

University of Stuttgart Germany

Numerical Investigation of the Flow and Heat Transfer in Convergent Swirl Chambers

Introduction

In modern gas turbine engines, the maximum turbine entry temperature is well above the material's melting Therefore, efficient cooling techniques are required. Swirling flows in vortex chambers are a promising method for internal cooling of the turbine blade leading edge.

An axisymmetric vortex breakdown can occur in swirling flows, which is defined by a stagnation point followed by an axial flow reversal [1]. This phenomenon represents a subcritical flow state since disturbances can propagate upstream and downstream. Hence, conditions from the tube outlet can affect the vortex chamber flow field. In contrast, a supercritical state is evident in the absence of vortex breakdown. Then, disturbances can only propagate downstream [2] yielding a robust flow field that is insensitive to the conditions at the chamber outlet [3].

The present investigation analyzes the impact of convergent tube geometries on the flow field and heat transfer in swirl chambers.

Fig. 2: Circumferential velocity field u_{φ} and axial velocity field u_z scaled by the local axial bulk velocity \overline{u}_z

Florian Seibold¹ and Bernhard Weigand¹ ¹Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart

Numerical Methodology

In total, five geometries were investigated with different area ratios A_{out}/A_0 (see Fig. 1 and Tab. 1). The hyperbolic tube enforced a linear increase of the local Reynolds number $Re = \overline{u}_z D/\nu$.

All simulations were conducted for an inflow Reynolds number of $Re_0 = 10,000$ and a dimensionless swirl number of $S_0 = \dot{I}_{\omega}/R\dot{I}_z = 5.3$. The latter represents the ratio of circumferential momentum flux \dot{I}_{ω} to axial momentum flux I_z .

The open source code OpenFOAM 6 was used for All simulations were computation. executed as compressible Delayed Detached Eddy Simulations (DDES) [5] in combination with the Spalart-Allmaras model [6]. The hybrid DDES approach applies a Reynolds-Averaged Navier Stokes (RANS) model close to the wall and a Large Eddy Simulation (LES) in the free stream. The numerical mesh consisted of a structured O-grid with $16.5 \cdot 10^6$ hexahedral cells. The boundary conditions are listed in Tab. 2. A detailed validation based on mean velocities and turbulence quantities was provided in

1	1	0
1/2	$1/\sqrt{2}$	0.42
1/3	$1/\sqrt{3}$	0.61
1/4	1/2	0.72
1/4	1/2	hyperbo

1/4	1/2	hyperbol.				
Tab. 2: Boundary conditions						
inlet	wall	outlet				

Tab. 1: Investigated geometries

β [deg]

 $A_{out}/A_0 \quad D_{out}/D_0$

	intee	W all	odtiet
и	$u_{in} = \text{const.}$	$u_w = 0$	$\partial u / \partial n = 0$
Т	$T_{in} = 333K$	$T_w = 293K$	$\partial T/\partial n = 0$
р	$\partial p/\partial n = 0$	$\partial p / \partial n = 0$	p = const.

Tab. 3: Globally averaged Nusselt numbers

0.72 hyperbol.

105.7

-

				Tab. 3: Globally averaged Nusselt num				
			_	β [deg]	0	0.42	0.61	0.72
			_	num	140.8	122.6	103.8	102.7
				exp	135.0	134.5	111.6	104.5
1								
1'	7.5	20						

ехр	135.0	134.5	111.6	104.5
	I			

Results

Convergent swirl chambers impose a flow acceleration in circumferential and in axial direction. The latter causes in increasing local axial bulk velocity \overline{u}_z , which is used for scaling in Fig. 2. The circumferential velocity u_{o} then shows a characteristic flow pattern that is independent of the angle β . Further, a Rankine vortex is evident, which consists of a solid body rotation in the center and a potential vortex in the outer region. The size of the solid body vortex shrinks towards the outlet. The axial velocity u_z of the constant-diameter tube reveals a pronounced backflow. In contrast, convergent tubes are able to suppress this flow reversal and obtain a supercritical flow that is insensitive to disturbances from downstream. Such a robust state is crucial for a real engine application.

The cooling capability was assessed based on the nondimensional Nusselt number

150

Nu

100

Figure 3 illustrates local Nusselt numbers and Tab. 3 provides its global values. These results show overall good agreement with experimental data. Further, the heat transfer decreases as β increases. This drop is mainly caused by the varying tube diameter D in Eq. (1) and hence does not indicate a degression of the heat transfer coefficient h. Consequently, the tube surface significantly affects the Nusselt number values.

$$Nu = \frac{-\frac{\partial T}{\partial n}\Big|_{w}^{D}}{T_{w} - T_{ref}} = \frac{hD}{k} .$$
 (1)

The local adiabatic wall temperature T_{aw} was used as reference temperature T_{ref} . T_{aw} can be approximated in swirling flows by assuming an adiabatic compression from the centerline to the wall [8]. Experimental data was measured using the transient liquid crystal technique. The complete procedure is described in [7].

Deutsche Forschungsgemeinschaft

Figure 3 presents a speed-up analysis of the numerical setup. Based on these results, a parallelization of 660 cores (25,000 cells/core) was selected yielding an overall computation time of 18 to 36 days.

Summary & Conclusion

Various swirl tubes with converging cross-section were investigated numerically for $Re_0 = 10,000$ und $S_0 = 5.3$. Convergent swirl tubes imposed a flow acceleration in circumferential and axial direction. The characteristic pattern of the circumferential velocity was not affected herby. The axisymmetric vortex breakdown was suppressed by converging geometries yielding a robust flow state that is insensitive to disturbances from downstream. Furthermore, heat transfer investigations showed overall good agreement with experimental data. A significant drop in Nusselt numbers was evident in all convergent geometries and the varying tube diameter was identified as main factor for this decline.

Contact

Institute of Aerospace Thermodynamics (ITLR) University of Stuttgart Pfaffenwaldring 31, 70569 Stuttgart, Germany e-mail: florian.seibold@itlr.uni-Stuttgart.de

References

- (2020) 108670.

Institute of Aerospace Thermodynamics

German Research Foundation

Usage of Computational Resources

Fig. 3: Scaling of the numerical setup on the FH2 platform at the Steinbuch Center of Computing (SCC)

[1] Escudier, M. P. and Keller, J. J., AIAA J. 23 (1985) 111-116. [2] Benjamin, T. B., J. Fluid Mech. 14 (1962) 593. [3] Bruschewski, M., Grundmann, S. and Schiffer, H.-P., Int. J. Heat Fluid Flow 86

[4] Seibold, F. and Weigand, B, Int. J. Heat Fluid Flow 90 (2021) 108806 [5] Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K. and Travin, A., Theor. Comput. Fluid Dyn. 20 (2006) 181-195. [6] Spalart, P. and Allmaras, S., La Rech. Aèrosp. 1 (1994) 5-21. [7] Biegger, C. Sotgiu, C and Weigand, B., Int. J. Therm. Sci. 96 (2015) 319-330.

[8] Kobiela, B., Ph.D. thesis, University of Stuttgart (2013).