

Fluid Dynamic Shape Optimization

- The aim of the project is to further our understanding of optimization schemes for domains that experience large deformations
- Shape optimization is employed to obtain the optimal shape of an obstacle
- This is done in terms of a physical quantity, specifically the **aerodynamic** drag

Our project focuses on the following:

- Extension operators that allow for large deformations
- Use of the **method of mappings** to formulate the problem in terms of optimal control |1|
- Mesh quality preservation with respect to the reference configuration, as in [2]

Extension Equations and Method of Mappings

The domain used is sketched above, it consists of:

• An obstacle Ω_{obs} and its surface Γ_{obs} and the holdall domain Ω , which represents a flow tunnel

The algorithm proposed in [3] uses the Augmented Lagrangian. The main blocks are:

- The Navier-Stokes equations for incompressible flow as state equation
- A nonlinear extension equation, solved for the deformation field $\vec{w} \in W$ in terms of η and u

$$\int_{\Omega} \operatorname{Sym}(D\vec{w}) : D\vec{\delta}_{\vec{w}} + \eta(D\vec{w}\,\vec{w}) \cdot \vec{\delta}_{\vec{w}}\,dx = \int_{\Gamma_{\text{obs}}} u\vec{n}$$

• The formulation over the reference through the method of mappings, e.g. the cost function is reformulated as

$$j(\vec{v}, \vec{w}) = \nu \int_{\Omega} (D\vec{v}(DF)^{-1}) : (D\vec{v}(DF)^{-1}) \det(DF)^{-1} \det(DF)^{-1})$$

• The volume and barycenter defined by Γ_{obs} are set as constraints

Scalable Multigrid Algorithm for Fluid Dynamic Shape Optimization

Jose Pinzon 1^1 , Martin Siebenborn ², Andreas Vogel ³ ^{1,2}Department of Mathematics, Hamburg University ³High Performance Computing in the Engineering Sciences, Ruhr-University Bochum Email: ¹jose.pinzon@uni-hamburg.de

2D and 3D Case Studies

In the 2d results shown below:

- The reference domain included pronounced edges
- In the figure the optimal u, \vec{w} are applied to obtain the optimized Γ_{obs}
- Our algorithm removes and creates surface singularities

 $\vec{k} \cdot \vec{\delta}_{\vec{u}} ds$

(DF)dx.

Likewise, for a high viscosity 3d simulation:

- An average of 320 cores were used for each test
- The grid consists of more than 12 million tetrahedrons
- The reference configuration, a rough sphere, is optimized
- Surface singularities are created, as in the 2d case

Grid Independence and Scalability

- Different levels of refinement are applied and compared
- The obtained geometry is the same in all cases
- Superimposed surfaces display minimal differences at the generated tip

Scalability for a massive number of degrees of freedom is featured below with the accumulated iteration counts for weak scaling:

- Increase from 100k triangular elements to more than 6 million
- Almost constant iteration counts for the Newton and linear solvers

Procs	Refs	NumElems	Linear solver (shape derivative)	Newton solver (deformation field)	Linear solver (deformation field)
80	4	105,472	56	12	9
320	5	421,888	70	12	9
1,280	6	1,687,552	77	12	9
5,120	7	6,750,208	77	12	9

Outlook

- A more detailed 3d case study has to be carried out
- cube topology featured in Hawk
- group for Optimization and Approximation

1] J. Haubner, M. Siebenborn, and M. Ulbrich, "A continuous perspective on shape optimization via domain transformations," SIAM Journal on Scientific Computing, vol. 43, no. 3, A1997–A2018, 2021. DOI: 10.1137/20m1332050.

[2] S. Onyshkevych and M. Siebenborn, "Mesh quality preserving shape optimization using nonlinear extension operators," *Journal of Optimization Theory and Applications*, vol. 16, no. 5, pp. 291– 316, Mar. 2021. DOI: 10.1007/s10957-021-01837-8.

[3] J. Pinzon and M. Siebenborn, Fluid dynamic shape optimization using self-adapting nonlinear extension operators with multigrid preconditioners (in preparation).

The current work is a part of the research training group "Simulation-Based Design Optimization of Dynamic Systems Under Uncertainties (SENSUS) funded by the state of Hamburg under the aegis of the Landesforschungsförderungs-Project LFF-GK11. Part of the simulations were performed on the national supercomputer at the High Performance Computing Center Stuttgart HLRS) under the grant ShapeOptComp-Mat (ACID 44171, Shape Optimization for 3d Composite Material Models). The authors gratefully acknowledge the HLRS for supporting this project by providing computing time on the GCS Supercomputer Hawk.

High Performance Computing in the Engineering Sciences

• The number of cores per node have to be further optimized with respect to the

• Novel deformation techniques will be tested as part of the work of the research