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FLEXI performance on HAWK

To analyze the impact of the architecture of HAWK, the performance analysis
was first carried out on all available cores (stride=1) and in a second step, while
using only every second available core (stride=2), see Fig. 1. This artificially
iIncreases the available memory bandwidth per active core. The results in Fig. 1
indicate that the case with stride=2 gains about 30 % in performance compared
to the stride=1 case.

The lifting procedure was redesigned to compute only the gradients of the vari-
ables which are actually required to compute the parabolic fluxes of the Navier-
Stokes-Fourier equations. It reduced the memory footprint of the lifting proce-
dure by about a fifth and improved the overall performance of FLEXI.

The function call of two frequently called functions, namely the Riemann solver
as well as the solver for the two-point volume split flux, was optimized. We in-
troduced a two step compilation process to employ profile-guided optimization
(PGO). By using PGO, the aforementioned functions get optimized by the com-
piler and the overall cache usage is improved. In 1¢c and 1d the results with the
optimized code version using both stride=1 and stride=2 are depicted. A com-
parison of 1a with Fig. 1c demonstrates a performance improvement by about
25 % In case of an optimal load and even up to 40 % for high loads.
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Figure 1: Results of the scaling analysis for different meshes and loads. Four
different cases are investigated: the baseline version of FLEXI as described
in Krais et al. [3] and the optimized version for HAWK with a stride of 1 and 2

for each version. The legend lists the number of elements of the investigated
meshes.
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Recycling-Rescaling Anisotropic Linear Forcing (RRALF)

The RRALF method by Kuhn et al. [4] is a combination of the recycling-rescaling
method for zero pressure gradient (ZPG) boundary layer flows by Lund et al. [5]
and the anisotropic linear forcing introduced by de Laage de Meux et al. [1].
Thus, RRALF relies on the Navier-Stokes equations for physical turbulence pro-
duction but adds a forcing zone in front of the recycling plane to break the limita-
tion to ZPG boundary layers and drive the solution towards the desired boundary
layer profile as seen in Fig. 2. The rescaling follows [5] by splitting the boundary
layer in an inner and outer region and reconstructing the rescaled profile using

Uiin = [(G)in"™ + (Ui ] [1 = Wamin)] + [(@)7"" + (U] W(inin),

where u; is the corresponding component of the instantaneous velocity field,

[ ] and [ ] denoting mean and fluctuating quantities, and W(n;,) is a blending
function. The ALF volume forcing term is taken from [1], which yields
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for each of the momentum vector components / = 1,2, 3, where R represents
the spatial DG operator and f; the ALF vector given as f; = A;u; + B;. A; and

B; denote the tensors for the Reynolds stresses and the mean velocity forcing,
respectively.

= R(ui) + pf;
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Figure 2: Q-criterion of the turbulent structures colored by the
velocity magnitude. The red region represents the zone where
the ALF is enforced. The background mesh is also presented
up to 10.54gg in the wall-normal direction.
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Subsonic turbulent flat plate

Two simulations of a weakly compressible (Ma = 0.3) turbulent flat plate were
carried out. First, a tripped turbulent boundary layer simulation, starting at
Rey = 750 up to Rey = 2800, was conducted. These simulation results were
used as target data for a zonal LES of the rear half of the flat plate. The
zonal LES had the same mesh resolution and resolved the boundary layer from
Re, = 1800 — 2800. The simulation setup is depicted in Fig. 3.
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Figure 3: Sketch of the mesh used for the tripped and zonal simulation of the
turbulent flat plate.

Fig. 4 depicts the first and second order turbulence statistics at Rey = 2240 and
Rey = 2536 within the zonal region, for which reference data from Eitel-Amor et
al. [2] is available. The time-averaged streamwise velocity in Fig. 4 (left) displays
a good agreement with the reference. The second order turbulent statistics in
form of the normal stresses are illustrated in Fig. 4 (right). For both Reynolds

numbers, the tripped and the zonal LES show again good agreement with the
reference.

—— Zonal LES
...... Tripped LES

2 = = = FEitel-Amor et al. (2014)

10! 102 103 10%

Reg = 2240
AT R R A

10-1 10° 10! 10° 10° 10* :
a ¥/ 99

Figure 4: Comparison of the mean velocity u™ = u/u; (left) and the Reynolds
fluctuations (right) at Rey = 2240 and Rey = 2536 for the tripped and
the zonal turbulent flat plate with a numerical reference from Eitel-Amor et
al. [2]. The Reynolds fluctuations v'* = v u'v//u-, vV'* =V Vvv//u; and
w't = v ww /u, are presented by red lines (), green lines () and blue
lines (—), respectively.

[5] Thomas S Lund, Xiaohua Wu, and Kyle D Squires.

Generation of turbulent inflow data for spatially-developing bound-
ary layer simulations.

Journal of Computational Physics, 140(2):233—-258, 1998.



