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Tetraphenyl compounds with adamantane core are
investigated because of their special optical properties,
which depend on the structural properties (crystalline vs.
amorphous). Due to the system size of typically ~700
electrons, calculations are performed with smaller

prototypes.

To this end, we employed DFT to calculate the ground state
wave functions of Ph,X crystals with X being a tetravalent
element (C, Si, Ge, Sn, Pb). After obtaining a reliable
structure by minimization of the forces with special regard

to dispersion forces, we make use of the wave functions to

calculate further spectroscopic properties and relate them 1_ | ‘.,, (\ " '. Partial charge

distributions
correspond to
delocalized = orbitals
and localized p,
orbitals, respectively.

to structural and chemical trends.




DFT and methods based on its wave functions allow us to Parallelization controlled by grouping of bands (NPAR) and
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Zero damping DFT-D3 vdW
correction

Nice agreement with experiment
Also true for frozen phonon
calculations, which allow to
assign modes (symmetry,

displacement) to spectral features

Unit PBE-D3 EXP

Si-Si A  8.683-9.079 8.792
Si-C A 1.883-1.891 1.875
C-Si-C ° 108.78 -109.90 109.63
c A 6.158-7.285 6.762
a A 11.374-11.761 11.477
1 1.614-1865 1.697

——— Experimental intensity
—— Theoretical modes
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Parallelization by k-points allows high scaling efficiency (associated

with larger memory demand)!

Calculations of optical properties employ the wave functions, which

allow for a better understanding of experimental results.

Ph,X Bandgap [eV]
C 4.354
Si 4.022
Ge 3.817
3.739
4.028

Energie in eV
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