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Fluid Dynamic Shape Optimization

e The aim of the project is to further our understanding ot optimization schemes
for domains that experience large deformations

e Shape optimization is employed to obtain the optimal shape of an obstacle

e This is done in terms of a physical quantity, specifically the aerodynamic

drag
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Our project focuses on the following:
e Extension operators that allow for large deformations

e Use of the method of mappings to formulate the problem in terms of optimal
control [1]

e Mesh quality preservation with respect to the reference configuration, as in |2|

Extension Equations and Method of
Mappings

The domain used is sketched above, it consists of:

e An obstacle €, and its surface I',,s and the holdall domain €2, which represents
a flow tunnel

The algorithm proposed in [3| uses the Augmented Lagrangian. The main blocks
are:

e The Navier-Stokes equations for incompressible flow as state equation

e A nonlinear extension equation, solved for the deformation field w € W in terms
of n and u

/Sym(Du_}) - Dby + n(DT @) - 6 da = / it - O ds
() 1_wobs

e The formulation over the reference through the method of mappings, e.g. the
cost function is reformulated as

7 (U, W) = V/Q(DQT(DF)_l) - (DU(DF)™Y) det(DF)dx.

e The volume and barycenter defined by I',,¢ are set as constraints
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2D and 3D Case Studies

In the 2d results shown below:

e The reference domain included pronounced edges

e [n the figure the optimal u, w are applied to obtain the optimized I'yq

e Our algorithm removes and creates surtace singularities
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Likewise, for a high viscosity 3d simulation:

e An average of 320 cores were used for each test
e The grid consists of more than 12 million tetrahedrons
e The reference configuration, a rough sphere, is optimized

e Surface singularities are created, as in the 2d case
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Grid Independence and Scalability

e Different levels of refinement are applied and compared
e The obtained geometry is the same in all cases

e Superimposed surfaces display minimal differences at the generated tip

Scalability for a massive number of degrees of freedom is featured below with the
accumulated iteration counts for weak scaling:

e Increase from 100k triangular elements to more than 6 million

e Almost constant iteration counts for the Newton and linear solvers

Procs Refs NumElems  Linear solver Newton solver Linear solver
(shape derivative) (deformation field) (deformation field)
20 4 105472 56 |2 9
320 5 421,888 70 |2 vl
L2800 6 1,687,552 1T |2 9
53120 7 6,750,208 17 |2 9

Outlook

e A more detailed 3d case study has to be carried out

e The number of cores per node have to be further optimized with respect to the
cube topology featured in Hawk

e Novel deformation techniques will be tested as part of the work of the research
eroup for Optimization and Approximation
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