

OFFLOAD ADVISOR

Purpose of Offload Advisor

- Offload Advisor is designed to help users to port their codes to accelerators
 - It can identify the portions of a code that are profitable to be offloaded to an accelerator (e.g. GPU)
 - It can also predict the code's performance if run on an accelerator and lets you experiment with accelerator configuration parameters

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

How it works

- Offload Advisor reuses Intel Advisor powerful characterization framework
- Also, it is enriched with data traffic, memory sub-system simulation and analytical performance modeling to enable new Offload Advisor workflow

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

How it works (CPU to GPU offloading)

- Data transfer taxes: copy data between CPU and GPU
- Offload taxes: time to place task to GPU task dispatcher

How it works: Region time calculation

Copyright ©, Intel Corporation. All rights reserved.

How it works: Calculation of total time for a loop hierarchy

We minimize the total time spent in a loop hierarchy by varying offload strategies U (offload/non-offload, #threads for each component $loop_i$ of loop nest)

Objective function:

$$T_{all} = \min_{U = \{uf_1, uf_2, ...\}} \left(\sum_{i} T_i + t_{data \ transfer} + t_{invoke} + T_{cpu} \right)$$
Reject loop nests for which
$$T_i(x86) / T_{all}(x86+"X") < 1.0$$

$$T_i = max \begin{cases} T_i^{Comp_only} \\ T_i^{M_k_only} (M_i^k) = \frac{M_i^k}{BW_k} \end{cases}$$
This is effective "balance" (throughput) model

Under algorithmic constraints (Dependencies and TripCount/Granularity)

Refer to <u>software.intel.com/articles/optimization-notice</u> for more information regarding performance & optimization choices in Intel software products. Copyright ©, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

LAB ACTIVITIES

The Lab Activities

- Activity 0: Making the Project on GitLab
- Activity 1: Building and running N-body base version
- Activity 2: Running performance estimation for the base version
- Activity 3: Looking at the estimation results
- Activity 4: Rewriting code using DPC++
- Activity 5: Building N-body DPC++ version
- Activity 6: Comparing base and DPC++ versions

ACTIVITY 0: MAKING THE PROJECT

Activity 0: Make your Project

Sign in	Register
Full name	
Elizaveta	
Username	
elizaveta]
Username is available.	
Email	
Email confirmation	
eljogar@mail.ru	
Password	
Minimum length is 8 characte	rs
Reg	ister

Navigate to <u>https://gitlab.boostcode.ru/</u>, Register and Create a project

Create a project

Ξ

Projects are where you store your code, access issues, wiki and other features of GitLab.

Refer to <u>software.intel.com/articles/optimization-notice</u> for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

Activity 0: Import Project

Import from: https://gitlab.boostcode.ru/eshulankina/offload_advisor_lab

Blank project		Create from template	Import project	
Import project from	Bitbucket Cloud	Bitbucket Server Git repositor	y URL ıb.boostcode.ru/eshulankina/offload_advis	or_lab
2		3 Username (o	ptional)	Password (optional)
		 The Whe follow If you The To in 	repository must be accessible over <a href="http://creative.org/ht</th> <th>//, https:// or git://. ols, please provide the exact URL to the repository. HTTP redirects will not be exact the exact URL to the repository. HTTP redirects will not be repositories that take longer, use a clone/push combination. example.</th>	//, https:// or git://. ols, please provide the exact URL to the repository. HTTP redirects will not be exact the exact URL to the repository. HTTP redirects will not be repositories that take longer, use a clone/push combination. example.
		Project name	2	

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

ACTIVITY 1: BUILDING N-BODY BASE VERSION

Activity 1: Build & Run

Create your own pipeline to build & run the N-Body base version:

• Add the following jobs to .gitlab-ci.yml in your project:

```
nbody-base-build:
stage: build
tags:
    - oneapi
script:
    - make -C ./nbody/base
artifacts:
    paths:
    - ./nbody/base/nbody
```

```
nbody-base-run:
   stage: run
   tags:
        - oneapi
   script:
        - ./nbody/base/nbody $NBODY_ARGS
   dependencies:
        - nbody-base-build
```

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

Activity 1: Check pipeline status

 Pipeline
 Jobs 2

 Build
 Test

 Image: Constraint of the second secon

\$./nbod	y/base/r	body \$NBODY	_ARGS
Initia	lize Gra	wity Simula	tion
nPart	= 4000;	nSteps = 10	30; dt = 0.1
S	dt	kenergy	time (s)
50	5	66.863	0.67641
100	10	369.19	0.58348
150	15	1089.7	0.58435
200	20	3005.8	0.58221
250	25	15704	0.5829
300	30	10062	0.57951
350	35	6497.2	0.57881
400	40	5674	0.58026
450	45	5350.2	0.57886
500	50	5019.5	0.58176
550	55	5043.5	0.57916
600	60	4815.3	0.57909
650	65	5010.3	0.5809
700	70	4783	0.57874
750	75	4797.8	0.58029
800	80	4987.9	0.57866
850	85	4699.8	0.58215
900	90	4534	0.57835
950	95	4907.4	0,58682
1000	100	4915.7	0.58003
# Total	Time (s) : 11	713
# TOCAL		,	

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

ACTIVITY 2: RUNNING PERFORMANCE ESTIMATION FOR THE BASE VERSION

How to run Performance Estimation

There are three methods varying in simplicity and flexibility to run performance profiling and performance modeling. Performance profiling and performance modeling are used together to derive performance estimates.

Commands	Notes
Stand-alone run_oa.py script	Most simple and least flexible. Does not support MPI applications.
Combination of collect.py and analyze.py scripts	Somewhat simple and flexible. Does not support MPI applications.
Combination of Advisor Command Line advixe-cl and analyze.py script	Least simple and most flexible. Applicable to MPI applications.

run_oa.py script (most simple)

This is the most simple method.

It automates the process of invoking performance profiling with reasonable pre-defined options, then runs performance modeling on the resulting profiles to generate performance estimates.

python \$APM/run_oa.py <advisor_results_dir> -o <apm_results_dir> [options] --<app_binary> [app_options]

collect.py & analyze.py (simple and flexible)

This is a middle-of-the-road method that is moderately simple and flexible. The collect.py script automates the process of performance profiling and the analyze.py script implements performance modeling.

- python \$APM/collect.py <advisor_results_dir> [options] -- <app_binary>
 [app_options]
- python \$APM/analyze.py <advisor_results_dir> -o <apm_results_dir>

advixe-cl & analyze.py (most flexible)

This is the most flexible method including calling **advixe-cl** (directly invoking the run of Advisor analyses) and a script **analyze.py** that implements performance modeling.

For each required Advisor analysis, you should run **advixe-cl** with the appropriate parameters. After all the information is collected, you should run **analyze.py**.

Example of Survey analysis run:

 advixe-cl --collect=survey --auto-finalize --stackwalk-mode=online -staticinstruction-mix --project-dir=<advisor_results_dir> -- <app_binary> [app_options]

Activity 2

Add a job to run the performance estimation for the N-Body base version:

Uncomment the following job:

```
nbody-base-profile:
  stage: profile
  tags:
    - oneapi
  before script:
    - . . .
  script:
    - mkdir adv prj
    # Running Offload Advisor
    - advixe-python $APM/collect.py --config=gen9 ./adv prj -c basic -- ./nbody/base/nbody $NBODY ARGS
    - advixe-python $APM/analyze.py --config=gen9 --set-parallel=GSimulation.cpp:103,GSimulation.cpp:129 ./adv prj
    # Running base version of nbody sample
    - ./nbody/base/nbody $NBODY ARGS | tee -a sample run.log
  . . .
```

Activity 2: Download artifacts

Refer to <u>software.intel.com/articles/optimization-notice</u> for more information regarding performance & optimization choices in Intel software products. Copyright ©, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

ACTIVITY 3: LOOKING AT THE ESTIMATION RESULTS

Activity 3

23

Activity 3

Loop/Function > Offload Information > Hierarchy Elspeed Time (s) Total Time (by Compute Time (by Com	Intel® Advisor Beta OFFLOAD ADVISOR Summary Offloaded Reg	ions Non Offlo	aded Regions Call T	ree Configuration	Logs			Speed Up for Accelerated	d Code	5.1x Number of Of	Intel® Advisor Beta, b Offloads @ 1 Fraction of Accelerated Code @ 1	build 604888
0 - 1 MB 5 item(s)	Hierarchy	Loop/Function Elapsed Time (s) 11.68s 11.68s	> Total Time ↓ 11.678; (99.90%) 11.634; (99.52%)	Dependency Type Parallel: User Parallel: Explicit	Officad Inform Estimated Speed Up 5.14x	ation > Estimated Time 0.2270s (99.47%)	Total Execution Time by Compute 2.27s 2.26s	Total Execution Time by Memory BW Time (s) <0.001 <0.001	Total Execution Time by LLC BW (s) <0.001 <0.001	Total Execution and gurator Time by L3 BW (c 1.107 1.077	Source Name: [loop in GSimulation::start at GSimulation.cpp:106] 90 90 000000000000000000000000000000000000	eratior • 0.f;

ACTIVITY 4: REWRITING CODE USING DPC++

Activity 4

1 const dou 2 for (int	uble t0 = time.start(); s = 1; s <= get_nsteps(); ++s)	1 2 3 4 5 6 7 8 9 9 10 11 12 13	<pre>sycl::default_selector selector; sycl::queue queue(selector, exceptionHandler); sycl::buffer<float, 1=""> posX(particles.pos_x.data(), sycl::range<1>(n)); sycl::buffer<float, 1=""> posY(particles.pos_v.data(), sycl::range<1>(n)); sycl::buffer<float, 1=""> posZ(particles.vos_x.data(), sycl::range<1>(n)); sycl::buffer<float, 1=""> velX(particles.vel_x.data(), sycl::range<1>(n)); sycl::buffer<float, 1=""> mass(particles.mass.data(), sycl::range<1>(n)); sycl::buffer<float, 1=""> energy(_energy, sycl::range<1>(n)); const double t0 = time.start(); for (int s = 1; s <= get_nsteps(); ++s)</float,></float,></float,></float,></float,></float,></pre>	
3 {		14	{	
4 ts0 +	H= time.start();	15	<pre>ts0 += time.start();</pre>	
5 tor (<pre>(int i = 0; i < n; i++) // update acceleration</pre>	16	<pre>queue.submit([%](syc1::nandler &cgn) { with provide the p</pre>	
7 f	float acc $x = 0.1$, acc $y = 0.1$, acc $z = 0.1$	18	auto posyBuff = posy_get_access(syc1:access::mode::read)(cgh);	
8 f	for (int $i = 0; i < n; i++)$	19	auto posZBuff = posZ.get access <svcl::access::mode::read>(cgh);</svcl::access::mode::read>	
9 {		20	<pre>auto massBuff = mass.get_access<sycl::access::mode::read>(cgh);</sycl::access::mode::read></pre>	
10	· · · ·	21	<pre>auto accXBuff = accX.get_access<sycl::access::mode::write>(cgh);</sycl::access::mode::write></pre>	
		22	<pre>auto accYBuff = accY.get_access<sycl::access::mode::write>(cgh);</sycl::access::mode::write></pre>	
		23	<pre>auto accZBuff = accZ.get_access<sycl::access::mode::write>(cgh);</sycl::access::mode::write></pre>	
		24	<pre>cgh.parallel_for<class kernell="">(sycl::range<1>(n), [=](sycl::id<1> index) { if i</class></pre>	
		25	$\operatorname{Int} I = \operatorname{Index}, \operatorname{get}(\theta);$	
		20	for $(int i = 0; i < n; i+1)$	
		28		
		29		
11		30		
12	<pre>dx = particles.pos_x[j] - particles.pos_x[i];</pre>	31	<pre>dx = posXBuff[j] - posXBuff[i];</pre>	
13	<pre>dy = particles.pos_y[j] - particles.pos_y[i];</pre>	32	<pre>dy = posYBuff[j] - posYBuff[i];</pre>	
14	dz = particles.pos_z[j] - particles.pos_z[i];	33	dz = posZButt[j] - posZButt[i];	
15	distanceSon - dv * dv + dv * dv + dz * dz + softeningSquared,	34	distanceSon - dx * dx + dx * dx + dz * dz + softeningSquared:	
17	distanceIny = 1.0f (soutf(distanceSou))	36	distance by $= 1.0f / syst(distance Sp)$:	
18		37		
19	<pre>acc_x += dx * G * particles.mass[j] * distanceInv * distanceInv * distanceInv;</pre>	38	<pre>acc_x += dx * G * massBuff[j] * distanceInv * distanceInv * distanceInv;</pre>	
20	<pre>acc_y += dy * G * particles.mass[j] * distanceInv * distanceInv * distanceInv;</pre>	39	<pre>acc_y += dy * G * massBuff[j] * distanceInv * distanceInv * distanceInv;</pre>	
21	acc_z += dz * G * <mark>particles.mass[j]</mark> * distanceInv * distanceInv * distanceInv;	40	<pre>acc_z += dz * G * massBuff[j] * distanceInv * distanceInv * distanceInv;</pre>	
22 }		41		
23 p	particles.acc_x[1] = acc_x;	42	accXButt[i] = acc_x;	
24 P	particles acc z[i] = acc z:	45	$accrount[1] = acc_y;$	
26	variates acc_z[1] = acc_z;	45)):	
27 energ	gy = 0.f;	46	<pre>}).wait and throw();</pre>	
Refer to so	ottware.intel.com/articles/optimization-notice for more information regarding performance &	optimization	choices in Intel software products.	
Copyright ©	D, Intel Corporation. All rights reserved.		intel	26

Copyright ©, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

ACTIVITY 5: BUILDING N-BODY DPC++ VERSION

Activity 5

- Disable nbody-base-run and nbody-base-profile jobs (comment them)
- Add the following jobs to **.gitlab-ci.yml** in your project:

nbody-dpcpp-build:
 stage: build
 tags:
 - oneapi

script:

```
- make -C ./nbody/dpcpp
```

artifacts:

paths:

- ./nbody/dpcpp/nbody

nbody-run: stage: test tags: - oneapi script: - ./nbody/base/nbody \$NBODY_ARGS - ./nbody/dpcpp/nbody \$NBODY_ARGS dependencies: - nbody-base-build - nbody-base-build

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved.

ACTIVITY 6: COMPARING BASE AND DPC++ VERSIONS

		Actual r	uns 📫	\$./nboc	ly/base/r	body \$NBODY_	_ARGS	\$./nbo	ody/dpcp	p/nbody \$NBO	DY_ARGS
Activity	6			Initia nPart	alize Gra = 4000;	avity Simula nSteps = 100	ion 00; dt = 0.1	Initia nPart	alize Gra = 4000;	avity Simula nSteps = 10	 tion 00; dt = 0.1
Program matrice (2)	Perform	ance		s 	dt	kenergy	time (s)	s 	dt	kenergy	time (s)
r rogram metrics 🕁	esumati	on		50	5	66.863	0.67641	50	5	66.863	0.345
				100	10	369.19	0.58348	100	10	369.19	0.10216
Original (?) 11.69s				150	15	1089.7	0.58435	150	15	1089.7	0.10016
Accelerated @ 2.28s				200	20	3005.8	0.58221	200	20	3005.8	0.10037
Target Platform Con9 C	72 Time on Hest @	<0.01c		250	25	15704	0.5829	250	25	15704	0.10028
Target Plationni Gens G		<0.01S		300	30	10062	0.57951	300	30	10062	0.10016
Number of Offloads (?) 1	Time on Accelerator ⑦	2.27s		350	35	6497.2	0.57881	350	35	6497.2	0.10043
Speed Up for Accelerated C 5.1	🖉 🔲 Data Transfer Tax 🕐	0s		400	40	5674	0.58026	400	40	5674	0.10045
			99%	450	45	5350.2	0.57886	450	45	5350.2	0.10023
Amdahl's Law Speed Up (2) 5.1	Invocation lax (2)	<0.01s		500	50	5019.5	0.58176	500	50	5019.5	0.10045
Fraction of Accelerated Cod 100	% Code Transfer Tax 🕐	<0.01s		550	55	5043.5	0.57916	550	55	5043.5	0.099716
				600	60	4815.3	0.57909	600	60	4815.3	0.10027
				650	65	5010.3	0.5809	650	65	5010.3	0.10033
Top offloaded (2)				700	70	4783	0.57874	700	70	4783	0.1006
Top officaded 🕀				750	75	4797.8	0.58029	750	75	4797.8	0.1004
			Data	800	80	4987.9	0.57866	800	80	4987.9	0.10037
Location @	Speed Up ⑦	Bounded By 🕐	Transfer	850	85	4699.8	0.58215	850	85	4699.8	0.10162
		-	0	900	90	4534	0.57835	900	90	4533.9	0.099533
				950	95	4907.4	0.58682	950	95	4907.5	0.1011
[loop in GSimulation::start at	E 4.4. CPU 11.68s	Comercia	0.40MB	1000	100	4915.7	0-58003	1000	100	4915.7	0.10097
GSimulation.cpp:103]	5.14X GPU 2.27s	Compute	0.19MB	# Total	l Time (s	5) : 11.	/13	# Tota	Time (5) : 2.2	563

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Copyright ©, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Software

Notices & Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Core, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Refer to <u>software.intel.com/articles/optimization-notice</u> for more information regarding performance & optimization choices in Intel software products. Copyright ©, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

