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Outline

• UPC basics….

� Shared and Private data – scalars and arrays

� Pointers

� Dynamic memory

• UPC in use

� GUPS (Global Random Access) benchmark

• Cray support for PGAS

� Legacy – X1, X1E, T3E

� Current – X2, XT, XE
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Context

• Most parallel programs are written using either:

� Message passing with a SPMD model

� Usually for scientific applications with C/Fortran

� Scales easily

� Shared memory with threads in OpenMP, 

Threads+C/C++/Fortran or Java

� Usually for non-scientific applications

� Easier to program, but less scalable performance

• Global Address Space (GAS) Languages take the best of both

� global address space like threads (programmability)

� SPMD parallelism like MPI (performance)

� local/global distinction, i.e., layout matters (performance)
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Partitioned Global Address Space Languages

• Explicitly-parallel programming model with SPMD parallelism

� Fixed at program start-up, typically 1 thread per processor

• Global address space model of memory

� Allows programmer to directly represent distributed data 

structures

• Address space is logically partitioned

� Local vs. remote memory (two-level hierarchy)

• Programmer control over performance critical decisions

• Performance transparency and tunability are goals

• Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium 

(Java)
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UPC Overview and Design Philosophy

• Unified Parallel C (UPC) is:

� An explicit parallel extension of ANSI C

� A partitioned global address space language

� Sometimes called a GAS language

• Similar to the C language philosophy

� Programmers are clever and careful, and may need to get 

close to hardware

� to get performance, but

� can get in trouble

� Concise and efficient syntax

• Common and familiar syntax and semantics for parallel C with 

simple extensions to ANSI C

• Based on ideas in Split-C, AC, and PCP
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UPC Execution Model

• A number of threads working independently in a SPMD 

fashion

� Number of threads specified at compile-time or run-time; 

available as program variable THREADS

� MYTHREAD specifies thread index (0..THREADS-1)

� upc_barrier is a global synchronization: all wait

� There is a form of parallel loop, upc_forall

• There are two compilation modes

� Static Threads mode:

� THREADS is specified at compile time by the user

� The program may use THREADS as a compile-time constant

� Dynamic threads mode:

� Compiled code may be run with varying numbers of threads
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Hello World in UPC

• Any legal C program is also a legal UPC program

• If you compile and run it as UPC with P threads, it will run P 

copies of the program.

• Using this fact, plus the identifiers from the previous slides, 

we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */

#include <stdio.h>

main() {

printf("Thread %d of %d: hello UPC world\n", 

MYTHREAD, THREADS);

}
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Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private 

memory space for each thread.

• Shared variables are allocated only once, with thread 0

shared int ours;  // use sparingly: performance

int mine;
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Shared and Private Data

Examples of Shared and Private Data Layout:

Assume THREADS = 4

shared int x;  /*x will have affinity to thread 0 */

shared int y[THREADS];

int z;

will result in the layout:
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Shared and Private Data

shared int A[4][THREADS];

will result in the following data layout:
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Blocking of Shared Arrays

• Default block size is 1

• Shared arrays can be distributed on a block per thread 

basis, round robin with arbitrary block sizes.

• A block size is specified in the declaration as follows:

� shared [block-size] type array[N];

� e.g.: shared [4] int a[16];
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Blocking of Shared Arrays

• Block size and THREADS determine affinity

• The term affinity means in which thread’s local shared-

memory space, a shared data item will reside

• Element i of a blocked array has affinity to thread:
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Shared and Private Data

• Shared objects placed in memory based on affinity

• Affinity can be also defined based on the ability of a thread 

to refer to an object by a private pointer

• All non-array shared qualified objects, i.e. shared scalars, 

have affinity to thread 0

• Threads access shared and private data
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Shared and Private Data

Assume THREADS = 4

shared [3] int A[4][THREADS];

will result in the following data layout:
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upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {

int i;

upc_forall(i=0; i<N; i++; i)

sum[i]=v1[i]+v2[i];

}
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• A vector addition can be written as follows…

• The code would be correct but slow if the affinity 
expression were i+1 rather than i.

The cyclic data 

distribution may 

perform poorly on 

some machines



UPC Pointers 
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Local Shared

Private PP (p1) PS (p3)

Shared SP (p2) SS (p4)

Where does the pointer point?

Where does 

the pointer 

reside?

int *p1; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /* shared pointer to local memory */

shared int *shared p4; /* shared pointer to 

shared space */

Shared to private is not recommended.



UPC Pointers 
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int *p1; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /* shared pointer to local memory */

shared int *shared p4; /* shared pointer to  

shared space */
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Common Uses for UPC Pointer Types 

• int *p1; 

� These pointers are fast (just like C pointers)

� Use to access local data in part of code performing local work

� Often cast a pointer-to-shared to one of these to get faster access to 

shared data that is local

• shared int *p2; 

� Use to refer to remote data

� Larger and slower due to test-for-local + possible communication 

• int *shared p3; 

� Not recommended

• shared int *shared p4; 

� Use to build shared linked structures, e.g., a linked list
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UPC Pointers 

• In UPC pointers to shared objects have three fields: 

� thread number 

� local address of block

� phase (specifies position in the block)
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4Example: Cray T3E implementation
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UPC Pointers

• Pointer arithmetic supports blocked and non-blocked array 

distributions

• Casting of shared to private pointers is allowed but not vice 

versa !

• When casting a pointer-to-shared to a pointer-to-local, the 

thread number of the pointer to shared may be lost

• Casting of shared to local is well defined only if the object 

pointed to by the pointer to shared has affinity with the thread 

performing the cast
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Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is available in 

UPC

• Functions can be collective or not

• A collective function has to be called by every thread and will 

return the same value to all of them

• As a convention, the name of a collective function typically 

includes “all”
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Collective Global Memory Allocation 

shared void *upc_all_alloc

(size_t nblocks, size_t nbytes);

nblocks: number of blocks

nbytes: block size

• This function has the same result as upc_global_alloc. But this 

is a collective function, which is expected to be called by all 

threads

• All the threads will get the same pointer 

• Equivalent to : 
shared [nbytes] char[nblocks * nbytes] 
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Collective Global Memory Allocation
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shared [N] int *ptr;

ptr = (shared [N] int *) 

upc_all_alloc( THREADS, N*sizeof( int ) );

ptr ptr ptr

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS-1

N
…

N N



Global Memory Allocation 

shared void *upc_global_alloc

(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

• Non collective, expected to be called by one thread 

• The calling thread allocates a contiguous memory region in the 

shared space

• Space allocated per calling thread is equivalent to :

shared [nbytes] char[nblocks * nbytes]

• If called by more than one thread, multiple regions are 

allocated and each calling thread gets a different pointer
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Local-Shared Memory Allocation 

shared void *upc_alloc (size_t nbytes);

nbytes: block size

• Non collective, expected to be called by one thread 

• The calling thread allocates a contiguous memory region in the 

local-shared space of the calling thread

• Space allocated per calling thread is equivalent to :

shared [] char[nbytes]

• If called by more than one thread, multiple regions are 

allocated and each calling thread gets a different pointer
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Local-Shared Memory Allocation
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Memory Space Clean-up

• void upc_free(shared void *ptr);

• The upc_free function frees the dynamically allocated shared 

memory pointed to by ptr

• upc_free is not collective
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Lots more I haven’t mentioned!

• Synchronization – no implicit synchronization among the 

threads – it’s up to you!

� Barriers  (Blocking)

� Split-Phase Barriers (Non-blocking)

� Locks – collective and global

• String functions in UPC

� UPC equivalents of memcpy, memset

• Special functions

� Shared pointer information (phase, block size, thread 

number)

� Shared object information (size, block size, element size)

• UPC collectives

• UPC-IO
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UPC Random Access:  

Designed for Speed

• This version of UPC Random Access was originally written by 

Nathan Wichmann in Spring 2004

• Written to maximize speed

• Had to work inside of the HPCC benchmark

• Had to run well on any number of CPUs

• Also happens to be a very productive way of writing the Global 

RA.

30



UPC Random Access:  Highlights

• Trivial to parallelize, each PE gets its share of updates

• Unified Parallel C allows direct, one-sided access to distributed 

variables; NO two-sided messages!

• Decomposed “Table” into 2 Dims. to allow explicit, fast 

computation of LocalOffset and PE number

• Serial version is very succinct….
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u64Int Ran;

Ran = 1;

for (i=0; i<NUPDATE; i++) {

Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ?POLY : 0);

GlobalOffset = Ran & (TABSIZE -1);

Table[GlobalOffset] ^= Ran;

}     



Productivity:  Fewer lines of code

UPC VERSION
#pragma _CRI concurrent

for (j=0; j<STRIPSIZE; j++) 

for (i=0; i<SendCnt/STRIPSIZE; i++) {

VRan[j] = (VRan[j] << 1) ^ ((s64Int) VRan[j]< 

ZERO64B ? POLY : ZERO64B);

GlobalOffset = VRan[j] & (TableSize - 1);

if (PowerofTwo) 

LocalOffset=GlobalOffset>>logNumProcs ; 

else            

LocalOffset=(double)GlobalOffset/(double)TH

READS;

WhichPe=GlobalOffset-LocalOffset*THREADS;

Table[LocalOffset][WhichPe] ^= VRan[j] ;

}

}

BASE VERSION
NumRecvs = (NumProcs > 4) ?(Mmin(4,MAX_RECV)) : 

1;

for (j = 0; j < NumRecvs; j++)  

MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZ
E], localBufferSize,INT64_DT, MPI_ANY_SOURCE, 

MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[j]);

while (i < SendCnt) {

do {

MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status);

if (have_done) {

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, INT64_DT, 

&recvUpdates);

bufferBase = index*LOCAL_BUFFER_SIZE;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (TableSize - 1)) -
GlobalStartMyProc;

HPCC_Table[LocalOffset] ̂ = inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG) {

NumberReceiving--;

} else {

abort();

}
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Productivity :  Fewer lines of code

UPC VERSION BASE VERSION
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, 

MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]);

}

} while (have_done && NumberReceiving > 0);

if (pendingUpdates < maxPendingUpdates) {

Ran = (Ran << 1) ^ ((s64Int) Ran <   ZERO64B ? 

POLY : ZERO64B);

GlobalOffset = Ran & (TableSize-1);

if ( GlobalOffset < Top)

WhichPe = ( GlobalOffset / (MinLocalTableSize

+ 1) );

else

WhichPe = ( (GlobalOffset - Remainder) / 

MinLocalTableSize );

if (WhichPe == MyProc) {

LocalOffset = (Ran & (TableSize - 1)) -

GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= Ran;

}

else {

HPCC_InsertUpdate(Ran, WhichPe, Buckets);

pendingUpdates++;

}

i++;

}

else {
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Productivity :  Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);

if (have_done) {

outreq = MPI_REQUEST_NULL;

pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, 

localBufferSize, &peUpdates);

MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);

pendingUpdates -= peUpdates;

}}}

while (pendingUpdates > 0) {

do {

MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status);

if (have_done) {

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, INT64_DT, &recvUpdates);

bufferBase = index*LOCAL_BUFFER_SIZE;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG) {

NumberReceiving--;
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Productivity :  Fewer lines of code

UPC VERSION

BASE VERSION
} else {

abort();}

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]);

}} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);

if (have_done) {

outreq = MPI_REQUEST_NULL;

pe = HPCC_GetUpdates(Buckets,     
LocalSendBuffer, localBufferSize, &peUpdates);

MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 
(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);

pendingUpdates -= peUpdates;

} }

for (proc_count = 0 ; proc_count < NumProcs ; 
++proc_count) {

if (proc_count == MyProc) { finish_req[MyProc] = 
MPI_REQUEST_NULL; continue; }

MPI_Isend(&Ran, 1, INT64_DT, proc_count, 
FINISHED_TAG,MPI_COMM_WORLD, finish_req + 

proc_count);

}

while (NumberReceiving > 0) {
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Productivity :  Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Waitany(NumRecvs, inreq, &index, &status);

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, INT64_DT, &recvUpdates);

bufferBase = index * LOCAL_BUFFER_SIZE;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG){

NumberReceiving--;

} else {

abort(); }

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZ

E], localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD, &inreq[index]);

}

MPI_Waitall( NumProcs, finish_req, 

finish_statuses);

HPCC_FreeBuckets(Buckets, NumProcs);

for (j = 0; j < NumRecvs; j++) {

MPI_Cancel(&inreq[j]);

MPI_Wait(&inreq[j], &ignoredStatus);

}
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Productivity:  Algorithm Transparency

#pragma _CRI concurrent

for (j=0; j<STRIPSIZE; j++) 

for (i=0; i<SendCnt/STRIPSIZE; i++) {

VRan[j] = (VRan[j] << 1) ^ ((s64Int)VRan[j] 

< ZERO64B ? POLY : ZERO64B);

GlobalOffset = VRan[j] & (TableSize - 1);

if (PowerofTwo)

LocalOffset=GlobalOffset>>logNumProcs ; 

else

LocalOffset=            

(double)GlobalOffset/(double)THREADS;

WhichPe=GlobalOffset-LocalOffset*THREADS;

Table[LocalOffset][WhichPe] ^= VRan[j] ;

}}
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Generate Random 
Number

Compute GO

Decompose GO 
into LO and 
WhichPE

XOR VRan and Table



Productivity + Speed = Results

• UPC Random Access sustains 7.69 GUPs on 1008 Cray X1E MSPs.

• Works inside the HPCC framework

• Is “in the spirit” of the benchmark

• Easy to understand and modify if computations are more complex

• The Future

� Atomic XORs will vastly improve performance

� All memory references will be “Fire and Forget”
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PGAS and Cray

• Cray have been supporting CAF and UPC since the beginning

� Original support on the T3E

• Full PGAS support on the Cray XT and XE

� Cray Compiling Environment 7.0 – Dec 08

� Cray Compiler Environment 7.3 – Dec 10

� Full UPC 1.2 specification

� Full CAF support – CAF proposed for the Fortran 2008 standard

� Hybrid MPI/PGAS codes supported – very important!

• Fully integrated with the Cray software stack

� Same compiler drivers, job launch tools, libraries

� Integrated with Craypat – Cray performance tools

• Hardware support for PGAS in Gemini interconnect
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