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Overview

• PGAS in context with other programming models

• Fortran coarray features
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Programming models and PGAS

• Parallel programming models allow us to build applications 

that can run efficiently on parallel architectures

• PGAS stands for Partitioned Global Address Space and is one of 

the programming models used in parallel programming

• We will introduce the PGAS approach in context with other 

traditional programming models

� shared memory directives

� message-passing
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Shared Memory Directives 

• Multiple threads share global memory

• Most common variant: OpenMP

• Program loop iterations distributed to threads,

more recent task features

� Each thread has a means to refer to private objects within 

a parallel context

• Terminology

� Thread, thread team

• Implementation

� Threads map to user threads running on one SMP node

� Extensions to multiple servers not so successful
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OpenMP
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OpenMP: work distribution

6

memory

threads

!$OMP PARALLEL

do i=1,32

a(i)=a(i)*2

end do1-8 9-16 17-2425-32



OpenMP implementation
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Message Passing

• Participating processes communicate using a 

message-passing API

• Remote data can only be communicated (sent or received) via 

the API

• MPI (the Message Passing Interface) is the standard

• Implementation:

MPI processes map to processes within one SMP node or 

across multiple networked nodes

• API provides process numbering, point-to-point and collective 

messaging operations
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MPI
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MPI
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Partitioned Global Address Space Model

• Shortened to PGAS

• Participating processes/threads have access to local

memory via standard program mechanisms

• Access to remote memory is directly supported by the PGAS 

language
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PGAS

12

memory

cpu

process

memory

cpu

memory

cpu

process process



PGAS Languages

• Various Implementations including Fortran coarrays, 

UPC and Titanium

• Coarrays (Fortran)

� Participating images

� New codimension attribute for objects

� New  mechanism for remote access:    

a(:)=b(:)[image] ! Get b from remote image

• UPC

� Participating “threads”

� New shared data structures

� Language constructs to divide up work on shared data
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PGAS Advantages

• Remote access is a full feature of the language:

� Type checking

� Opportunity to optimize communication

• No performance penalty for local memory access

• Single-sided programming model more natural for some 

algorithms

� and a good match for modern networks with RDMA
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Fortran coarrays

An introduction
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Coarrays 

"Coarrays were designed to answer the question:

‘What is the smallest change required to convert Fortran 

into a robust and efficient parallel language?’ 

The answer: a simple syntactic extension. 

It looks and feels like Fortran and requires 

Fortran programmers to learn only a few new rules."
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Coarrays in Fortran

• Introduced in current form by Numrich and Reid in 1998 as a 

simple extension to Fortran 95 for parallel processing

• Implemented on various Cray hardware platforms

• A set of core features are now part of the Fortran standard: 

ISO/IEC 1539-1:2010

• Additional features are expected to be published in a 

Technical Report in due course.

• Various vendor and GNU projects (Intel, g95, gfortran) 

underway
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Basic execution model and features

• Program executes as if replicated to multiple copies with each 

copy executing asynchronously (SPMD)

• Each copy (called an image) executes as a normal 

Fortran application

• New object indexing with [] can be used to access objects on 

other images.

• New features to inquire about image index, number of images 

and to synchronize
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Coarray execution model
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Basic coarray declaration and usage

• Coarray has to be the same size on each image
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integer :: b

integer :: a(4)[*] !coarray

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6



Basic coarray declaration and usage

• References without [] are local

• b is set to second element of a on each image
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integer :: b

integer :: a(4)[*] !coarray

b=a(2)

1 8 1 5a

image 1

b 8

1 7 9 9a

image 2

b 7

1 7 9 4a

image 3

b 7



Basic coarray declaration and usage

• [] indicates access to remote coarray data

• Each b is set to fourth element of array a on image 3
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integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6



Basic coarray declaration and usage

• [] indicates access to remote coarray data

• Each b is set to fourth element of array a on image 3
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integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 4

1 7 9 9a

image 2

b 4

1 7 9 4a

image 3

b 4



real :: residual[*]  ! Scalar coarray

real, dimension(100), codimension[*] :: x,y

integer, dimension(m) :: offsets[0:*]

type (color) map(512,512)[*]

character(len=80), allocatable ::search_space(:)[:]

allocate( search_space(2000)[*] )

More Coarray Declarations
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Image execution

• Used to allow images to organise problem distribution and to 

operate independently
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images = num_images()

me = this_image()

image 1

me 1

images 3

image 2

me 2

images 3

image 3

me 3

images 3

Functions provided to return number of images and 

index of executing image



Example: Read array from file

• Read n elements at a time and distribute
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double precision, dimension(n) :: a

double precision, dimension(n) :: temp[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

temp = temp + 273d0 !!! THIS IS NOT SAFE 



Basic Synchronization: sync all

• images only continue when all images have reached the 

statement and remote references are completed
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!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0



Recap of coarray basics

• multiple images execute asynchronously

• we can declare a coarray which is accessible from multiple 

images

• indexing with [] is used to access remote data

• we can find out which image we are

� num_images()

� this_image()

• we can synchronize to make sure variables are up to date

� sync all

Now consider a program example…
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Example2: Calculate density of primes
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program pdensity

implicit none

integer, parameter :: n=8000000, nimages=8

integer start,end,i

integer, dimension(nimages) :: nprimes[*]

real density

start = (this_image()-1) * n/num_images() + 1

end = start + n/num_images() - 1

nprimes(this_image())[1] = num_primes(start,end)

sync all



Example2: Calculate density of primes
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… 

if (this_image()==1) then

nprimes(1)=sum(nprimes)

density=real(nprimes(1))/n

print *,"Calculating prime density on", &

&         num_images(),"images"

print *,nprimes(1),'primes in',n,'numbers'

write(*,'(" density is ",2P,f5.2,"%")')density

write(*,'(" asymptotic theory gives ", &

&           2P,f5.2,"%")')1.0/(log(real(n))-1.0)

end if



Example2: Calculate density of primes

• Calculating prime density on 2 images

• 539778 primes in 8000000 numbers

• density is  6.75%

• asymptotic theory gives  6.71%
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Program Launch

• The Fortran standard does not specify how a program is 

launched

• The number of images may be set at compile, link or run-time

• A compiler could optimize for a single image

• Examples on Linux

� Cray XE

aprun –n 16000 solver

� g95

./solver --g95 -images=2
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Multi-codimensional coarrays

• More general declarations
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complex :: b[0:*]

complex :: p(32,32)[2,3,*] 

� Cosubscripts map to images in array-element order

image b(:)[i] p(:)[i,j,k]

1 b(:)[0] p(:)[1,1,1]

2 b(:)[1] p(:)[2,1,1]

3 b(:)[2] p(:)[1,2,1]

4 b(:)[3] p(:)[2,2,1]

5 b(:)[4] p(:)[1,3,1]

6 b(:)[5] p(:)[2,3,1]

7 b(:)[6] p(:)[1,1,2]



Multi-codimensional coarrays…

• Example: pixel data distributed on 9 images
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type(pixel) :: p(8,8)[3,*]

p(:)[1,1]

image 1

p(:)[2,1]

image 2

p(:)[3,1]

image 3

p(:)[1,2]

image 4

p(:)[2,2]

image 5

p(:)[3,2]

image 6

p(:)[1,3]

image 7

p(:)[2,3]

image 8

p(:)[3,3]

image 9



Multi-codimensional coarrays…

• There is a way to find out which part of the coarray is mapped 

to an image

� this_image(coarray) yields codimensions

� this_image(coarray,dim) yields one codimension

• So for the previous example, on image 2

� this_image(p) is [ 2, 1 ]

• Can get image index from coarray:

� image_index(p,[2,1]) is 2

� image_index(p,[3,4]) is 0 
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p(:)[2,1]

image 2



Multi-codimensional coarrays…

• Example: copy the bottom row from the image ‘above’ me in 

the grid…
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type(pixel) :: p(32,32)[3,*],&

&              copy(32)

px = this_image(p,1)

py = this_image(p,2)

copy = p(:,32)[px, py-1]

p(:)[2,1]

image 2

p(:)[2,2]

image 5



Allocatable coarrays
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integer n,ni

real, allocatable :: pmax(:)[:]

real, allocatable :: p(:,:)[:,:]

!...

ni = num_images()

allocate( pmax(ni)[*], p(n,n)[4,*] )

� Require same shape and coshape on every image

� allocate and deallocate with coarray arguments cause 

a synchronization



Allocatable components of coarrays

• The size can vary on each image 
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type treetype

type(nodetype), allocatable :: node(:)

end type treetype

type(treetype) :: tree[*]

allocate( tree%node(nnodes) )

Can have allocatable or pointer components of derived 

types



pointer components of coarrays
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subroutine calc(u,v,w)

real, intent(in), target, dimension(100) :: u,v,w

type coords

real, pointer, dimension(:) :: x,y,z

end type coords

type(coords) :: vects[*]

! …

vects%x => u ; vects%y => v ; vects%z => w

sync all

firstx = vects[1]%x(1)

� Pointers can point to non-coarray data

� Useful technique for adding coarray features into 

existing applications 



Coarrays and procedures

• Can pass coarrays to procedures

� to explicit, asuumed-shape, assumed-size or allocatable

dummy arguments

• There must be an explicit interface for the call

• Actual argument can be a contiguous section of a coarray

• Function result can not be a coarray

• Rules designed to avoid copy and synchronization

• automatic coarrays are not allowed

(local arrays sized based on dummy arguments)
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coarrays and procedures…
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subroutine bill(a, b, c, t, n)

integer :: n

real :: a(n,n) [n,*] ! explicit shape

real :: b(:)   [*]   ! assumed shape

real :: c(n,*) [*]   ! assumed size 

real, allocatable :: t(:,:) [:] ! allocatable

real, save :: bill_totals(8)[*] ! saved coarray

! complex :: q(n)[*] ! automatic – not allowed

� All coarrays have to be dummy arguments, saved or 

allocatable

� A variable that is saved maintains its state on exit



coarrays and procedures…

42

program cmax

real, codimension[8,*] :: a(100), amax

a = [ (i, i=1,100) ] * this_image() / 100.0

amax = maxval( a )

sync all

amax = AllReduce_max(amax)

contains

real function AllReduce_max(r) result(rmax)

real :: r[*]

rmax = r

do i=1,num_images()

rmax = max( rmax, r[i] )

end do

! …

We can remap the codimension to rank 1.



More on Synchronization

• Argument to sync images can be rank-1 array or *
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real :: a(n), psum[*]

me = this_image()

psum = sum(a)

if (me > 1) then

sync images(me-1)

psum = psum + psum[me-1]

end if

if (me < num_images()) sync_images(me+1)

� can synchronize on a subset of images

� Example: accumulate partial sums along images



More on Synchronization

We have to be careful with one-sided updates

� If we get remote data was it valid?

� Could another process send us data and overwrite 

something we have not yet used?

� How do we know when remote data has arrived?

• The standard introduces execution segments to deal with this, 

segments are bounded by image control

• If a non-atomic variable is defined in a segment, it must not be 

referenced, defined, or become undefined in a another 

segment unless the segments are ordered
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Execution Segments
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double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0

double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0

image synchronization points
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I/O

• Each image has its own set of input/output units

• units are independent on each image

• Default input unit is preconnected on image 1 only

� read *,… , read(*,…)…

• Default output unit is avaiable on all images

� print *,… , write(*,…)…

� It is expected that the implementation will merge records 

from each image into one stream
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Program Termination

• STOP or END PROGRAM statements initiate normal 

termination which includes a synchronisation step

• An image’s data is still available after it has initiated normal 

termination

• Other images can test for this using STAT= specifier to 

synchronisation calls or allocate/deallocate

� test for STAT_STOPPED_IMAGE (defined in 

ISO_FORTRAN_ENV module)

• The ERROR STOP statement initiates error 

termination and it is expected all images will be terminated.
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Other features we will not cover

• Memory synchronization (sync memory)

� completion of remote operations but not 

segment  ordering

• critical section (critical , … , end critical)

� only one image executes the section at a time

• locks 

� control access to data held by one image

• status and error conditions for image control

• atomic subroutines (useful for flag variables)
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Future for coarrays in Fortran

• Additional coarray features may be described in a 

Technical Report (TR)

• Work in progress and the areas of discussion are:

� image teams

� collective intrinsics for coarrays

� file operations by more than one image

� new atomics

� coarray pointers and non-symmetric allocation

� coscalars
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Implementation Status

• History of coarrays dates back to Cray implementations

• Expect support from vendors as part of Fortran 2008

• G95 had multi-image support in 2010

• gfortran

� work progressing  (4.6 trunk) for single-image support

• Intel: multi-process coarray support in Intel Composer XE 2011

(based on Fortran 2008 draft)

• Runtimes are SMP, GASNet and compiler/vendor runtimes 

� GASNet has support for multiple environments

(IB, Myrinet, MPI, UDP and Cray/IBM systems) so 

could be an option for new implementations 
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Implementation Status (Cray)

• Cray has supported coarrays and UPC on various architectures 

over the last decade (from T3E)

• Full PGAS support on the Cray XT/XE

� Cray Compiling Environment 7.0 – Dec 2008

� Cray Compiler Environment 7.3 – Dec 2010

� Full Fortran 2008 coarray support

� Full Fortran 2003 with some Fortran 2008 features

• Fully integrated with the Cray software stack

� Same compiler drivers, job launch tools, libraries

� Integrated with Craypat – Cray performance tools

� Can mix MPI and coarrays
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