{
...
private:
    std::vector<Particle> particles;
...
};
```

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
float distance, dx, dy, dz;
float distanceSqr = 0.0;
float distanceInv = 0.0;
dx = particles[j].pos_x - particles[i].pos_x;
...
distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);
particles[i].acc_x += dx * G * particles[j].mass *
    distanceInv * distanceInv * distanceInv;
particles[i].acc_y += ...
particles[i].acc_z += ...</pre>
```

Activity 0: Building N-body

Build & Run

Purpose: Build an application, observe the performance

- Setup:
 - \$ source /opt/intel/oneapi/setvars.sh
 - \$ cd ~/day1/lab4/ver0
- Build & run
 - \$ make
 - \$ make run

Activity 0. Screenshot

		nSteps = 500;	
s	dt	kenergy	time (s)
50	5	0.09659	3.8322
100	10	1.6163	3.8374
150	15	5.3975	3.8284
200	20	11.879	3.8201
250	25	21.908	3.8251
300	30	37.079	3.821
350	35	60.558	3.8171
400	40	99.572	3.8149
450	45	176.19	3.8152
500	50	388.54	3.8322
# Total	Time (s) : 38.24	4

Initializo Crawity Simulation

Activity 1: Doing Survey

Advisor SURVEY Analysis

Purpose: Run Survey analysis in Advisor to get the baseline version

- Launch Advisor GUI:
- \$ advisor-gui
- Setup project and run Survey analysis

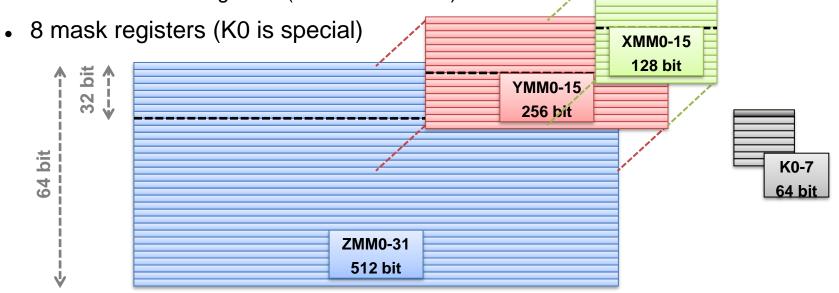
	Analysis Target Binary/S	Symbol Search Source	Search					
	🗢 📄 Survey Analysis Ty	Launch Application	•					
② Getting Started	O Survey Hotspots	Specify and configure	the application executable (target) to analyze	e. Press F1 for more det	tails.			
Welcome to Intel Advisor 2018	 Trip Counts and I Suitability Analys 	Application:	/home/intel-workshop/day1/lab4/build/nb	oody.x 🔻 Br	owse			
Vectorization Optimization and Thread Prototypi	 Refinement Analysi Memory Access F 	Application parameter	rs:	Vectorization	Threading	Summary	🍫 Survey & Roofline	Refinement Reports
New Project	Dependencies An	☑ Use application dir	ectory as working directory	Workflow	Workflow	🔥 No Dat	ta	
Open Project	:	Working directory:	/home/intel-workshop/day1/lab4/build	OFF Batch mod	e			cation's performance, compi
Copen Result		User-defined environm	nent variables:	Run Roofline		analysis.		
		1		🕨 Collect 🖿 📐	_			
		Modules:	 Include only the following modul Exclude the following module(s) 	🗌 Enable Rooflin	e with Callstacks			
				1. Survey Target				
				🖏 Collect 🖣 🖿				

Activity 1. Screenshot

🗈 Summary 🗞 Survey & Roofline 📲 Refinement Reports													
	igher instru	ction set archit	tecture (IS	A) availa	ble								
						is lower than AVX512						ng the hi	ghest ISA
av	ailable on the ta	arget machine: Use	the -xCORE-	AVX512 or	-xHos	t option. For compatibi	lity with othe	r AVX-512 pro	essors use the -xCO		option. not show this r	nessage	again. Us
72	1.00											·····	orized Lo
° ⊨ ⊡	 Function Cal 	l Sites and Loops			Performance Issues		s Self Time ▼ Total Time		Туре	Why No Vect	Vecto	or Effic	
	⊕© [loop in GSimulation::start at GSimulation.cpp:106] ⊡© [loop in GSimulation::start at GSimulation.cpp:129]						39.124s	39.124s	Vectorized (Body)			SSE2	~90
						© 1 Potential under	0.008s[0.008s[Scalar	vectorizatio	on possible but		
∍ f	⊌ ∮ _start						0.000s[39.144s	Function				
⊇ f [main						0.000s[39.144s	Function				
∍ f (0.000s[39.144s	Function				
	loop in Climula	tionuctort at CCim-	lation cons10	21			0.000-1	20 1246	Coslar	E inner leen	ميتناهجمعام عجيب	~	
Source	Top Down	Code Analytics	Assembly	♀ Recom	menda	itions 📱 Why No Ve	ctorization?						
File: GSin	nulation.cpp:10	6 GSimulation::sta	art					1					
Line						Source					Total Time	% L	.oop/Fun
>> 100 ₪		s = 1; s <= qe): ++5)									
101	{	5 - <u>1</u> , 5 - 9.	ac_naceps(///									
102	ts0 +	= time.start());										
103 🗉	for (i = 0; i < n;	i++)// up	date ac	eler	ation							
104	{												
105 float acc_x = 0.f, acc_y = 0.f, acc_z = 0.f;													
$106 \square$ for (j = 0; j < n; j++) 0.400s													
107	{												
108		float dx, d	-										
109		float dista	1 C C C C C C C C C C C C C C C C C C C										
110	float distanceInv = 0.;												

Create a snapshot

ſ	Ø	Elapsed	time: 39.22s 0 Ve	ectorized o Not Vectorize	d 🖉 FILTER	R: All Modu	les 🔻
Ĭ	F	Summary	🏷 Survey & Rooflin	ne 📲 Refinement Report	s		
	~	A Highe	er instruction se	t architecture (ISA) av	vailable		
Н				led using the SSE2 instruction			
		availat		Create a Result Snapsho	ot	×	npatib
Н			Result name:	al			
	ROOFLINE	+ - F	Cache sources	Cache binaries			Issue
Н	LINE	🗄 🕘 [loop	Pack into archive				ed fl
Ш		🛛 🖱 [loop	Result path:			Browse	nder
н		Image: Star ■ J ■ J ■ J ■ J ■ J ■ J ■ J ■ J ■ J ■	Result size: 3.29 MB	,			
Н		🖻 🕈 main	Result Size: 5.29 MD				
Н		🖻 🕈 GSim			ОК	Cancel	
		S (5 Flace					


Activity 2: Fixing compilation option

Intel® AVX-512

- Extends previous AVX and SSE registers to 512 bit:
 - 32 bit: 8 ZMM registers (same as YMM/XMM)
 - 64 bit: 32 ZMM registers (2x of YMM/XMM)

Activity 2

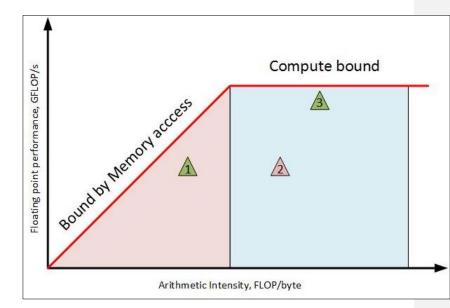
Purpose: Fix compilation options to use the highest available ISA

- Build a version with new compilation flags
- \$ cd ~/day1/lab4/ver1
- \$ make
- Re-run Survey analysis
- Create a snapshot
- Compare with previous activity

Activity 2. Screenshots

e000 a1 (read-only) % a2 (read-only) Vectorization Workflow Workflow		Not Vectorized	⑤ FILTER: All Mod	iles 🔻 A	ll Sources 🔻					
Run Roofline	A Higher instruction set architect Consider recompiling your application using		lable							
1. Survey Target	P + - Function Call Sites and Loops		Performance Issues	Self Time 🔻 Total Time						
	🗄 🗄 🗄 🗄 🗄 🗄 🗄 🗄 🗄 🗄 🗄 🗄	on.cpp:106]	🔋 4 Unoptimized fl	39.124s	39.124s					
	🛛 🖉 [loop in GSimulation::start at GSimulation.	срр:129]	© 1 Potential under	0.008s [0.008s [.008s (
0	J f _start			0.000s [39.144s					
Mark Loops for Deeper Analysis	🗵 f main	e000 al (rea	d-only) a2 (read-only) 🗶						
Select checkboxes in the Survey & Roofline tab to mark loops for other	f GSimulation::start									
Advisor analyses.	☑ [™] [loop in GSimulation::start at GSimulation.			-	Elapsed tin	ne: 6.84s O Vectorized O Not Vectorized	5 FILTER: All Modu	les 👻 All	Sources 🔻	
There are no marked loops	☑ [™] [loop in GSimulation::start at GSimulation.	Workflow	Workflo	w 🖻	Summary 🛛 🖄	Survey & Roofline 📲 Refinement Reports				
		Run Roofline	Ø	ROOFLINE	+ - Fun	ction Call Sites and Loops	Performance Issues	Self Time 🔻	Total Time	
		<u>.</u>			🗵 🖸 [loop in	GSimulation::start at GSimulation.cpp:106]	2 Possible ineffic	5.383s	6.789s 99.6%	
					∍ fsvml_	.invsqrtf16_z0		1.406s	1.406s	
		1. Survey Ta	rget		🗵 🖱 [loop in	GSimulation::start at GSimulation.cpp:103]	🔋 1 Data type conv	0.029s [6.818s	
		b_			J f _start			0.000s (6.818s	
					🛛 🖌 main			0.000s [6.818s	
		Mark Loops	for Deeper Analysis		🗵 f GSimula	tion::start		0.000s (6.818s	
						GSimulation::start at GSimulation.cpp:100]	🔋 1 Data type conv	0.000s [6.818s	

Activity 3: Doing roofline analysis



Roofline model

A roofline model helping you answer these questions:

Does my application work optimally on the current hardware? If not, what is the most underutilized hardware resource? What limits performance? Is my application workload memory or compute bound? What is the right strategy to improve application performance?

Collect FLOP data to GET ROOFLINE CHART

Purpose: Characterize the application using roofline model

Click "FLOP" checkbox on workflow Press "Collect" button in "1.1 Find Trip Counts and FLOP" section Create a snapshot

ectorization Workflow	Threading Workflow	i in the second	Ela			s 🖸 Vector		O Not Ve Refinement	_
Batch mode	Ð	ROOFLINE	+ -	- F	unction C	all Sites and Lo	oops		
n Roofline		LINE	≥ ७ [loop	in GSimu	ation::start a	t GSir	nulation.cp	р: 10
Collect 🖿 📃			≥ f	_svr	nl_invsqrtf	16_z0			
Enable Roofline v	with Callstacks		≥ 0 [loop	in GSimul	ation::start at (Simu	lation.cpp:1	.03]
Enable Roonine V	With Califiacks		∍ f _	star	t				
Survey Target			∍fr	nain					
			∍ f (GSim	ulation::sta	art			
Collect 🍡 🖿			⊻ 0[loop	in GSimul	ation::start at (Simu	lation.cpp:1	.00]
rk Loops for Dee	per Analysis								
ect checkboxes in fline tab to mark	,								
isor analyses.		Sou	irce	То	p Down	Code Analyt	ics	Assembly	9
There are no mark		File:	GSim		on.cpp:10		n::stai		
Find Trip Counts	and FLOP	Line							
Collect 🕅 🖿	<u>}_</u>	99		С	onst dou	ble t0 = t	ime.	start();	
Trip Counts		100	Ŧ	fo	or (int	s = 1; s <	= ge	t_nsteps	();
FLOP		101		{					
- Analyze all loop		102			ts0 +	= time.sta	rt()	;	
Anatyze att toop:	٥	103	Ŧ		for (i = 0; i <	n;	i++)// u	pdat

Activity 3. Screenshot

🗑 Summary 🛯 🗞 Survey & Roofline 📑 Refinement R	eports				INTEL AUVIJUK Z
+ - Function Call Sites and Loops	•	Performance Issues	Self Time 🔻	Total Time	
[loop in GSimulation::start at GSimulation.cpp:106]		2 Possible ineffic	5.383s	6.789s 99.69	SP Vector FMA Peak: 133 63 GFLOPS
≥ fsvml_invsqrtf16_z0			1.406s	1.406s	
🗉 🖱 [loop in GSimulation::start at GSimulation.cpp:103]		🛙 1 Data type conv	. 0.029s [6.818s	SP Vector Add Peak: 63/57 GFLOPS
⊎ ∮_start			0.000s (6.818s	ar yetu Adu Fear, 5337 GELOFS
⊇ £ main			0.000s (6.818s	
			0.000s (6.818s	
© [loop in GSimulation::start at GSimulation.cpp:100]		🔋 1 Data type conv	. 0.000s (6.818s	
					10 - Alter 248.8.2 (30)
					1 1 1 1 1 1 10 1 10
					Self Elapsed Time: 5.383 s Total Time: 6.789 s
Source Top Down Code Analytics Assembly	💡 Reco	mmendations 🖷 W	hy No Vectoriz	ation?	
Issue: Data type conversions pr	esent				Possible inefficient memory access patterns pres
There are multiple data types within loops. Uti	lize harc	ware vectorization s	support more	effectively by	by avoiding data type conversion.
Recommendation: Use the smallest	data typ	e			Data type conversions present
The <u>source loop</u> contains data types of d					at gives the needed precision to use the entire <u>vector register width</u> . Use the smallest data type Us

Activity 4: Dealing with data type conversions

Activity 4

Purpose: Identify and fix data type conversion issue

- Build version without data type conversions
- \$ cd ~/day1/lab4/ver2
- \$ make
- Re-run Survey analysis
- Create a snapshot
- Compare with previous results

Activity 4. Screenshots

e000 a1 (read-only) a2 (read-only) a3 (read-only) a4 (read-only)	
Elapsed time: 6.84s O Vectorized O Not Vectorized 🖉 FILTER: All Modules 🔹	All Sources 👻 Loops And Functions
🖹 Summary 🗞 Survey & Roofline 👫 Refinement Reports	
	 Total Time Type 6.7895 99.6% Vectorized (Body)
Source Top Down Code Analytics Assembly P Recommendations Why No Vector	prization?
All Advisor-detectable issues: C++ Fortran	
Issue: Possible inefficient memory access patterns preser	000 a1 (read-only) a2 (read-only) a3 (read-only) a4 (read-only) X
Inefficient memory access patterns may result in significant vector code execution s	🙆 Elapsed time: 3.595 🙆 Vectorized 🖸 Not Vectorized 🦉 FILTER: All Modules 🔹 All Sources 👻 Loops And Functions
Q Recommendation: Confirm inefficient memory access patterns	🛙 Summary 🗞 Survey & Roofline 📲 Refinement Reports
There is no confirmation inefficient memory access patterns are present. To cc. Issue: Data type conversions present	8 Image: Imag
I here are multiple data types within loops. Utilize hardware vectorization support m	Cloop in GSimulation::start at GSimulation.cpp:106]
The <u>source loop</u> contains data types of different widths. To fix: Use the smalles	Source Top Down Code Analytics Assembly Recommendations Why No Vectorization?
	All Advisor-detectable issues: <u>C++</u> <u>Fortran</u>
	Issue: Possible inefficient memory access patterns present
	Inefficient memory access patterns may result in significant vector code execution slowdown or block automatic vectorizati
	Image: Provide the state of the s

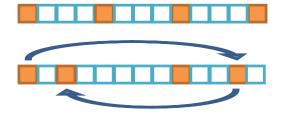
Activity 5: Checking memory access patterns

Types OF MEMORY Access patterns

Unit-Stride access

for (i=0; i<N; i++)</pre>

A[i] = C[i]*D[i]


Constant stride access

for (i=0; i<N; i++)
 point[i].x = x[i]</pre>

Variable stride access

for (i=0; i<N; i++)
 A[B[i]] = C[i]*D[i]</pre>

Check Memory Access Patterns

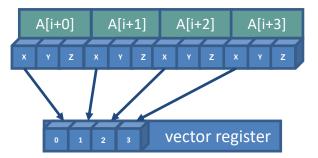
Purpose: Investigate if poor memory access patterns are cause of poor vectorization efficiency Mark the hottest loop using checkbox in Survey report Press "Collect" button in "2.1 Check Memory Access Patterns" section Create a snapshot Investigate collected results Review "Recommendations" tab

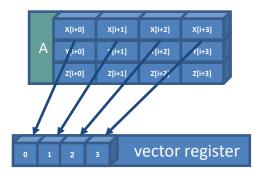
Vectorization Workflow	Threading	۵	Elaps	ed time: 3.5	9s 🗳 Vectori	zed 🖸	Not Vect	torized	් FILTE		
Workflow	Workflow	🕅 S	ummary	🤹 🏷 Surv	ey & Roofline	Refir	nement R	eports			
OFF Batch mode		ROOF	Function Call Sites and Loops								
Run Roofline		LINE	Solution: Start at GSimulation.cpp:106]								
🕨 Collect 🖿 📘											
Enable Roofline v	vith Callstacks		☑ [™] [loop in GSimulation::start at GSimulation.cpp:103]								
			🗄 🕛 [lo	op in GSimu	lation::start at G	Simulatio	n.cpp:12	9]			
1. Survey Target	. Survey Target								il		
🕐 Collect 🕅 🖿		Sou	irce	Top Down	Code Analyti	cs Ass	sembly	💡 Reco	mmendat		
Mark Loops for Dee	per Analysis	Line									
Select checkboxes in	the Survey &	96		double t	s0 = 0;						
Roofline tab to mark		97	double ts1 = 0;								
Advisor analyses.		98									
1 loop is marked		99		const do	uble t0 = t:	ime.sta	rt();				
1.1 Find Trip Counts	and FLOP	100	Ξ	for (int	s = 1; s <=	= get_n	steps (); ++s)			
	-	101		{							
GCollect 🕅 🖿		102		ts0	+= time.sta	rt();					
Trip Counts		103	Ξ	for	(i = 0; i <	n; i++)// upo	date ac	celerat		
FLOP		104		{							
		105			float acc_x	= 0.f,	acc_y	= 0.f,	acc_z		
2.1 Check Memory	Access Patterns	106	Ð		for (j = 0;	j < n;	j++)				
🖡 Collect 🖿 🗔		107			{						
		108			float d	k, dy,	dz;				

Activity 5. Screenshot

Summary	🏷 Survey & Roofline	Refinement Repor	ts								
					Footprint Estimate						
e Location		Strides Distribution	Access Pattern	Performance Issues	Max. Per-Instruction Addr. Range	First Instance Site Footprint					
[loop in sta	art at GSimulation.cpp:1	75% / 25% / 0%	Mixed strides	♀ 1 Inefficient memory access patterns present	56KB	58KB					
104 105	{	0 4	0 4	0.4							
105		c_x = 0.f, acc_y 0; j < n; j++)	= 0.1, acc_2 =								
107 108		t dx. dv. dz:									
100	i toa	ι αχ, αγ, αχ,									
lemory Acce	ss Patterns Report D	ependencies Report	Recommendation	15							
D Issu	e: Inefficient me	emory access p	atterns pres	ent							
			•	riable or random) stride accesses. Improve perfo	mance by investigating and hand	ling accordingly					
	Recommendation: U		in an		nanoo o jinnoo ugaang ana nana	ing accordingly.					
	The cost of rewriting co	ode to organize data u	sing SoA instead	of AoS may outweigh the benefit. To fix: Use Inte	I SIMD Data Layout Templates (Ir	ntel SDLT), introduced in					
		I compiler, to mitigate	the cost. Intel SD	T is a C++11 template library that may reduce c	ode rewrites to just a few lines.						
	Example:	0.71									
	Osing SDLT Instead of Original code: 🕤	SIL containers may	Improve the mem	bry access pattern for more efficient vector proces	ising.						
	struct kValues float Kx:	{									
	float Ky;										
	float Kz;										
	float PhiMa	g;									
	};										
	<pre>std::vector<kva< pre=""></kva<></pre>	lues> dataset(c	ount);								
	111										
Revised code: 🖂											
	<pre>#include <sdlt sdlt.h=""></sdlt></pre>										
struct kValues {											
	float Kx;	ι									

Activity 6: Using SDLT





SIMD Is Effective With Unit Stride Access

Getting Array of Structures (AoS) in memory data layout loaded into a vector register is a "strided" load/store operation requiring multiple load/shuffle/insert or gather instructions

A properly aligned Structure of Arrays (SoA) in memory data layout provides SIMD compatible Unit-Stride memory accesses

N-body SDLT code example

```
#include <sdlt/sdlt.h>
struct Particle
   float pos_x, pos_y, pos_z;
    float vel x, vel y, vel z;
   float acc x, acc y, acc z;
   float mass:
};
SDLT_PRIMITIVE(Particle, pos_x, pos_y, pos_z,
    vel x, vel y, vel z, acc x, acc y, acc z, mass)
class GSimulation
private:
    sdlt::soa1d container<Particle> particles;
};
```

```
auto particles = particles.access();
for (i = 0; i < n; i++)
   for (j = 0; j < n; j++)
        float distance, dx, dy, dz;
        float distanceSqr = 0.0;
       float distanceInv = 0.0;
                          particles[j].pos x()
        dx
                 =
particles[i].pos_x();
        distanceSqr = dx^*dx + dy^*dy + dz^*dz +
softeningSquared;
        distanceInv = 1.0f / sqrtf(distanceSqr);
        particles[i].acc x() += dx * G *
particles[j].mass() *
            distanceInv * distanceInv * distanceInv:
        particles[i].acc y() += ...
        particles[i].acc_z() += ...
```

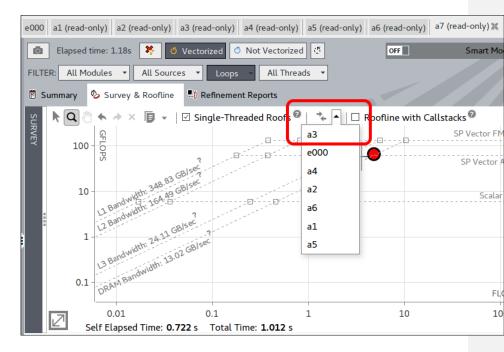
ACTIVITY 6

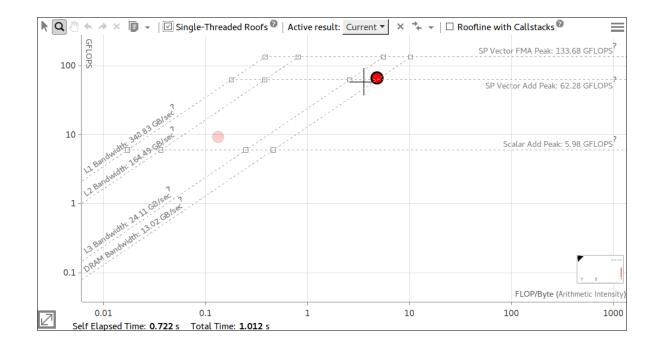
Purpose: Use SDLT library to change a AOS to SOA format, thus improving vectorization

- Build version with optimized memory access pattern
- \$ cd ~/day1/lab4/ver3
- \$ make
- Re-run Survey analysis
- Create a snapshot
- Compare with previous results

Activity 6. Screenshots

e000	e000 a1 (read-only) a2 (read-only) a3 (read-only) a4 (read-only) a5 (read-only) a6 (read-only)												
Ó	Elapsed time: 3,59s 🛛 Vectorized 🖉 Not Vectoriz	ed 🖉 FILTER: All M	1odules 🔻	All Sources	- Loop	s And Functio	ns 👻 All T						
Ē 5	ummary 🗞 Survey & Roofline 🛄 Refinement Repo												
RO	Performance Self Time - Total Time Vectorized Loops												
ROOFLINE		Gain E VL											
INE	[loop in GSimulation::start at GSimulation.cpp:106	7.45x 16											
	<pre> fsvml_invsqrtf16_z0 </pre>												
	☑ ⁽⁵] [loop in GSimulation::start at GSimulation.cpp:103]		0.020s [3.571s 99.8%									
	e000 a1 (read-only) a	2 (read-only) a3 (read-	-only) a4 (rea	ad-only) a5 (r	ead-only)	a6 (read-on	ly) 🗶						
	Elapsed time: 1.1	8s 🗴 Vectorized 🕻	Not Vectoriz	ed 🖉 FILTE	R: All M	odules 👻	All Sources	- Loops	s And Functio	ns 🔻 /	All T		
	🖹 Summary 🗞 Surv	ey & Roofline 📲 Ref	finement Repo	ts									
	R + - Function C	all Sites and Loops		Performa	nce	Self Time 🔻	Total Time	Vectorize	ed Loops				
			lssues		Setr Time 🔻	Total Time	Vector	Efficiency	Gain E	VL			
	R I I I I I I I I I I I I I I I I I I I	lation.cpp:107]		0.722s	1.142s 99.3%	AVX512	~89%	14.22x	16			
	■ fsvml_invsqr			0.290s	0.290s	AVX512							
	Image: State of the state o	8internal34rvalue_binar	ry_operator_pr	0		0.052s	0.052s						


Activity 7: Comparing roofline charts



ACTIVITY 7

Purpose: Graph roofline chart for optimized version, and compare with initial chart Press "Collect" button in "1.1 Find Trip Counts and FLOP" section Create a snapshot Compare with chart created in Activity 3

Activity 7. Screenshot

Activity 8: Adding threading

Purpose: Use OpenMP directives to enable threading parallelisation

- Build threaded version
- \$ cd ~/day1/lab4/ver4
- \$ make
- Re-run Survey analysis
- Create a snapshot
- Compare with previous results

Activity 8. Screenshots

Summary Survey & Roofline Refinement Reports					
Program metrics					
Elapsed Time	1.1	18s			
Vector Instruction	on Set AV	/X512	Number of CPU Threads	1	
Total GFLOP Co	unt 68	.19	Total GFLOPS	57.99	
Total Arithmetic	Intensity [®] 1.5	58173			

	Summary	🏷 Survey & Rooflin	ne 📲 Refinement Reports			
\odot						
	Elapsed	Time	0.51s			
	Vector I	nstruction Set	AVX512 Number of CPU Threads	4		
	Total GF	LOP Count	68.21 Total GFLOPS	132.99		
	Total Ar	ithmetic Intensity ^③	1.57628			

Legal Disclaimer & Optimization Notice

- INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- Software and workloads used in performance tests may have been optimized for performance only on Intel
 microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
 systems, components, software, operations and functions. Any change to any of those factors may cause the results
 to vary. You should consult other information and performance tests to assist you in fully evaluating your
 contemplated purchases, including the performance of that product when combined with other products.
- Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.