
Dynamic Debugging with
Intel® Inspector
Heinrich Bockhorst

HLRS Workshop – 27.10.2022

2

2

Agenda

• Introduction to Inspector

• GUI usage

• Command line usage

• Results

• Demo - Next steps

33

Motivation for Intel® Inspector

Memory Errors

• Invalid Accesses
• Memory Leaks
• Uninitialized Memory Accesses

Threading Errors

• Data Races
• Deadlocks
• Cross Stack References

Multi-threading problems
• Hard to reproduce,
• Difficult to debug
• Expensive to fix

Let the tool do it for you

44

Workflow: setup project

Specify Application,
arguments and

working directory

55

Workflow: select analysis and start

1. Select Analysis
Type

2. Click Start

6

6

Command Line Interface

▪ Start analysis

• Memory: inspxe-cl -c mi3 -- <app> [app_args]

• Threading: inspxe-cl -c ti3 -- <app> [app_args]

▪ View results

• inspxe-cl -report=problems -report-all

• To open result in GUI, type:
inspxe-gui <result folder>

7

7

Command Line Interface – Intel MPI

▪ Use gtool flag or environment variable:

• flag: $ mpirun –gtool “inspxe-cl -c mi3 –r <result_dir>:0” –n N <app> [app_args]

• env: $ export I_MPI_GTOOL=“inspxe-cl -c mi3 –r <result_dir>:0”

▪ Gtool inserts tool on selected ranks

• Analysis only on rank 0: use “:0”

• Analysis on selected ranks: use “:m-n”

• Analysis on all ranks: use “:all”

▪ In most cases it should be sufficient to do analysis on single rank!

88

Workflow: manage results

Code locations grouped
into Problems to simplify

results management

Powerful filtration
feature

Double click on Problem
to navigate to source

99

Workflow: navigate to sources
Call stacks

Switch to disassembly for more details

Problematic line in source code

All code locations for a
problem

1010

Exporting results

Save results with sources – copy and browse anywhere

without setting search paths

GUI:

CLI: inspxe-cl -export -archive-name r000mi2.inspxez
-include-sources -result-dir r000mi2

11

1
1

Work on remote computer

▪ Working with GUI on remote system might be not possible

▪ Result generated by CLI on remote system can be exported to
archive (plain file)

▪ Transfer archive from remote system to local desktop/laptop with
local Inspector installation. Linux results can be analyzed by
Windows Inspector

12

1
2

Demo – Hands on

▪ Try Inspector on DevCloud or local system

▪ Playbook will provide some sample command lines

▪ More information:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html

▪ Video:

https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-inspector.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html
https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-inspector.html

13

Notices & Disclaimers

13

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

14
Intel ConfidentialOne Intel Software & Architecture (OISA)

Backup
Additional information

15

1
5

Using the Intel® Inspector with MPI (mpich etc)

▪ Use the command-line tool under the MPI run scripts to gather report data

mpirun -n 4 inspxe-cl –-result-dir insp_results

-collect mi1 -- ./insp_example.exe

▪ Output is: a results directory for each MPI rank in the job

ls | grep inspector_results on Linux

▪ Launch the GUI and view the results for each particular rank

inspxe-gui inspector_results.<rank#> on Linux

16

1
6

Memory problems

▪ Memory leak
• a block of memory is allocated
• never deallocated
• not reachable (there is no pointer available to

deallocate the block)
• Severity level = (Error)

▪ Memory not deallocated
• a block of memory is allocated
• never deallocated
• still reachable at application exit (there is a pointer

available to deallocate the block).
• Severity level = (Warning)

▪ Memory growth
• a block of memory is allocated
• not deallocated, within a specific time segment

during application execution.
• Severity level = (Warning)

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

17

1
7

Memory problems

▪ Uninitialized memory access
• Read of an uninitialized memory location

▪ Invalid Memory Access
• Read or write instruction references memory

that is logically or physically invalid

▪ Kernel Resource Leak
• Kernel object handle is created but never closed

▪ GDI Resource Leak
• GDI object is created but never deleted

// Uninitialized Memory Access

void func()
{

int a;
int b = a * 4;

}

// Invalid Memory Access

char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");

// Kernel Resource Leak

HANDLE hThread = CreateThread(0,
8192, work0, NULL, 0,

NULL);
return;

// GDI Resource Leak

HPEN pen = CreatePen(0, 0, 0);
return;

1818

Data race

Write -> Write Data Race

Read -> Write Data Race

CRITICAL_SECTION cs; // Preparation
int *p = malloc(sizeof(int)); // Allocation Site
*p = 0;
InitializeCriticalSection(&cs);

*p = 1; // First Write EnterCriticalSection(&cs)
;
*p = 2; // Second Write
LeaveCriticalSection(&cs)
;

Thread #1 Thread #2

int x;
x = *p; // Read

Thread #1

EnterCriticalSection(&cs)
;
*p = 2; // Write
LeaveCriticalSection(&cs)
;

Thread #2

19

