
All information provided in this deck is subject to change without notice. 
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel® oneAPI HPC Toolkit

Intel® Advisor

Multiarchitecture Programming for Accelerated Compute, Freedom of Choice for Hardware



Intel® Advisor
Vectorization Optimization



3

Intel® Advisor Vectorization Optimization

⚫ Data Driven Vectorization:
• What vectorization will pay off most?

• What’s blocking vectorization?  Why?

• Are my loops vector friendly?

• Will reorganizing data increase 
performance?

• Is it safe to just use pragma simd?

Have you:
Recompiled for AVX2 with little gain?

Wondered where to vectorize?

Recoded intrinsics for new arch.?

Struggled with compiler reports?
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The Lab Activities

⚫ Activity 0: Building N-body

⚫ Activity 1: Doing Survey

⚫ Activity 2: Fixing compilation option

⚫ Activity 3: Doing roofline analysis

⚫ Activity 4: Dealing with data type conversions

⚫ Activity 5: Checking memory access patterns

⚫ Activity 6: Using SDLT

⚫ Activity 7: Comparing roofline charts

⚫ Activity 8: Adding threading



N-BODY
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N-body gravity simulation

⚫ Let’s consider a distribution of point masses located at r_1,…,r_n and have masses m_1,…,m_n

⚫ We want to calculate the position of the particles after a certain time interval using the Newton law of 
gravity

struct Particle
{

float pos_x, pos_y, pos_z;
float vel_x, vel_y, vel_z;
float acc_x, acc_y, acc_z;
float mass;

};

class GSimulation
{
…
private:

std::vector<Particle> particles;
…
};

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

float distance, dx, dy, dz;
float distanceSqr = 0.0;
float distanceInv = 0.0;

dx = particles[j].pos_x - particles[i].pos_x;
…
distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);

particles[i].acc_x += dx * G * particles[j].mass * 
distanceInv * distanceInv * distanceInv;

particles[i].acc_y += …
particles[i].acc_z += …



Activity 0: Building N-body
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Build & Run

Purpose: Build an application, observe the performance

⚫ Setup:

$ source /opt/intel/oneapi/setvars.sh

$ cd ~/day1/lab4/ver0

⚫ Build & run

$ make

$ make run
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Activity 0. Screenshot



Activity 1: Doing Survey
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Advisor SURVEY Analysis

Purpose: Run Survey analysis in Advisor to get the baseline version

⚫ Launch Advisor GUI:

$ advisor-gui

⚫ Setup project and run Survey analysis
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Activity 1. Screenshot
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Create a snapshot



Activity 2: Fixing compilation option
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Intel® AVX-512

⚫ Extends previous AVX and SSE registers to 512 bit:

• 32 bit: 8 ZMM registers (same as YMM/XMM)

• 64 bit: 32 ZMM registers (2x of YMM/XMM)

⚫ 8 mask registers (K0 is special)

ZMM0-31 

512 bit

K0-7

64 bit

XMM0-15 

128 bit

YMM0-15 

256 bit3
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Activity 2

Purpose: Fix compilation options to use the highest available ISA

⚫ Build a version with new compilation flags

$ cd ~/day1/lab4/ver1

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous activity
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Activity 2. Screenshots



Activity 3: Doing roofline analysis



19

Roofline model

A roofline model helping you answer these 
questions:
Does my application work optimally on the 
current hardware? If not, what is the most 
underutilized hardware resource?
What limits performance? Is my application 
workload memory or compute bound?
What is the right strategy to improve 
application performance? 
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Collect FLOP data to GET ROOFLINE 
CHART

Purpose: Characterize the application 
using roofline model
Click “FLOP” checkbox on workflow
Press “Collect” button in “1.1 Find Trip 
Counts and FLOP” section
Create a snapshot
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Activity 3. Screenshot



Activity 4: Dealing with data type 
conversions
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Activity 4

Purpose: Identify and fix data type conversion issue

⚫ Build version without data type conversions

$ cd ~/day1/lab4/ver2

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results
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Activity 4. Screenshots



Activity 5: Checking memory access 
patterns
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Types OF MEMORY Access patterns

for (i=0; i<N; i++) 

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i++) 

A[i] = C[i]*D[i]

for (i=0; i<N; i++) 

point[i].x = x[i]

Unit-Stride access 

Constant stride access 

Variable stride access 
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Check Memory Access Patterns

Purpose: Investigate if poor memory 
access patterns are cause of poor 
vectorization efficiency
Mark the hottest loop using checkbox in 
Survey report 
Press “Collect” button in “2.1 Check Memory 
Access Patterns” section
Create a snapshot
Investigate collected results
Review “Recommendations” tab
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Activity 5. Screenshot



Activity 6: Using SDLT
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SIMD Is Effective With Unit Stride Access 

Getting Array of Structures (AoS) in memory data 
layout loaded into a vector register is a “strided” 
load/store operation requiring multiple 
load/shuffle/insert or gather instructions

A properly aligned Structure of Arrays (SoA) in 
memory data layout provides SIMD compatible 
Unit-Stride memory accesses 

vector register

X

A[i+0]

Y Z X

A[i+1]

Y Z X

A[i+2]

Y Z X

A[i+3]

Y Z

0 1 2 3

A

Z[i+0] Z[i+1] Z[i+2] Z[i+3]

Y[i+0] Y[i+1] Y[i+2] Y[i+3]

X[i+0] X[i+1] X[i+2] X[i+3]

vector register0 1 2 3



31

N-body SDLT code example

auto particles = _particles.access();
…

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

float distance, dx, dy, dz;
float distanceSqr = 0.0;
float distanceInv = 0.0;

dx = particles[j].pos_x() -
particles[i].pos_x();

…
distanceSqr = dx*dx + dy*dy + dz*dz + 

softeningSquared;
distanceInv = 1.0f / sqrtf(distanceSqr);

particles[i].acc_x() += dx * G * 
particles[j].mass() *

distanceInv * distanceInv * distanceInv;
particles[i].acc_y() += …
particles[i].acc_z() += …

#include <sdlt/sdlt.h>
struct Particle
{

float pos_x, pos_y, pos_z;
float vel_x, vel_y, vel_z;
float acc_x, acc_y, acc_z;
float mass;

};
SDLT_PRIMITIVE(Particle, pos_x, pos_y, pos_z,
    vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, mass)

class GSimulation
{
…
private:

sdlt::soa1d_container<Particle> _particles;
…
};
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ACTIVITY 6

Purpose: Use SDLT library to change a AOS to SOA format, thus improving 
vectorization

⚫ Build version with optimized memory access pattern

$ cd ~/day1/lab4/ver3

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results
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Activity 6. Screenshots



Activity 7: Comparing roofline charts
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ACTIVITY 7

Purpose: Graph roofline chart for 
optimized version, and compare 
with initial chart
Press “Collect” button in “1.1 Find Trip 
Counts and FLOP” section
Create a snapshot
Compare with chart created in Activtiy
3
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Activity 7. Screenshot



Activity 8: Adding threading
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Activity 8

Purpose: Use OpenMP directives to enable threading 
parallelisation

⚫ Build threaded version

$ cd ~/day1/lab4/ver4

$ make

⚫ Re-run Survey analysis

⚫ Create a snapshot

⚫ Compare with previous results
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Activity 8. Screenshots
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Legal Disclaimer & Optimization Notice

⚫ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED 
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, 
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

⚫ Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the results 
to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

⚫ Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the 
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
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