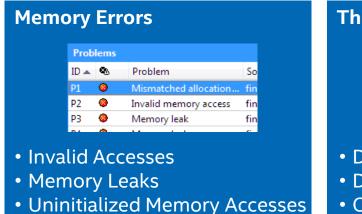
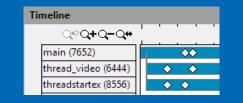


HLRS Workshop – 27.10.2022

Dynamic Debugging with Intel[®] Inspector


Heinrich Bockhorst


Agenda

- Introduction to Inspector
- GUI usage
- Command line usage
- Results
- Demo Next steps

Motivation for Intel® Inspector

Threading Errors

- Data Races
- Deadlocks
- Cross Stack References

Multi-threading problems

- Hard to reproduce,
- Difficult to debug
- Expensive to fix

Workflow: setup project

My Inspector XE Results - find_hotspots - Project Properties ? ×								
Target Suppressions	Binary/Symbol Search	Source Search						
Launch Application Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.								
Application: C:\Temp\find_hotspots.exe								
Application parameters:	~ M	Modify						
Use application directory as working directory								
Working directory: C:\Temp V Browse								
	becify Application arguments and vorking directory	· ·		Modify				
Store result in the project directory: C:\Temp\My Inspector XE Results - find_hotspots Store result in (and create link file to) another directory								
C:\Temp\My Inspector XE Results - find_hotspots Browse								
Result location: C:\Temp\My Inspector XE Results - find_hotspots\r@@@{at}								
			ОК	Cance	el			

Workflow: select analysis and start

	🖉 Configure Analysis Ty	ipe		INTEL INSPECTOR 201
	Threading Error Analysis	10x-40x 20x-80x betect Deadlocks and Data Races Cocate Deadlocks and Data Races Memory Overhead Detect Deadlocks and Data Races Memory Overhead		Start Stop X Close Reset Growth Tracking
	Custom Analysis Types	c cate Deadlocks and Data Races V dest scope threading error analysis type. Maximizes the load on the system and the time and resources required to perform analysis; however, detects the widest set of errors and provides context and n ximum detail for those errors. Press F1 for more details. Terminate on deadlock	Сору	Reset Leak Tracking Find Leaks
1.	Select Analysis Type	pck frame depth: 16 v ope: Normal v Remove duplicates		
		Use maximum resources Analyze without debugger Run an analysis and report all detected problems. Use to view correctness issues without stopping in the debugger to examine them.	• •	Project Properties) Command Line

Command Line Interface

- Start analysis
 - *Memory:* inspxe-cl -c mi3 -- <app> [app_args]
 - *Threading:* inspxe-cl -c ti3 -- <app> [app_args]
- View results
 - inspxe-cl -report=problems -report-all
 - To open result in GUI, type: inspxe-gui <result folder>

Command Line Interface – Intel MPI

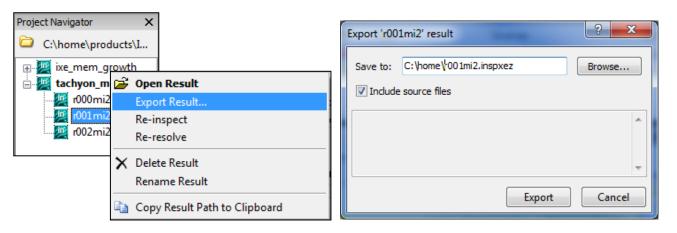
- Use gtool flag or environment variable:
 - *flag:* \$ *mpirun* <u>-gtool</u> "inspxe-cl -c mi3 -r <result_dir>:0" -n N <app> [app_args]
 - env: \$ export I_MPI_GTOOL="inspxe-cl -c mi3 -r <result_dir>:0"
- Gtool inserts tool on selected ranks
 - Analysis only on rank 0: use ":0"
 - Analysis on selected ranks: use ":m-n"
 - Analysis on all ranks: use ":all"

In most cases it should be sufficient to do analysis on single rank!

Workflow: manage results

👰 Dete	Detect Deadlocks and Data Races Intel Inspector Powerful filtration								ation				
⊲ \varTheta Targe			ction Log 🧕 鱼 Sur	nmary							,	feature	
Problems	_	Double o	lick on Probl	em				2	Filters	Sort	8	ſ	
ID 🔺 🔍	Туре	to navi	gate to sourc	e	les	Sta	ate	4	Data race		2 🔺		
🗄 P1 🛛 🔕	Data race	find_and_fix_th	reading_errors.cp	find_a		e 🌬	New		Source				
🗆 P2 🛛 😣	Data race	winvideo.h		find_a	and_fix_threading_errors.ex	e 🎙	New	Þ	find_and_fix_t	hre	1		
	Data race	winvideo.h:270)	find_a	and_fix_threading_errors.ex	e 🎙	New		task_schedule	r_i	1		
	Data race	winvideo.h:270)	find_a	and_fix_threading_errors.ex	e 🎙	New		winvideo.h		1		
Carla	ata race		; winvideo.h:270	find_a	and_fix_threading_errors.ex	e 🎙	New	-	Module		-		
	Code locations grouped into Problems to simplify Code Locations: Data race							imeli	ne		2		
		• •	Module					nain ((4960)				
Read	Ilts manag		find_and_fix_threa	adina e	rrors.exe				1_video (4672)		•		
268 {					and fix threading e	r			Vorker Thread (2	848)	- 11		
269		ing) return		find	and_fix_threading_e	r			Vorker Thread (1				
270 271			but inaccura				•	rbb M	Vorker Thread (6	004)			
272		g handles[1]					R	lead:	winvideo.h:270				
Read	winvideo.h	:270 next_frame	find_and_fix_threa	ading_e	rrors.exe	_	н.						
268 {			C]		and fix threading e		M	Vrite:	winvideo.h:270				
269		ing) return	talse; but inaccura	find_	_and_fix_threading_e	r							
271	if(!thre	aded) while	(loop_once (thi				L.						
272	else if(g handles[1]) {			-					-		

Workflow: navigate to sources


🗾 Data race	Intel Inspe Call stacks
🔄 🕀 Target 🚊 Analysis Type 🖪 Collection Log 🛛 🤷 Summary 🛔 🍪 Source	s
Write - Thread TBB Worker Thread (1724) (find_and_fix_threading_errors.exe	!next_frame - winvideo.h:270) ি 🗉
winvideo.h Disassembly (find_and_fix_threading_errors.exe!0x9257)	Call Stack
<pre>267 bool video::next_frame()</pre>	find_and_fix_threading_errors.exelnext_frail
268 {	
<pre>269 if(!running) return false;</pre>	
270 g_updates++; // Fast but inaccurate counter. The da	ta race h
<pre>271 if(!threaded) while(loop_once(this));</pre>	
272 else if(g_handles[1]) {	
273 SetEvent (g_handles [1]); Problematic line	in source code
274 YIELD TO THREAD();	
	P
Read - Thread TBB Worker Thread (6004) (find_and_fix_threading_errors.exe!	next_frame - winvideo.h:270) 🛛 🖓 🗖
winvideo.h Disassembly (find_and_fix_threading_errors.exe!0x924e)	Call Stack
267 . deo::next frame()	find_and_fix_threading_errors.exe!next_frail
All code locations for a	find_and_fix_threading_errors.exe!operato
problem	inite_and_inx_threading_enrois.exe.operato
	sembly for more details
271 if (!threaded) while (loop_once (th	
272 else if(g_handles[1]) {	
<pre>273 SetEvent(g_handles[1]);</pre>	
274 YIELD_TO_THREAD();	
	P

Exporting results

Save results with sources – copy and browse anywhere without setting search paths

CLI: inspxe-cl -export -archive-name r000mi2.inspxez -include-sources -result-dir r000mi2

GUI:

Work on remote computer

- Working with GUI on remote system might be not possible
- Result generated by CLI on remote system can be exported to archive (plain file)
- Transfer archive from remote system to local desktop/laptop with local Inspector installation. Linux results can be analyzed by Windows Inspector

Demo – Hands on

- Try Inspector on DevCloud or local system
- Playbook will provide some sample command lines
- More information:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html

Video:

https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-inspector.html

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Backup

Additional information

Using the Intel[®] Inspector with MPI (mpich etc)

- Use the command-line tool under the MPI run scripts to gather report data mpirun -n 4 inspxe-cl --result-dir insp_results -collect mi1 -- ./insp_example.exe
- Output is: a results directory for each MPI rank in the job

ls | grep inspector_results on Linux

Launch the GUI and view the results for each particular rank
 inspxe-gui inspector_results.<rank#> on Linux

Memory problems

- Memory leak
- a block of memory is allocated
- never deallocated
- not reachable (there is no pointer available to deallocate the block)
- Severity level = (Error)
- Memory not deallocated
- a block of memory is allocated
- never deallocated
- still reachable at application exit (there is a pointer available to deallocate the block).
- Severity level = (Warning)
- Memory growth
- a block of memory is allocated
- not deallocated, within a specific time segment during application execution.
- Severity level = (Warning)

```
// Memory leak
```

```
char *pStr = (char*) malloc(512);
return;
```

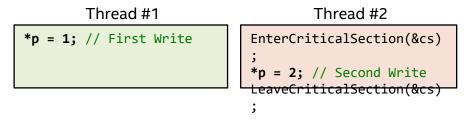
// Memory not deallocated
static char *pStr = malloc(512);
return;

// Memory growth

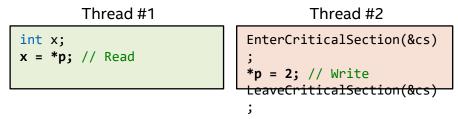
// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Memory problems

- Uninitialized memory access
- Read of an uninitialized memory location
- Invalid Memory Access
- Read or write instruction references memory that is logically or physically invalid
- Kernel Resource Leak
- Kernel object handle is created but never closed
- GDI Resource Leak
- GDI object is created but never deleted


```
// Uninitialized Memory Access
void func()
   int a;
   int b = a * 4;
// Invalid Memory Access
char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");
// Kernel Resource Leak
HANDLE hThread = CreateThread(0,
      8192, work0, NULL, 0,
NULL);
return
// GDI Resource Leak
HPEN pen = CreatePen(0, 0, 0);
return;
```

intel. 1


Data race

```
CRITICAL_SECTION cs; // Preparation
int *p = malloc(sizeof(int)); // Allocation Site
*p = 0;
InitializeCriticalSection(&cs);
```

Write -> Write Data Race

Read -> Write Data Race

