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Learning Objectives 

• Explain the SYCL fundamental classes 

• Use device selection to offload kernel workloads 

• Decide when to use basic parallel kernels and ND Range Kernels 

• Use Unified Shared Memory or Buffer-Accessor memory model in SYCL program 

• Build a sample SYCL application through hands-on lab exercises 

What is SYCL and Data Parallel C++? 

SYCL is an open standard to program for heterogeneous devices in a single source. A SYCL program is invoked on 

the host computer and offloads the computation to an accelerator. Programmers use familiar C++ and library 

constructs with added functionalities like a queue for work targeting, buffer or Unified Shared Memory for data 

management, and parallel_for for parallelism to direct which parts of the computation and data should be 

offloaded. Data Parallel C++ (DPC++) is oneAPI's implementation of SYCL.  

SYCL Language and Runtime 

SYCL language and runtime consists of a set of C++ classes, templates, and libraries. 

Application scope and command group scope: 

• Code that executes on the host 

• The full capabilities of C++ are available at application and command group scope 

Kernel scope: 

• Code that executes on the device. 

• At kernel scope there are limitations in accepted C++ 



C++ SYCL Code Example 

Let's look at a simple SYCL code to offload computation to GPU, the code does the following: 

1. selects GPU device for offload 

2. allocates memory that can be accessed on host and GPU 

3. initializes data array on host 

4. offloads computation to GPU 

5. prints output on host 

#include <sycl/sycl.hpp> 

static const int N = 16; 

int main(){ 

  sycl::queue q(sycl::gpu_device_selector_v); // <--- select GPU for offload  

 

  int *data = sycl::malloc_shared<int>(N, q); // <--- allocate memory 

 

  for(int i=0; i<N; i++) data[i] = i; 

 

  q.parallel_for(N, [=] (auto i){ 

    data[i] *= 2;  // <--- Kernel Code (executes on GPU) 

  }).wait(); 

 

  for(int i=0; i<N; i++) std::cout << data[i] << "\n"; 

 

  sycl::free(data, q); 

  return 0; 

} 

Programs which use SYCL requires the include of the header file sycl/sycl.hpp. 

In the next few sections we will learn the basics of C++ SYCL programming. 

SYCL Classes 

Below are some important SYCL Classes that are used to write a C++ with SYCL program to offload computation 

to heterogeneous devices. 

 

Device 

The device class represents the capabilities of the accelerators in a system utilizing Intel® oneAPI Toolkits. The 

device class contains member functions for querying information about the device, which is useful for SYCL programs 

where multiple devices are created. 

• The function get_info gives information about the device: 

• Name, vendor, and version of the device 

• The local and global work item IDs 

• Width for built in types, clock frequency, cache width and sizes, online or offline 

queue q; 

device my_device = q.get_device(); 

std::cout << "Device: " << my_device.get_info<info::device::name>() << "\n"; 

 

Device Selector 

These classes enable the runtime selection of a particular device to execute kernels based upon user-provided 

heuristics. The following code sample shows use of the standard device selectors (default_selector_v, 

cpu_selector_v, gpu_selector_v, accelerator_selector_v) 



queue q(gpu_selector_v); 

//queue q(cpu_selector_v); 

//queue q(accelerator_selector_v); 

//queue q(default_selector_v); 

//queue q; 

 

std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; 

 

 

Exercise #1 

1. Inspect the code in lab1/gpu_sample.cpp file showing different device selectors in use.   

2. On Intel Developer Cloud machine, please make sure that the environment is set: 

source /opt/intel/oneapi/setvars.sh 

3. Compile and run the code example with -fsycl option: 

icpx -fsycl gpu_sample.cpp -o gpu_sample 

./gpu_sample 

Device: Intel(R) Data Center GPU Max 1100 

NOTE: by default you are logged in to the Intel Developer Cloud head(login) node with no GPUs 

available. You may allocate a node in interactive mode via following command: 

srun -p pvc-shared --pty bash 

4. Use cpu_selector_v instead of gpu_selector_v, recompile and rerun the code: 

icpx -fsycl gpu_sample.cpp -o gpu_sample 

./gpu_sample 

Device: Intel(R) Xeon(R) Platinum 8480+ 

5. Use the default queue constructor and check what happens at runtime in that case.  

6. Set the device to CPU via ONEAPI_DEVICE_SELECTOR environment variable at runtime:  

ONEAPI_DEVICE_SELECTOR=opencl:cpu ./gpu_sample 
 

Queue 

Queue submits command groups to be executed by the SYCL runtime. Queue is a mechanism where work is 

submitted to a device.A queue map to one device and multiple queues can be mapped to the same device. 

q.submit([&](handler& h) { 

    //COMMAND GROUP CODE 

}); 

 

Kernel 

The kernel class encapsulates methods and data for executing code on the device when a command group is 

instantiated. Kernel object is not explicitly constructed by the user and is constructed when a kernel dispatch 

function, such as parallel_for, is called 

q.submit([&](handler& h) { 

 h.parallel_for(range<1>(N), [=](id<1> i) { 

   A[i] = B[i] + C[i]); 

 }); 

}); 

 

Choosing where device kernels run 

Work is submitted to queues and each queue is associated with exactly one device (e.g. a specific GPU, CPU or 

FPGA). You can decide which device a queue is associated with (if you want) and have as many queues as desired 

for dispatching work in heterogeneous systems. 

https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#oneapi_device_selector


Target Device Queue 

Create queue targeting any device: queue() 

Create queue targeting a pre-configured 

classes of devices: 

queue(cpu_selector_v); queue(gpu_selector_v); queue(accelerator_selector_v); 

queue(default_selector_v); 

Create queue targeting specific device 

(custom criteria): 
queue(custom_selector); 

 
 

Parallel Kernels 

Parallel Kernel allows multiple instances of an operation to execute in parallel. This is useful to offload parallel 

execution of a basic for-loop in which each iteration is completely independent and in any order. Parallel kernels 

are expressed using the parallel_for function. A simple 'for' loop in a C++ application is written as below 

for(int i=0; i < 1024; i++){ 

    a[i] = b[i] + c[i]; 

}); 

 

Below is how you can offload to accelerator 

 
h.parallel_for(range<1>(1024), [=](id<1> i){ 

    A[i] =  B[i] + C[i]; 

}); 

 

Basic Parallel Kernels 

The functionality of basic parallel kernels is exposed via range, id, and item classes. Range class is used to describe 

the iteration space of parallel execution and id class is used to index an individual instance of a kernel in a parallel 

execution 

h.parallel_for(range<1>(1024), [=](id<1> i){ 

// CODE THAT RUNS ON DEVICE  

}); 

 

The above example is good if all you need is the index (id), but if you need the range value in your kernel code, 

then you can use item class instead of id class, which you can use to query for the range as shown below. item class 

represents an individual instance of a kernel function, exposes additional functions to query properties of the 

execution range 

 
h.parallel_for(range<1>(1024), [=](item<1> item){ 

    auto i = item.get_id(); 

    auto R = item.get_range(); 

    // CODE THAT RUNS ON DEVICE 

     

}); 

 



ND-Range Kernels 

Basic Parallel Kernels are easy way to parallelize a for-loop but does not allow performance optimization at hardware 

level. ND-Range kernel is another way to expresses parallelism which enable low level performance tuning by 

providing access to local memory and mapping executions to compute units on hardware. The entire iteration 

space is divided into smaller groups called work-groups, work-items within a work-group are scheduled on a single 

compute unit on hardware. 

The grouping of kernel executions into work-groups will allow control of resource usage and load balance work 

distribution. The functionality of nd_range kernels is exposed via nd_range and nd_item classes. nd_range class 

represents a grouped execution range using global execution range and the local execution range of each work-

group. nd_item class represents an individual instance of a kernel function and allows to query for work-group 

range and index. 

h.parallel_for(nd_range<1>(range<1>(1024),range<1>(64)), [=](nd_item<1> item){ 

    auto idx = item.get_global_id(); 

    auto local_id = item.get_local_id(); 

    // CODE THAT RUNS ON DEVICE 

}); 

 

 
 

Memory Models 

A SYCL application can be written using one of the 2 memory models: 

• Unified Shared Memory Model (USM) 

• Buffer Memory Model 

Unified Shared Memory Model is pointer-based approach to memory model, similar to C/C++ pointer-based 

memory allocation. Makes migrating C/C++/CUDA* application to SYCL easier. Dependencies between multiple 

kernels are explicitly handled using events. 

Buffer Memory Model allows a new memory abstraction called buffers and are accessed using accessors which 

allows setting read/write permissions and other properties to memory. Allows data representation in 1,2 or 3-

dimentions and makes programming kernels with 2/3-dimentional data easier. Dependencies between multiple 

kernels are implicitly handled. 



Unified Shared Memory Model 

Unified Shared Memory (USM) is a pointer-based approach that should be familiar to C and C++ programmers 

who use malloc or new to allocate data. USM simplifies development for the programmer when porting existing 

C/C++/CUDA code to SYCL. 

SYCL Code Anotomy - USM 

Make sure that the SYCL header sycl/sycl.hpp is included. It is recommended (for these exercises) to employ the 

namespace statement to save typing repeated references into the sycl namespace. 

#include <sycl/sycl.hpp> 

using namespace sycl; 

SYCL programs are standard C++. The program is invoked on the host computer, and offloads computation to 

the accelerator. A programmer uses SYCL’s queue and kernel abstractions to direct which parts of the 

computation and data should be offloaded. 

As a first step in a SYCL program we create a queue. We offload computation to a device by submitting tasks to a 

queue. The programmer can choose CPU, GPU, FPGA, and other devices through the selector. This program uses 

the default q here, which means SYCL runtime selects the most capable device available at runtime by using the 

default selector. 

Device and host can either share physical memory or have distinct memories. When the memories are distinct, 

offloading computation requires copying data between host and device. We use USM device 

allocation malloc_device to allocate memory on device and copy data between host and device 

using memcpy method. 

In a SYCL program, we define a kernel, which is applied to every point in an index space. For simple programs like 

this one, the index space maps directly to the elements of the array. The kernel is encapsulated in a C++ lambda 

function. The lambda function is passed a point in the index space as an array of coordinates. For this simple 

program, the index space coordinate is the same as the array index. The parallel_for in the below program applies 

the lambda to the index space. The index space is defined in the first argument of the parallel_for as a 1 

dimensional range from 0 to N-1. 

The code below shows Simple Vector addition using SYCL and USM. Read through the comments addressed in step 

1 through step 6. 

void SYCL_code(int* a, int* b, int* c, int N) { 

  //Step 1: create a device queue 

  //(developer can specify a device type via device selector or use default selector) 

  queue q; 

  //Step 2: create USM device allocation 

  auto a_device = malloc_device<int>(N, q);  

  auto b_device = malloc_device<int>(N, q);  

  auto c_device = malloc_device<int>(N, q);  

  //Step 3: copy memory from host to device 

  q.memcpy(a_device, a, N*sizeof(int)); 

  q.memcpy(b_device, b, N*sizeof(int)); 

  q.wait(); 

  //Step 4: send a kernel (lambda) for execution 

  q.parallel_for(N, [=](auto i){ 

    //Step 5: write a kernel 

    //Kernel invocations are executed in parallel 

    //Kernel is invoked for each element of the range 

    //Kernel invocation has access to the invocation id 

    c_device[i] = a_device[i] + b_device[i]; 

  }).wait(); 

  //Step 6: copy the result back to host 

  q.memcpy(c, c_device, N*sizeof(int)).wait(); 



} 

Buffer Memory Model 

Buffers encapsulate data in a SYCL application across both devices and host. Accessors is the mechanism to access 

buffer data. 

As explained earlier in USM model section, offloading computation requires copying data between host and 

device. In Buffer Memory model SYCL does not require the programmer to manage the data copies. By 

creating Buffers and Accessors, SYCL ensures that the data is available to host and device without any programmer 

effort. SYCL also allows the programmer explicit control over data movement when it is necessary to achieve best 

performance. The code below shows Simple Vector addition using SYCL and Buffers. Read through the comments 

addressed in step 1 through step 6. 

void SYCL_code(int* a, int* b, int* c, int N) { 

  //Step 1: create a device queue 

  //(developer can specify a device type via device selector or use default selector) 

  queue q; 

  //Step 2: create buffers (represent both host and device memory) 

  buffer buf_a(a, range<1>(N)); 

  buffer buf_b(b, range<1>(N)); 

  buffer buf_c(c, range<1>(N)); 

  //Step 3: submit a command for (asynchronous) execution 

  q.submit([&](handler &h){ 

    //Step 4: create buffer accessors to access buffer data on the device 

    accessor A(buf_a,h,read_only); 

    accessor B(buf_b,h,read_only); 

    accessor C(buf_c,h,write_only); 

   

    //Step 5: send a kernel (lambda) for execution 

    h.parallel_for(N, [=](auto i){ 

      //Step 6: write a kernel 

      //Kernel invocations are executed in parallel 

      //Kernel is invoked for each element of the range 

      //Kernel invocation has access to the invocation id 

      C[i] = A[i] + B[i]; 

    }); 

  }); 

} 

Vector Add implementation using USM and Buffers 

The SYCL code below shows vector add computation implemented using USM and Buffers memory model:  

#include <sycl/sycl.hpp> 

 

using namespace sycl; 

 

// kernel function to compute vector add using Unified Shared memory model (USM) 

void kernel_usm(int* a, int* b, int* c, int N) { 

  //Step 1: create a device queue 

  queue q; 

  //Step 2: create USM device allocation 

  auto a_device = malloc_device<int>(N, q);  

  auto b_device = malloc_device<int>(N, q);  

  auto c_device = malloc_device<int>(N, q);  

  //Step 3: copy memory from host to device 

  q.memcpy(a_device, a, N*sizeof(int)); 

  q.memcpy(b_device, b, N*sizeof(int)); 

  q.wait(); 

  //Step 4: send a kernel (lambda) for execution 

  q.parallel_for(N, [=](auto i){ 

    //Step 5: write a kernel 

    c_device[i] = a_device[i] + b_device[i]; 



  }).wait(); 

  //Step 6: copy the result back to host 

  q.memcpy(c, c_device, N*sizeof(int)).wait(); 

  //Step 7: free device allocation 

  free(a_device, q); 

  free(b_device, q); 

  free(c_device, q); 

} 

 

// kernel function to compute vector add using Buffer memory model 

void kernel_buffers(int* a, int* b, int* c, int N) { 

  //Step 1: create a device queue 

  queue q; 

  //Step 2: create buffers  

  buffer buf_a(a, range<1>(N)); 

  buffer buf_b(b, range<1>(N)); 

  buffer buf_c(c, range<1>(N)); 

  //Step 3: submit a command for (asynchronous) execution 

  q.submit([&](handler &h){ 

    //Step 4: create buffer accessors to access buffer data on the device 

    accessor A(buf_a, h, read_only); 

    accessor B(buf_b, h, read_only); 

    accessor C(buf_c, h, write_only); 

    //Step 5: send a kernel (lambda) for execution 

    h.parallel_for(N, [=](auto i){ 

      //Step 6: write a kernel 

      C[i] = A[i] + B[i]; 

    }); 

  }); 

} 

 

int main() { 

  // initialize data arrays on host 

  constexpr int N = 256; 

  int a[N], b[N], c[N]; 

  for (int i=0; i<N; i++){ 

    a[i] = 1; 

    b[i] = 2; 

  } 

     

  // initialize c = 0 and offload computation using USM, print output  

  for (int i=0; i<N; i++) c[i] = 0; 

  kernel_usm(a, b, c, N); 

  std::cout << "Vector Add Output (USM): \n"; 

  for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; 

 

  // initialize c = 0 and offload computation using USM, print output  

  for (int i=0; i<N; i++) c[i] = 0; 

  std::cout << "Vector Add Output (Buffers): \n"; 

  kernel_buffers(a, b, c, N); 

  for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; 

     

} 

Exercise #2 

1. Inspect the code in lab1/vector_add_usm_buffers.cpp file showing vector add computation implemented 

using USM and Buffers memory model.  

2. Compile and run this code: 

icpx -fsycl vector_add_usm_buffers.cpp -o vector_add_usm_buffers 

./vector_add_usm_buffers 

3. Set the environment variable SYCL_PI_TRACE to enable the tracing of plugins/devices discovery. You should 

be able to check on which device you are running: 

SYCL_PI_TRACE=1 ./vector_add_usm_buffers 

https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#sycl_pi_trace-options


4. Set ONEAPI_DEVICE_SELECTOR to select a different backend, e.g. OpenCL: 

SYCL_PI_TRACE=1 ONEAPI_DEVICE_SELECTOR=opencl:gpu ./vector_add_usm_buffers 

5. Now you run on Intel® Data Center GPU Max 1100 with OpenCL backend: 

SYCL_PI_TRACE[all]:   platform: Intel(R) OpenCL Graphics 

SYCL_PI_TRACE[all]:   device: Intel(R) Data Center GPU Max 1100 
 

Synchronization: Host Accessor 

The Host Accessor is an accessor which uses host buffer access target. It is created outside of the scope of the 

command group and the data that this gives access to will be available on the host. These are used to synchronize 

the data back to the host by constructing the host accessor objects. Buffer destruction is the other way to synchronize 

the data back to the host. 

Buffer takes ownership of the data stored in vector. Creating host accessor is a blocking call and will only return 

after all enqueued SYCL kernels that modify the same buffer in any queue completes execution and the data is 

available to the host via this host accessor. 

The SYCL code below demonstrates Synchronization with Host Accessor:  

#include <sycl/sycl.hpp> 

using namespace sycl; 

 

int main() { 

  constexpr int N = 16; 

  auto R = range<1>(N); 

  std::vector<int> v(N, 10); 

  queue q; 

  // Buffer takes ownership of the data stored in vector.   

  buffer buf(v); 

  q.submit([&](handler& h) { 

    accessor a(buf,h); 

    h.parallel_for(R, [=](auto i) { a[i] -= 2; }); 

  }); 

  // Creating host accessor is a blocking call and will only return after all 

  // enqueued SYCL kernels that modify the same buffer in any queue completes 

  // execution and the data is available to the host via this host accessor. 

  host_accessor b(buf,read_only); 

  for (int i = 0; i < N; i++) std::cout << b[i] << " "; 

  return 0; 

} 

Exercise #3 

1. Inspect the code in lab1/host_accessor_sample.cpp file   

2. Compile and run this code 

icpx -fsycl host_accessor_sample.cpp -o host_accessor_sample 

./host_accessor_sample 

3. Comment the host accessor creation and print vectors v values. What happens in that case? 

 

Synchronization: Buffer Destruction 

In the below example Buffer creation happens within a separate function scope. When execution advances beyond 

this function scope, buffer destructor is invoked which relinquishes the ownership of data and copies back the data 

to the host memory. 

The SYCL code below demonstrates Synchronization with Buffer Destruction:  

#include <sycl/sycl.hpp> 

constexpr int N = 16; 

using namespace sycl; 



 

// Buffer creation happens within a separate function scope. 

void SYCL_code(std::vector<int> &v, queue &q) { 

  auto R = range<1>(N); 

  buffer buf(v); 

  q.submit([&](handler &h) { 

    accessor a(buf,h); 

    h.parallel_for(R, [=](auto i) { a[i] -= 2; }); 

  }); 

} 

int main() { 

  std::vector<int> v(N, 10); 

  queue q; 

  SYCL_code(v, q); 

  // When execution advances beyond this function scope, buffer destructor is 

  // invoked which relinquishes the ownership of data and copies back the data to 

  // the host memory. 

  for (int i = 0; i < N; i++) std::cout << v[i] << " "; 

  return 0; 

} 

Exercise #4 

1. Inspect the code in lab1/buffer_destruction.cpp file showing the synchronization with buffer destruction  

2. Compile and run this code 

icpx -fsycl buffer_destruction.cpp -o buffer_destruction 

./buffer_destruction 

3. Add -### option to understand which commands are executed under the hood once you invoke icpx 

compiler driver: 

icpx -fsycl buffer_destruction.cpp -o buffer_destruction -### 

 

Custom Device Selector 

The following code shows custom device selector using your own logic. The selected device prioritizes a GPU device 

because the integer rating returned is higher than for CPU or other accelerator. 

Example of custom device selector with specific vendor name 
// Return 1 if the vendor name is "Intel" or 0 else. 

// 0 does not prevent another device to be picked as a second choice 

int custom_device_selector(const sycl::device& d ) { 

  return d.get_info<sycl::info::device::vendor>() == "Intel"; 

} 

 

sycl::device preferred_device { custom_device_selector }; 

sycl::queue q(preferred_device); 

Example of custom device selector with specific GPU device name 
// Return 1 if device is GPU and name has "Intel" 

int custom_device_selector(const sycl::device& d ) { 

  return dev.is_gpu() & (dev.get_info<info::device::name>().find("Intel") != 

std::string::npos); 

} 

 

sycl::device preferred_device { custom_device_selector }; 

sycl::queue q(preferred_device); 

Example of custom device selector with priority based on device 
// Highest priority for Xeon device, then any GPU, then any CPU. 

int custom_device_selector(const sycl::device& d ) { 

  int rating = 0; 



  if (d.get_info<info::device::name>().find("Xeon") != std::string::npos)) rating = 3; 

  else if (d.is_gpu()) rating = 2; 

  else if (d.is_cpu()) rating = 1; 

  return rating;     

} 

 

sycl::device preferred_device { custom_device_selector }; 

sycl::queue q(preferred_device); 

The SYCL code below demonstrates Custom Device Selector: 
 

#include <sycl/sycl.hpp> 

#include <iostream> 

using namespace sycl; 

class my_device_selector { 

public: 

    my_device_selector(std::string vendorName) : vendorName_(vendorName){}; 

    int operator()(const device& dev) const { 

    int rating = 0; 

    //We are querying for the custom device specific to a Vendor and if it is a GPU device we 

    //are giving the highest rating as 3.  

    //The second preference is given to any GPU device and the third preference is given to 

    //CPU device. 

    if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != 

std::string::npos)) 

        rating = 3; 

    else if (dev.is_gpu()) rating = 2; 

    else if (dev.is_cpu()) rating = 1; 

    return rating; 

    }; 

     

private: 

    std::string vendorName_; 

}; 

int main() { 

    //pass in the name of the vendor for which the device you want to query  

    std::string vendor_name = "Intel"; 

    //std::string vendor_name = "AMD"; 

    //std::string vendor_name = "Nvidia"; 

    my_device_selector selector(vendor_name); 

    queue q(selector); 

    std::cout << "Device: " 

    << q.get_device().get_info<info::device::name>() << "\n"; 

    return 0; 

} 

 

Exercise #5 

1. Inspect the code in lab1/custom_device_sample.cpp file showing the usage of custom device selector with 

your own logic. 

2. Compile and run this code: 

icpx -fsycl custom_device_sample.cpp -o custom_device_sample 

./custom_device_sample 

3. Compile this code in Ahead of Time (AOT) compilation mode by adding -fsycl-targets=intel_gpu_pvc 

compiler option: 

icpx -fsycl -fsycl-targets=intel_gpu_pvc custom_device_sample.cpp -o custom_device_sample 

4. Do you observe some additional output during the compilation? Check what is going under the hood by 

analyzing the output of the same command with -### option: 

icpx -fsycl -fsycl-targets=intel_gpu_pvc custom_device_sample.cpp -o custom_device_sample -### 

 



Multi-GPU Selection 

To submit job to a single GPU, we use sycl::device class with sycl::gpu_selector_v to find GPU device on the system 

and then create sycl::queue with this device as shown below: 

auto gpu = sycl::device(sycl::gpu_selector_v); 

sycl::queue q(gpu); 

To find multiple GPU device in the system, sycl::platform class is used to query all devices in a 

system, sycl::gpu_selector_v is used to filter only GPU devices, the get_devices() method will create a vector of GPU 

devices found. 

auto gpus = sycl::platform(sycl::gpu_selector_v).get_devices(); 

 

sycl::queue q_gpu1(gpus[0]); 

sycl::queue q_gpu2(gpus[1]); 

Once we have found all the GPU devices, we create sycl::queue for each GPU device and submit job for GPU devices. 

The code below shows how to find multiple GPU devices on a system and submit different kernels to different GPU 

devices 

// Get all GPU device in platform 

  auto gpus = sycl::platform(sycl::gpu_selector_v).get_devices(); 

 

  // create a vector for queue 

  std::vector<sycl::queue> q; 

  for (auto &gpu : gpus) { 

    // create queue for each device and add to vector 

    q.push_back(queue(gpu)); 

  } 

 

  // Submit kernels to multiple GPUs 

  if (gpus.size() >= 2){ 

    q[0].parallel_for(N, [=](auto i){ 

      //... 

    }); 

 

    q[1].parallel_for(N, [=](auto i){ 

      //... 

    }); 

  } 

Code Sample: Complex Number Multiplication 

The following is the definition of a custom class type that represents complex numbers: 

• The file Complex.hpp defines the Complex2 class. 

• The Complex2 Class got two member variables "real" and "imag" of type int. 

• The Complex2 class got a member function for performing complex number multiplication. The function 

complex_mul returns the object of type Complex2 performing the multiplication of two complex numbers. 

• We are going to call complex_mul function from our SYCL code. 

Exercise #6 

1. Inspect the code in lab1/complex_mult.cpp file   

2. Compile using AOT compilation and run this code 

icpx -fsycl -fsycl-targets=intel_gpu_pvc complex_mult.cpp -o complex_mult 

./ complex_mult 

3. What happens if you try to run on CPU device: 



ONEAPI_DEVICE_SELECTOR=opencl:cpu ./complex_mult 

4. It is possible to pass additional options to the device compiler via -Xsycl-target-backend option, e.g. 

icpx -fsycl -fsycl-targets=intel_gpu_pvc -Xsycl-target-backend "-options -ze-intel-enable-auto-large-GRF-

mode" complex_mult.cpp -o complex_mult 

Find more details on general-purpose register (GRF) modes available in Intel® Data Center GPU Max Series 

here.  

 

Exercise #7 

Complete the coding exercise using SYCL Buffer and Accessor concepts.  

1. Complete the code in lab1/vector_add.cpp file by writing the missing code (look for comments)  

• vector1 is initialized on host 

• The kernel code increments the vector1 by 1. 

• Create a new second vector2 and initialize to value 20. 

• Create sycl buffers for the above second vector 

• In the kernel code, create a second accessor for the second vector buffer 

• Modify the vector increment to vector add, by adding vector2 to vector1 

2. Compile and run the code 

icpx -fsycl vector_add.cpp -o vector_add 

./vector_add 

Note that the solution is available in the source file vector_add_solution.cpp 
 

Summary 

In this module you learned: 

• The fundamental SYCL Classes 

• How to select the device to offload to kernel workloads 

• How to write a SYCL program using Buffers, Accessors, Command Group handler, and kernel 

• How to use the Host accessors and Buffer destruction to do the synchronization 

 

 

 

 

 

 

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-2/small-register-mode-vs-large-register-mode.html

