lonic liquids confined between metallic surfaces: Structural, dynamical and thermodynamical properties

 samuel Ntim (sntim@uni-mainz.de) and Marialore Sulpizi KOMET 1, Institut für Physik, Johannes Gutenberg-Universität MainzHighlights

- Inclusion of the metal polarisation shows only minor deviations
from a purely Lennard-Jones metal, at Potential of Zero Charge
(PZC)
(PZC) a purely Lennard-Jones metal, at Potential of Zero Charge (PZC)
The interface, as given by dynamical properties of the lonic Liquid (IL) is much

Retivation

Research on ionic liquids has steadily increased due to its potential application in energy storage and in tribology, for example. However, for such applications, it is crucial to understand the electric double layer (EDL) structure as well as peculiar interactions, at an interface with an electrode, in order to advance the research. - Although the EDL cannot be exhaustively described at PZC, significant information may be obtained nonetheless.

Models and simulation

Gold
Two gold models.

- Non-polarisable gold [1] atom
- Polarisable gold [2] "molecule"
consisting of a core and a
dumbato
he polarisable gold is parameterised to reproduce classical image charge potential.
Ionic Liquid (IL)
- Non-polarisable [BMIM] [BF4] IL
- Interaction potentials reproduces experimental transport and conductivity properties [3]
Simulation details IL confined in two slabs of 9 layers of Au (111) plane (4.05457 $4.05457 \mathrm{~nm}^{2}$) -2D periodic boundary conditions
- 3D Particle Mesh Ewald with slab correction, for electrostatics
- Charge evenly distributed
on surface gold atoms
- 5 independent 20 ns NVT MD simulations 1200 ion pairs for each surface charge density.

Structural aspects
The layered structure extends up to 2 nm from the surface and it not dependent on the gold polarisation

- Cations (solid) adsorb closer to the gold surface than the anions (dashed) to maximise the van der Waals interactions with surface

Adapted from ref. [4]

- Cations are predominantly flat at the interface

in an electric field and hence a potential drop
- An overcompensation of counterions at the interfaces builds up an

Adapted from ref. [4]
Dynamical aspects

- Bulkier cations rather diffuse faster than spherical anions
- Bulkier cations rather diffuse faster than spherical anions
- The diffusion coefficient reaches its bulk value only after 10 nm away from gold surface

Thermodynamical aspects

- Total work of adhesion shows higher wettability of the ionic liquid (solid black line) on the gold surface than of water (blue line) on the gold surface, shown in panel A.
- The electrostatic contribution of the work of adhesion, shown in panel B , is only about 2% of the whole
- Panels C and D demonstrate the effect of lowering the temperaur of system, on the work of adhesion

Adapted from ref. [4]

Acknowledgment
-TRR 146 and NanoTrans for funding

References

$[11$ Heinz, H. et al., The Jourral of Physical Chemistry C 112, 17281-17290 (2008).
[2] Geada, I. L. Communications 9, (2018) L3C Chana, V.V.et al al., Physical Chemistry Chemical Physics 13,7910 (2011).
[4] 1 Ntim, S. \& Sulpizi, M. Phys. Chem. Chem. Phys. 22, $10786-10791$ (2020).

