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Abstract

This work presents a first performance analysis of the software framework UG4 [1, 2] on the
Hawk Apollo supercomputer. The software demonstrated excellent scaling properties before. It
has now been demonstrated that this also holds true for HLRS’s most recent machine and its
architecture. Three aspects are emphasized: (i) classic weak scaling of a multi-grid solver for
the Poisson equation, (ii) strong scaling for the heat equation using multi-grid-in-time, and (iii)
application to a thermo-haline-flow problem in a fully-coupled fashion.

Numerical Methods

Weak Scaling of the Multilevel Solver

Classic setup, e.g. [2]:
• Poisson’s equation on the unit cube with Dirichlet boundary conditions
• Finite elements on a structured hexagonal grid
• Solver: Geometric multigrid, damped Jacobi smoother, V(1,1)-cycle
• Wall clock times for a total 8, 64 . . . , 32768 cores have been measured.
• Roughly 250, 000 degrees of freedom per core, number of degrees of freedom and number of
cores grow simultaneously (⇥8).

Using default process assignment onto n nodes, the maximum number of processes per
node was limited using the switch select=n:node_type=rome:mpiprocs=m. Three different
phases of the algorithm are considered:
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Figure 1: Wall clock times using a default process assignment with at most m processes per node.

• The assemble-phase computes the finite element stiffness matrix. Dominated by computation,
with memory access for reading element information and writing coefficients into the sparse-
matrix format. No communication via MPI.

• The init-phase refers to the setup of the multilevel solver. Communication interfaces are
constructed. Data exchange for a proper application of matrix-vector operations.

• The apply-phase corresponds to timings are for a fixed number of five BiCGStab-sweeps. This
phase features many memory accesses to vector and sparse-matrix data structures. Moreover,
the network is used heavily for all-reduce operations ( e.g., for stopping criteria) as well as
nearest neighbor communication (e.g., master-slave-exchange along the process boundaries).

In order to match the node topology, the experiment has been repeated for process assignment

with stride. Only every fourth and second core have been used respectively:
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Figure 2: Wall clock times for process allocation with stride (i.e., one and two core per CCX respectively).
This yields various performance improvements:
• For the assemble-phase, a small acceleration of about 10% is observed. This is propably due
to improved read/write memory access.

• In the init-phase communication becomes more important. In this case a slightly more pro-
nounced acceleration is observed, and run times reduce by 20-30%.

• The biggest gains are achieved in the apply-phase. Compared to the default assignment, the
acceleration approaches the optimal factors, i.e., 2 when using 2 out of 4 cores per CCX, and 4
when using only a single core per CCX.

Strong Scaling for Multigrid Reduction in Time

Classic time stepping by one-step or multi-step-methods is a serial procedure. On modern
architectures, researchers may thus face a serial time-integration bottleneck, which can be
mitigated suing parallel-in-time integration. One example of this class is multigrid reduction in
time (MGRIT) [3]. This method has been implemented in form of the XBraid library, and coupled
with UG4 succesfully [4].

As an example, we consider the heat equation

@tu(~x, t)� ↵4u(~x, t) = f (~x, t)

for (~x, t) 2 (0, 1)3 ⇥ (0, 4⇡) and ↵ = 0.1. Initial value, Dirichlet boundary conditions and right hand
side f are chosen such that the solution u(~x, t) = sin(⇡x1) · sin(⇡x2) · sin(⇡x3) · cos(t) is obtained.
The equation is discretized using an implicit Euler method in time and Q1 finite elements in space.

Assuming that p MPI processes are available, two setups are compared:

• For serial time integration, all available processes are dedicated to the spatial domain. We
consider the sequence p 2 {8, 64, 512}. The time domain is split into 16384 equidistant intervals
that are treated sequentially.

• The strong scaling w.r.t the spatial variables is limited: From eight to 64 processes, a speedup
of ⇡ 5.5 is observed. For 512 processes the run time even deteroriates. In this case, the number
of degrees of freedom per process is small, and communication becomes the dominant factor.
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Figure 3: Strong scaling for heat equation. Comparison of a classic serial time integration (SERIAL) and multigrid
in time (MGRIT-FACTOR2) with factor of 2 coarsening. On the finest level, the unit cube ⌦ = (0, 1)3 is split into
128 ⇥ 128 ⇥ 128 elements, with 2, 146, 689 degrees of freedom. Splitting this onto eight processes, this means that
workload is in a similar order of magnitude as in the previous example for the steady state. Note, however, that due
to the fixed time step size, assembling the operator is only required once.

• The parallel-in-time integration using MGRIT uses p = ps ⇥ pt 2 {512, . . . , 32768} processes.
A fixed number of ps = 64 processes is dedicated to spatial domain. For the the time domain
a variable number pt 2 {8, . . . , 256} is used. Each process then owns an interval with 32768/pt
equidistant time points.

• MGRIT initially suffers from some computational overhead, as several iterations are required to
achieve the discretization error of the serial method. To that end, observe that using 512 pro-
cesses for pt = 8 = 512/64 equidistant time intervals roughly takes the same time as the serial
computation using p = 8 processes. However, from that point on, adding more processes in the
time dimension always lead to a speedup.

• The results are in agreement with results [3, 4], where problems of the size investigated here
were not computed, but predicted.

Applications

Thermohaline flow

• Thermohaline flow, e.g. [5], is a special instance of density-driven flow. Fluid density depends on
both temperature and fluid composition. Systems of this type are important, e.g., for modeling
transport of CO2 or NaCl in repositories and deep geological layers.

• Hot fluids have a lower density than cold fluids (%); high solute concentrations yields a higher
density (&). For a brine parcel in porous medium, both positive and negative buoyancy can
occur.

• The following images provides preliminary results for the parcel benchmark with negative buoy-
ancy. Figures 4 and 5 show the evolution of the parcel at an early and late stage. Simulations
for different grid resolutions using 128, 1024, 8192 cores. Implementation provided by the d3f -
framework [6].

Figure 4: Early stage (three different levels of spatial refinement from top to bottom): The parcel sinks down. De-
pending on the spatial resolution, a branching of the central finger becomes visible.

Figure 5: Late stage (three different levels of refinement): A layered fingering evolves. In the highest resolution, three
layers of fingers are visible.

• All fields shown in a single plot (symmetry w.r.t the center axis): temperature field is shown in
the background (blue to red); ten isosurfaces of the salt mass fraction in greyscale on the left;
streamlines indicating the velocity field are shown on the right (rainbow colors).

• Proper control of the discretisation error is madatory an can be achieved using novel time inte-
gration schemes [7].

• Negative buoyancy obviously leads to a fingering effect. The structure of the convective cells,
and/or, number of fingers is subject to further research.
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