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FLEXI performance on HAWK

To analyze the impact of the architecture of HAWK, the performance analysis
was first carried out on all available cores (stride=1) and in a second step, while
using only every second available core (stride=2), see Fig. 1. This artificially
increases the available memory bandwidth per active core. The results in Fig. 1
indicate that the case with stride=2 gains about 30 % in performance compared
to the stride=1 case.
The lifting procedure was redesigned to compute only the gradients of the vari-
ables which are actually required to compute the parabolic fluxes of the Navier-
Stokes-Fourier equations. It reduced the memory footprint of the lifting proce-
dure by about a fifth and improved the overall performance of FLEXI.
The function call of two frequently called functions, namely the Riemann solver
as well as the solver for the two-point volume split flux, was optimized. We in-
troduced a two step compilation process to employ profile-guided optimization
(PGO). By using PGO, the aforementioned functions get optimized by the com-
piler and the overall cache usage is improved. In 1c and 1d the results with the
optimized code version using both stride=1 and stride=2 are depicted. A com-
parison of 1a with Fig. 1c demonstrates a performance improvement by about
25 % in case of an optimal load and even up to 40 % for high loads.
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Fig. 2: Results of the scaling analysis for different meshes and loads. Four different
cases are investigated: the baseline version of FLEXI as described in Krais et al.
[10] and the optimized version for HAWK with a stride of 1 and 2 for each version.
The legend lists the number of elements of the investigated meshes.

cases and configurations. The PID is defined as

PID =
wall-clock-time ·#cores

#DOF ·#time steps ·#RK-stages
, (1)

and represents the time it takes to advance a single degree of freedom to the next
stage in the Runge-Kutta time-stepping algorithm.

Fig. 2a shows the results of the baseline version of FLEXI on the HAWK cluster.
The qualitative behavior is similar for all plots in Fig. 2, and also matches the behav-
ior observed on the former system as described in Krais et al. [10]. A small number
of nodes for a given problem size results in a high load. Here, an increasing amount
of data has to be regularly moved to and retrieved from the main memory, since the
data does not fit into the fast CPU cache anymore. With increasing load, the lim-
ited memory bandwidth per core of the AMD EPYCTM CPUs becomes the limiting
factor and the performance index increases dramatically. This is due to the specific
CPU architecture. Each socket consists of 8 CCDs (Core Chiplet Die), which com-
prise 2 CCXs (Core Complex) each. Both CCXs share a common interface to the
I/O and consist of 4 cores each. This hardware architecture leads to a comparably
small memory bandwidth per core, which can deteriorate the performance of mem-
ory intensive operations. Therefore, the deteriorating code performance for high
loads is more pronounced on HAWK than on the former Hazel Hen system. For

Figure 1: Results of the scaling analysis for different meshes and loads. Four
different cases are investigated: the baseline version of FLEXI as described
in Krais et al. [3] and the optimized version for HAWK with a stride of 1 and 2
for each version. The legend lists the number of elements of the investigated
meshes.

Recycling-Rescaling Anisotropic Linear Forcing (RRALF)

The RRALF method by Kuhn et al. [4] is a combination of the recycling-rescaling
method for zero pressure gradient (ZPG) boundary layer flows by Lund et al. [5]
and the anisotropic linear forcing introduced by de Laage de Meux et al. [1].
Thus, RRALF relies on the Navier-Stokes equations for physical turbulence pro-
duction but adds a forcing zone in front of the recycling plane to break the limita-
tion to ZPG boundary layers and drive the solution towards the desired boundary
layer profile as seen in Fig. 2. The rescaling follows [5] by splitting the boundary
layer in an inner and outer region and reconstructing the rescaled profile using

ui ,in =
[
(ūi)

inner
in + (u′i)

inner
in

]
[1−W (ηin)] +

[
(ūi)

outer
in + (u′i)

outer
in

]
W (ηin),

where uj is the corresponding component of the instantaneous velocity field,
¯[ ] and [ ]′ denoting mean and fluctuating quantities, and W (ηin) is a blending

function. The ALF volume forcing term is taken from [1], which yields

∂ρui

∂t
= R(ui) + ρfi

for each of the momentum vector components i = 1,2,3, where R represents
the spatial DG operator and fi the ALF vector given as fi = Aijuj + Bi. Aij and
Bi denote the tensors for the Reynolds stresses and the mean velocity forcing,
respectively.

Figure 2: Q-criterion of the turbulent structures colored by the
velocity magnitude. The red region represents the zone where
the ALF is enforced. The background mesh is also presented
up to 10.5δ99 in the wall-normal direction.

Subsonic turbulent flat plate

Two simulations of a weakly compressible (Ma = 0.3) turbulent flat plate were
carried out. First, a tripped turbulent boundary layer simulation, starting at
Reθ = 750 up to Reθ = 2800, was conducted. These simulation results were
used as target data for a zonal LES of the rear half of the flat plate. The
zonal LES had the same mesh resolution and resolved the boundary layer from
Reθ = 1800− 2800. The simulation setup is depicted in Fig. 3.

sponge zone

zonal region

RRALF

𝑅𝑒𝜃: 2240 2536

Figure 3: Sketch of the mesh used for the tripped and zonal simulation of the
turbulent flat plate.

Fig. 4 depicts the first and second order turbulence statistics at Reθ = 2240 and
Reθ = 2536 within the zonal region, for which reference data from Eitel-Amor et
al. [2] is available. The time-averaged streamwise velocity in Fig. 4 (left) displays
a good agreement with the reference. The second order turbulent statistics in
form of the normal stresses are illustrated in Fig. 4 (right). For both Reynolds
numbers, the tripped and the zonal LES show again good agreement with the
reference.
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Fig. 7: Comparison of the mean velocity u+ = u/uτ (left) and the Reynolds fluctu-
ations (right) at Reθ = 2240 and Reθ = 2536 for the tripped and the zonal turbulent
flat plate with a numerical reference from Eitel-Amor et al. [7]. The Reynolds fluc-
tuations u′+ =

√
u′u′/uτ , v′+ =

√
v′v′/uτ and w′+ =

√
w′w′/uτ are presented by

red lines ( ), green lines ( ) and blue lines ( ), respectively.

Fig. 8: Q-criterion of the turbulent structures colored by the velocity magnitude. The
red region represents the zone where the ALF is enforced. The background mesh is
also presented up to 10.5δ99 in the wall-normal direction.

the size of 34.78δ99,in× 20.55δ99,in× 3.95δ99,in. The present simulation (LES02)
was conducted with a polynomial degree of N = 6 with 102×104×27 elements in
streamwise, wall-normal and spanwise direction, respectively. This leads to an total
amount of about 98 million DOF. The grid resolution at the inlet was chosen in wall
units as ∆y+min = 1.6, ∆x+ = 30 and ∆z+ = 16. Periodic boundary conditions were
used in the spanwise direction and an adiabatic no-slip wall boundary condition was
used for the flat plate. At the upper boundary, the DNS data was set as Dirichlet
boundary condition to avoid reflections, induced by the inconsistency between the
inflow and the upper boundaries. Finally, a sponge layer was placed before the outlet

Figure 4: Comparison of the mean velocity u+ = u/uτ (left) and the Reynolds
fluctuations (right) at Reθ = 2240 and Reθ = 2536 for the tripped and
the zonal turbulent flat plate with a numerical reference from Eitel-Amor et
al. [2]. The Reynolds fluctuations u′+ =

√
u′u′/uτ , v ′+ =

√
v ′v ′/uτ and

w ′+ =
√

w ′w ′/uτ are presented by red lines ( ), green lines ( ) and blue
lines ( ), respectively.
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