Introduction to HPC-Cluster Training Cluster HLRS

TASC (HLRS)

Training Cluster HLRS Authentication

- Login–Linux, Mac
 - Default path to private key: \$ /~/.ssh/id_ed25519
 - If your private key has a different path, you need to specify the path when you login using -i
 - Login with X11 forwarding (<u>if required</u>):

```
$ ssh -X username@training.hlrs.de -i /path/to/private/key
```

Advanced option: Use a configuration file (Client uses "alias"):

```
$ /~/.ssh/config
$ ssh trainingscluster
```

```
Host trainingscluster
HostName training.hlrs.de
User username
ForwardX11 yes
```

```
Your access
```

sername: sca509xx

Basic options for your PuTTY session

Specify the destination you want to connect to

Host Name (or IP address)

username@training.hlrs.de

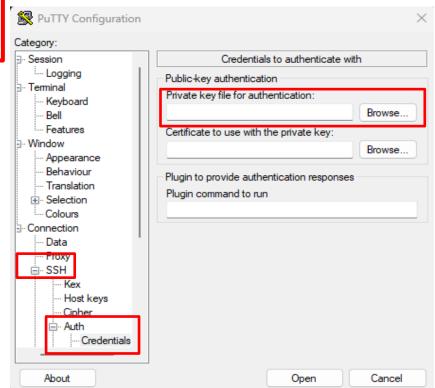
Training Cluster HLRS Authentication

Please have the current version of PuTTY installed

Port

22

- Login in Windows (GUI) PuTTY
 - Host name:


username@training.hlrs.de

Your access

username:

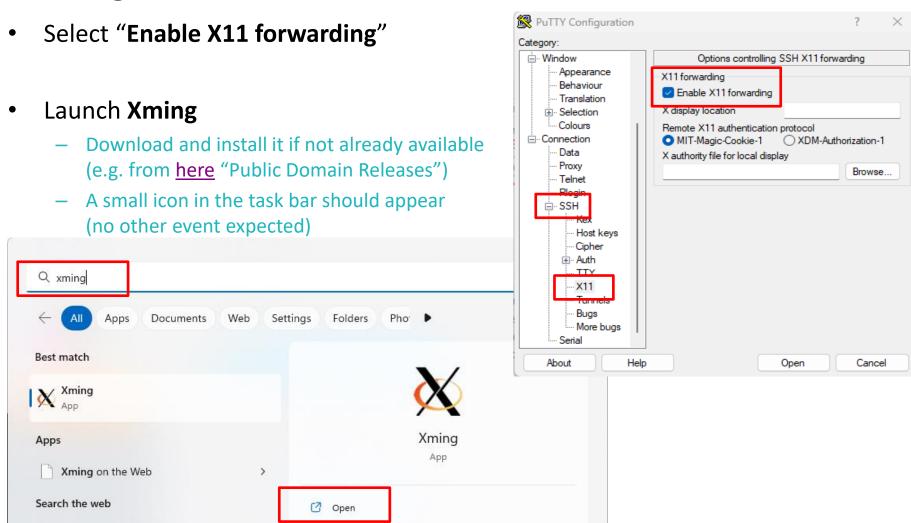
sca509xx

- Provide the full path to the private key file (.ppk)
 - If needed, use PuTTY Gen to convert your private key into a .ppk one

PuTTY Configuration

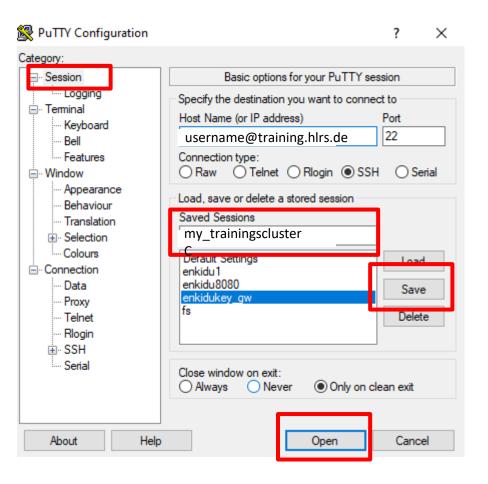
Logging

Keyboard


Category:

Session

□ Terminal



Training Cluster HLRS Authentication

Training Cluster HLRS Authentication

- Enter a name in "Saved Sessions"
- Save for the next logins
- Click on Open to start the session
- You can use Load to edit the session

Only for X11-forwarding:

- Do not forget to launch Xming before clicking on Open!
- Test successful X11 e.g. by typing
 xterm
 after login. A terminal should pop up.

Training Cluster Data Sheet

- Data Server:
 - 16x 2TB disks HDD
 - Capacity usable: 16TB (since all RAID10)
 - Connection: NFSv4 -> TCP via Infiniband
 - QDR (40Gbit)
- 1 Chassis (4 Nodes):
 - 1x Frontend (Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, SandyBridge EP, 16 Cores, 32GB RAM, 20 MB Intel® Smart Cache, 2 QPI-Links, Lithographie 32 nm)
 - 1x Clustermanagement
 - 1x Compute Node smp, Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, SandyBridge EP, 16 Cores, 32GB RAM,
 20 MB Intel® Smart Cache, 2 QPI-Links, Lithographie 32 nm
 - 1x NFS-Server
- 1 Chassis Graphics Server:
 - 1x Vis-Node
 - Intel(R) Xeon(R) CPU E5540 @ 2.53GHz, Nehalem EP, 8 Cores, 48 GB RAM, 8 MB Intel® Smart Cache, 2 QPI-Links, Lithographie 45 nm
 - Graphics Card AMD Radeon Vega56 with 8GB graphic mem *
 - smd (shared access)

Training Cluster Data Sheet

- 4 Chassis à 4 Nodes:
 - 16 Compute Nodes
 - each 2x Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz Skylake EP, 20 Cores, 192 GB RAM, 27,5 MB L3 Cache,
 3 UPI-Links, Lithographie 14 nm
 - smd (shared access)
- Hardware-Interface:
 - InfiniBand (IB)
 - FDR
- Network Connection
 - 1 Gbit to University network
 - 1 Gbit cluster internal
- Operating System: Rocky Linux 8.5
- Batch-System: PBSPro
- Home-Directory: Quota 2GB, 10.000 Files (default, is course dependent)
- NFS Storage with Workspace-Mechanism: Quota: 20GB, 200.000 files (default, is course dependent)
- Similar to the NEC-Cluster Vulcan
 - https://kb.hlrs.de/platforms/index.php/Vulcan

Training Cluster Data Sheet

- Storage of your data
 - Name, Login Name, E-Mail Address, PubKey saved in the LDAP-Server
 - The account will be deactivated 7 days after course end
 - Final disposal after 2 years

Training Cluster HLRS

- Hostname
 - The main hostname required to connect to training cluster is training.hlrs.de
 - The system has one login node
- Usernames
 - Your username is composed of the prefix sca and your user-id, for instance sca50949
- Only the secure shell SSH is allowed to login. Other protocols like telnet or rlogin are not allowed for security reasons.

File Systems

- Usally there are 4 different spaces on a cluster
 - \$HOME
 - Personal space
 - \$PROJECT or \$SHARED
 - Shared space with Colleagues/Project-Partners
 - STMP
 - Temporary space on nodes for calculations
 - SWORKSPACE
 - The workspace mechanism provides temporary scratch space, called workspaces, for your computation on a central file store.
 - They are intended to hold data **for a limited time** but usually longer than the time of a single job run.
 - They are not intended for permanent storage, so data in workspaces is not backed up and may be lost if there are problems on the storage system.
 - Please copy/move important results to \$HOME or to some disks outside the cluster.

Exercise Workspace & Quota

Commands for Workspace

```
$ ws_allocate my_workspace 1
$ ws_list
$ ws_extend my_workspace 2
$ ws_release my_workspace
$ cd $(ws find my workspace)
```

- Quota Limitation
 - Home-Directory
 - \$ quota -us \$(whoami) \$HOME
 - Workspace
 - \$ quota -us \$(whoami) /shared/training/<your-workspace-name>

Workspace - Summary

- For compute jobs
 - do not use your home directory
 - but create a workspace
- Workspace mechanism
 - allows to store data outside the home directory for several days
 - reserves storage space for a certain number of days
 - workspace uniquely identified by name
 - After the duration expires, the data is deleted and thus lost!

Enviroment Module System

- Environment modules, or modules for short, are the way by which most of the installed software is deployed on a cluster.
- The use of various compilers (and multiple versions), libraries and software packages requires the user to set up a specific session environment suitable for the program to be executed.
- The cluster provides users with the ability to load and unload complete environments for compilers, libraries and software packages with a single command.
- The Training cluster uses the Lua based module system Lmod.

https://lmod.readthedocs.io/en/latest/

Exercise Environment Modules

- Load Module
 - \$ module load compiler/gcc # default version
 - \$ module load compiler/gcc/9.2.0 # specific version
- Show all loaded modules
 - \$ module list
- Show all available modules
 - \$ module avail
- Show all possible modules and dependencies
 - \$ module spider
- Show all available versions of the module
 - \$ module spider compiler/gcc
- Outputting the help text of a module
 - \$ module help compiler/gcc
- Output all "whatis" information about a module
 - \$ module whatis compiler/gcc

- Show all environment variables and paths of a module
 - \$ module show compiler/gcc

(=shows the commands in the module file)

- Unload module
 - \$ module unload compiler/gcc
 - \$ module del compiler/gcc
- Unload all modules
 - \$ module purge

Batch System - Summary

- Jobs need to be queued and then executed on time and that is what the batch system does.
- The batch system is responsible for the distribution of all resources in the cluster
 - working time
 - nodes and cores
 - memory
 - diskspace

You can request any of these resources.

- The training cluster uses the batch system PBS Pro
- The components of the Management System PBS Pro are
 - Resource Manager
 - Control over jobs and distributed nodes
 - Scheduler
 - Scheduling
 - Managing
 - Monitoring
 - Reporting

https://www.altair.de/pbs-works-documentation/

Submit Job on Training Cluster HLRS

- If you want to run a your code on a cluster, then you need to submit it as a job.
- Batch jobs are submitted by using the command **qsub**.
- The main purpose of the qsub command is to specify the resources that are needed to run the job.
- qsub will then queue the batch job.
- However, starting a batch job depends on the availability of the requested resources.

Exercise Submit / View Job

Specific for each course!

- Submit a batch job, e.g.
 - \$ qsub -I -l select=1:node_type=skl:ncpus=8:mpiprocs=8:mem=14gb,walltime=00:15:00

Do not forget!

- If you want to view information about submitted jobs, use the command squeue
 - View job information
 - \$ qstat
 - View job information of specific user
 - \$ qstat -u <username>
 - View jobs in queue
 - \$ qstat -q <Queue-Name>
- If you want to cancel submitted jobs, use the command qdel
 - Cancel specific job

\$ qdel <job-id>

Example batch script

#!/bin/bash
sleep 120;

• See:

https://kb.hlrs.de/platforms/index.php/Batch_System_PBSPro_(vulcan)