oneAPI

Dynamic Debugging with
ntel” Inspector

intel.

Agenda

 Introduction to Inspector
* GUIl usage

 Command line usage

* Results

 Demo - Next steps

intel.

Motivation for Intel® Inspector

Memory Errors Threading Errors

Problems
L QeQe
main (7852} 4

thread_video [G444) *
threadstartex (8550) * &
« Data Races

* Deadlocks
* Cross Stack References

Problem S0l

Mismatched allocation... fin

@ Invalid memory access fin

Mermaory leak fin|

* Invalid Accesses
* Memory Leaks
* Uninitialized Memory Accesses

Multi-threading problems
* Hard to reproduce,
 Difficult to debug

* Expensive to fix

m | ct the tool do it for you

intel.

Workflow: setup project

JTarget] Suppressions [Binary/Symbol Search] Source Search

Launch Application

Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

Application: C\Temp\find_hotspots.exe v al

Application parameters; ‘

v/l Modify.. |

[l Use application directory as working directory:

Working directory: ‘ CA\Temp

/||

User-defined envir; -——/\"'

Specify Application,

arguments and
Microsoft* runtimg] ~ Working directory

i

(®) Store result in the project directory: ‘ CATempyMy Inspector XE Results - find_hotspots

CA\Temp\My Inspector XE Results - find_hotspots

Result location:

() Store result in (and create link file to) another directory

Browse...

CA\TempyMy Inspector XE Results - find_hotspots\r@ @ @{at}

‘ ‘ Cancel

intel.

4

Workflow: select analysis and start

Detect Deadlocks
Detect Deadlocks and Data Races I||l
lllllll

Memory Overhead

last scope theeading error analysis type. Maximizes the load on the system and the time and resources required to perform analysis: however, detects the widest set of ermors and provides context and
primum detall for those errors. Press F1 for mare detaile

Run an analysis and report all detected problems. Lise to view COmectness issues without stopping in the debugger 1o examing them,

e e e

intel. -

Command Line Interface

= Start analysis
« Memory: inspxe-cl -c mi3 -- <app> [app_args]
* Threading: inspxe-cl-cti3 -- <app> [app_args]
= View results
* inspxe-cl -report=problems -report-all

* Toopenresultin GUI, type:
inspxe-gui <result folder>

intel.

6

Command Line Interface — Intel MPI

» Use gtool flag or environment variable:
* flag: $ mpirun —gtool “inspxe-cl -c mi3 —r <result_dir>:0" —n N <app> [app_args]
« env: $exportl MPI_GTOOL="inspxe-cl -c mi3 —r <result_dir>:0"
= Gtool inserts tool on selected ranks
* Analysis only on rank O: use “:0"
* Analysis on selected ranks: use “m-n"

* Analysis on all ranks: use “all”

" |[n most cases it should be sufficient to do analysis on single rank!

intel.

Workflow: manage results

(1%

Detect Deadlocks and Data Races Intel Inspector

@ Target Analysis Type|| B Collection Log m

Problems

Data race

Data race find_and_fix_threading_errors.cp.. find_and_fix_threading_errors.exe R New Source

Data race winvidea.h find_and_fix_threading_errors.exe * New H find_and_fix_thre.. 1

Data race winvideo.h:270 find_and_fix_threading_errors.exe R New task_scheduler_i... 1

Data race winvideo.h:270 find_and_fix_threading_errors.exe R New winvideo.h 1
winvideo.h:201; winvideo.h:270 find_and_fix_threading_errors.exe R New Module -

winvideo.h:270 next_frame find_and_fix_threading_errors.exe

268 | find and fix threading er

269 if (!running) return false; find and fix threading er

270 g _updates++; // Fast but inaccura

271 if (!threaded) while(loop once (thi

21 else if(g handles[1]) [Read: winvideo.h:270

Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe

268 | find_and fix threading er Write: winvideo.h:270
269 if (!running) return false; find and fix threading er

270 g_updates++; // Fast but inaccura

271 if (!threaded) while(loop once(thi

else if (g handles[1]) { - -

intel.

I

Workflow: navigate to sources

I‘I_-l'f.' vl

Data race
& Target Analysis Type || B Collection Log|:| * Summary

winvideo.h

bool video::next_frame{]
if (!running) return false;

if (!threaded) while(loop_once (this));
else if(g_handles[1]) {
SetEvent (g_handle=[1]);
YIELD TO THREAD() ;

if (!threaded) while(loop_once (th
else if(g_handles[1]) {
SetEvent (g_handles[1]);
YIELD TO THREAD();

Intel Inspe

Call Stack
- Wfind_and_fix_threading_errors.exelnext_fra

Call Stack
find_and_fix_threading_errors.exelnext_fra

find_and_fix_threading_errors.exeloperato

intel.

9

Exporting results

Save results with sources — copy and browse anywhere
without setting search paths

CLI: inspxe-cl -export -archive-name rO00mi2.inspxez
| -include-sources -result-dir r0O00mi2

GUI:

Project Navigator X
3 C\hom eiproductsiL..

' Export r001mi2’ result

ﬁ ixe_merr_g h | saveto: C:thome\001imiZ.inspxez

E!ﬁ tachyon_m| (= Open Result

m r000mi Export Result...

Re-inspect

Indude source files

Re-resolve

¥ Delete Result

Rename Result

53 Copy Result Path to Clipboard

intel.

Work on remote computer

= Working with GUI on remote system might be not possible

= Result generated by CLI on remote system can be exported to
archive (plain file)

= Transfer archive from remote system to local desktop/laptop with

local Inspector installation. Linux results can be analyzed by
Windows Inspector

intel.

Demo — Hands on

= Try Inspector on DevCloud or local system

= Playbook will provide some sample command lines

= More information:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.ntml

= \ideo:;

https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-inspector.ntml

intel. »

https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html
https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-inspector.html

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

intel.

http://www.intel.com/PerformanceIndex

Backup

Additional information

One Intel Software & Architecture (OISA) Intel Confidential |nte| [

Using the Intel® Inspector with MPI (mpich etc)

» Use the command-line tool under the MPI run scripts to gather report data
mpirun -n 4 inspxe-cl --result-dir insp_results
-collect mil -- ./insp_example.exe
= Qutputis: aresults directory for each MPI rank in the job
1s | grep inspector_results on Linux
» Launch the GUI and view the results for each particular rank

inspxe-gui inspector_results.<rank#> on Linux

intel. Li

Memory problems

Memory leak

a block of memory is allocated

never deallocated

not reachable (there is no pointer available to
deallocate the block)

Severity level = (Error)

Memory not deallocated

a block of memory is allocated

never deallocated

still reachable at application exit (there is a pointer
available to deallocate the block).

Severity level = (Warning)

Memory growth

a block of memory is allocated

not deallocated, within a specific time segment
during application execution.

Severity level = (Warning)

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

intel.

4

Memory problems

» Uninitialized memory access
Read of an uninitialized memory location

Invalid Memory Access
Read or write instruction references memory
that is logically or physically invalid

Kernel Resource Leak

Kernel object handle is created but never closed

GDI Resource Leak

GDI object is created but never deleted

// Uninitialized Memory Access

void func()

{
int a;
int b = a * 4;

}

// Invalid Memory Access

char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");

// Kernel Resource Leak

HANDLE hThread = CreateThread(O,
8192, worke, NULL, O,
NULL);

CECUr,

// GDI Resource Leak

HPEN pen = CreatePen(@, 0, 0);
return;

intel.

1

Data race

CRITICAL_SECTION cs;

*p = 0;

// Preparation

int *p = malloc(sizeof(int)); // Allocation Site

InitializeCriticalSection(&cs);

Write -> Write Data Race
Thread #1

Thread #2

*p = 1; // First Write

EnterCriticalSection(&cs)

I
*p = 2; // Second Write

Read -> Write Data Race
Thread #1

I PSS 1c P /Q N
LEAVELT'LL1ICALOCLULLIUIT(ALS)

.
)

Thread #2

int x;
X = *p; // Read

EnterCriticalSection(&cs)

*p = 25 // Write

3 L 1c) L0 N
LEAVELT'LL1CdlOoCULLUIT(alS)

J

intel.

13

