
PGAS programming

with Fortran coarrays

Jason J Beech-Brandt

Cray UK

Overview

• PGAS in context with other programming models

• Fortran coarray features

2

Programming models and PGAS

• Parallel programming models allow us to build applications

that can run efficiently on parallel architectures

• PGAS stands for Partitioned Global Address Space and is one of

the programming models used in parallel programming

• We will introduce the PGAS approach in context with other

traditional programming models

� shared memory directives

� message-passing

3

Shared Memory Directives

• Multiple threads share global memory

• Most common variant: OpenMP

• Program loop iterations distributed to threads,

more recent task features

� Each thread has a means to refer to private objects within

a parallel context

• Terminology

� Thread, thread team

• Implementation

� Threads map to user threads running on one SMP node

� Extensions to multiple servers not so successful

4

OpenMP

5

memory

threads

OpenMP: work distribution

6

memory

threads

!$OMP PARALLEL

do i=1,32

a(i)=a(i)*2

end do1-8 9-16 17-2425-32

OpenMP implementation

7

memory

threads

cpus

process

Message Passing

• Participating processes communicate using a

message-passing API

• Remote data can only be communicated (sent or received) via

the API

• MPI (the Message Passing Interface) is the standard

• Implementation:

MPI processes map to processes within one SMP node or

across multiple networked nodes

• API provides process numbering, point-to-point and collective

messaging operations

8

MPI

9

memory

cpu

processes

memory

cpu

memory

cpu

MPI

10

memory

cpu

process 0

memory

cpu

MPI_Send(a,...,1,…)

process 1

MPI_Recv(a,...,0,…)

Partitioned Global Address Space Model

• Shortened to PGAS

• Participating processes/threads have access to local

memory via standard program mechanisms

• Access to remote memory is directly supported by the PGAS

language

11

PGAS

12

memory

cpu

process

memory

cpu

memory

cpu

process process

PGAS Languages

• Various Implementations including Fortran coarrays,

UPC and Titanium

• Coarrays (Fortran)

� Participating images

� New codimension attribute for objects

� New mechanism for remote access:

a(:)=b(:)[image] ! Get b from remote image

• UPC

� Participating “threads”

� New shared data structures

� Language constructs to divide up work on shared data

13

PGAS Advantages

• Remote access is a full feature of the language:

� Type checking

� Opportunity to optimize communication

• No performance penalty for local memory access

• Single-sided programming model more natural for some

algorithms

� and a good match for modern networks with RDMA

14

Fortran coarrays

An introduction

15

Coarrays

"Coarrays were designed to answer the question:

‘What is the smallest change required to convert Fortran

into a robust and efficient parallel language?’

The answer: a simple syntactic extension.

It looks and feels like Fortran and requires

Fortran programmers to learn only a few new rules."

16

John Reid,

ISO Fortran Convener

Coarrays in Fortran

• Introduced in current form by Numrich and Reid in 1998 as a

simple extension to Fortran 95 for parallel processing

• Implemented on various Cray hardware platforms

• A set of core features are now part of the Fortran standard:

ISO/IEC 1539-1:2010

• Additional features are expected to be published in a

Technical Report in due course.

• Various vendor and GNU projects (Intel, g95, gfortran)

underway

17

Basic execution model and features

• Program executes as if replicated to multiple copies with each

copy executing asynchronously (SPMD)

• Each copy (called an image) executes as a normal

Fortran application

• New object indexing with [] can be used to access objects on

other images.

• New features to inquire about image index, number of images

and to synchronize

18

Coarray execution model

19

memory

cpu

Image 1

memory

cpu

memory

cpu

Image 2 Image 3

Remote access with square bracket indexing: a(:)[2]

coarrays

Basic coarray declaration and usage

• Coarray has to be the same size on each image

20

integer :: b

integer :: a(4)[*] !coarray

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6

Basic coarray declaration and usage

• References without [] are local

• b is set to second element of a on each image

21

integer :: b

integer :: a(4)[*] !coarray

b=a(2)

1 8 1 5a

image 1

b 8

1 7 9 9a

image 2

b 7

1 7 9 4a

image 3

b 7

Basic coarray declaration and usage

• [] indicates access to remote coarray data

• Each b is set to fourth element of array a on image 3

22

integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6

Basic coarray declaration and usage

• [] indicates access to remote coarray data

• Each b is set to fourth element of array a on image 3

23

integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 4

1 7 9 9a

image 2

b 4

1 7 9 4a

image 3

b 4

real :: residual[*] ! Scalar coarray

real, dimension(100), codimension[*] :: x,y

integer, dimension(m) :: offsets[0:*]

type (color) map(512,512)[*]

character(len=80), allocatable ::search_space(:)[:]

allocate(search_space(2000)[*])

More Coarray Declarations

24

Image execution

• Used to allow images to organise problem distribution and to

operate independently

25

images = num_images()

me = this_image()

image 1

me 1

images 3

image 2

me 2

images 3

image 3

me 3

images 3

Functions provided to return number of images and

index of executing image

Example: Read array from file

• Read n elements at a time and distribute

26

double precision, dimension(n) :: a

double precision, dimension(n) :: temp[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

temp = temp + 273d0 !!! THIS IS NOT SAFE

Basic Synchronization: sync all

• images only continue when all images have reached the

statement and remote references are completed

27

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0

Recap of coarray basics

• multiple images execute asynchronously

• we can declare a coarray which is accessible from multiple

images

• indexing with [] is used to access remote data

• we can find out which image we are

� num_images()

� this_image()

• we can synchronize to make sure variables are up to date

� sync all

Now consider a program example…

28

Example2: Calculate density of primes

29

program pdensity

implicit none

integer, parameter :: n=8000000, nimages=8

integer start,end,i

integer, dimension(nimages) :: nprimes[*]

real density

start = (this_image()-1) * n/num_images() + 1

end = start + n/num_images() - 1

nprimes(this_image())[1] = num_primes(start,end)

sync all

Example2: Calculate density of primes

30

…

if (this_image()==1) then

nprimes(1)=sum(nprimes)

density=real(nprimes(1))/n

print *,"Calculating prime density on", &

& num_images(),"images"

print *,nprimes(1),'primes in',n,'numbers'

write(*,'(" density is ",2P,f5.2,"%")')density

write(*,'(" asymptotic theory gives ", &

& 2P,f5.2,"%")')1.0/(log(real(n))-1.0)

end if

Example2: Calculate density of primes

• Calculating prime density on 2 images

• 539778 primes in 8000000 numbers

• density is 6.75%

• asymptotic theory gives 6.71%

31

Program Launch

• The Fortran standard does not specify how a program is

launched

• The number of images may be set at compile, link or run-time

• A compiler could optimize for a single image

• Examples on Linux

� Cray XE

aprun –n 16000 solver

� g95

./solver --g95 -images=2

32

Multi-codimensional coarrays

• More general declarations

33

complex :: b[0:*]

complex :: p(32,32)[2,3,*]

� Cosubscripts map to images in array-element order

image b(:)[i] p(:)[i,j,k]

1 b(:)[0] p(:)[1,1,1]

2 b(:)[1] p(:)[2,1,1]

3 b(:)[2] p(:)[1,2,1]

4 b(:)[3] p(:)[2,2,1]

5 b(:)[4] p(:)[1,3,1]

6 b(:)[5] p(:)[2,3,1]

7 b(:)[6] p(:)[1,1,2]

Multi-codimensional coarrays…

• Example: pixel data distributed on 9 images

34

type(pixel) :: p(8,8)[3,*]

p(:)[1,1]

image 1

p(:)[2,1]

image 2

p(:)[3,1]

image 3

p(:)[1,2]

image 4

p(:)[2,2]

image 5

p(:)[3,2]

image 6

p(:)[1,3]

image 7

p(:)[2,3]

image 8

p(:)[3,3]

image 9

Multi-codimensional coarrays…

• There is a way to find out which part of the coarray is mapped

to an image

� this_image(coarray) yields codimensions

� this_image(coarray,dim) yields one codimension

• So for the previous example, on image 2

� this_image(p) is [2, 1]

• Can get image index from coarray:

� image_index(p,[2,1]) is 2

� image_index(p,[3,4]) is 0

35

p(:)[2,1]

image 2

Multi-codimensional coarrays…

• Example: copy the bottom row from the image ‘above’ me in

the grid…

36

type(pixel) :: p(32,32)[3,*],&

& copy(32)

px = this_image(p,1)

py = this_image(p,2)

copy = p(:,32)[px, py-1]

p(:)[2,1]

image 2

p(:)[2,2]

image 5

Allocatable coarrays

37

integer n,ni

real, allocatable :: pmax(:)[:]

real, allocatable :: p(:,:)[:,:]

!...

ni = num_images()

allocate(pmax(ni)[*], p(n,n)[4,*])

� Require same shape and coshape on every image

� allocate and deallocate with coarray arguments cause

a synchronization

Allocatable components of coarrays

• The size can vary on each image

38

type treetype

type(nodetype), allocatable :: node(:)

end type treetype

type(treetype) :: tree[*]

allocate(tree%node(nnodes))

Can have allocatable or pointer components of derived

types

pointer components of coarrays

39

subroutine calc(u,v,w)

real, intent(in), target, dimension(100) :: u,v,w

type coords

real, pointer, dimension(:) :: x,y,z

end type coords

type(coords) :: vects[*]

! …

vects%x => u ; vects%y => v ; vects%z => w

sync all

firstx = vects[1]%x(1)

� Pointers can point to non-coarray data

� Useful technique for adding coarray features into

existing applications

Coarrays and procedures

• Can pass coarrays to procedures

� to explicit, asuumed-shape, assumed-size or allocatable

dummy arguments

• There must be an explicit interface for the call

• Actual argument can be a contiguous section of a coarray

• Function result can not be a coarray

• Rules designed to avoid copy and synchronization

• automatic coarrays are not allowed

(local arrays sized based on dummy arguments)

40

coarrays and procedures…

41

subroutine bill(a, b, c, t, n)

integer :: n

real :: a(n,n) [n,*] ! explicit shape

real :: b(:) [*] ! assumed shape

real :: c(n,*) [*] ! assumed size

real, allocatable :: t(:,:) [:] ! allocatable

real, save :: bill_totals(8)[*] ! saved coarray

! complex :: q(n)[*] ! automatic – not allowed

� All coarrays have to be dummy arguments, saved or

allocatable

� A variable that is saved maintains its state on exit

coarrays and procedures…

42

program cmax

real, codimension[8,*] :: a(100), amax

a = [(i, i=1,100)] * this_image() / 100.0

amax = maxval(a)

sync all

amax = AllReduce_max(amax)

contains

real function AllReduce_max(r) result(rmax)

real :: r[*]

rmax = r

do i=1,num_images()

rmax = max(rmax, r[i])

end do

! …

We can remap the codimension to rank 1.

More on Synchronization

• Argument to sync images can be rank-1 array or *

43

real :: a(n), psum[*]

me = this_image()

psum = sum(a)

if (me > 1) then

sync images(me-1)

psum = psum + psum[me-1]

end if

if (me < num_images()) sync_images(me+1)

� can synchronize on a subset of images

� Example: accumulate partial sums along images

More on Synchronization

We have to be careful with one-sided updates

� If we get remote data was it valid?

� Could another process send us data and overwrite

something we have not yet used?

� How do we know when remote data has arrived?

• The standard introduces execution segments to deal with this,

segments are bounded by image control

• If a non-atomic variable is defined in a segment, it must not be

referenced, defined, or become undefined in a another

segment unless the segments are ordered

44

Execution Segments

45

double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0

double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

do i=1, num_images()

read *,a

temp(:)[i] = a

end do

end if

sync all

temp = temp + 273d0

image synchronization points

s
e

g
m

e
n

t

1

2

I/O

• Each image has its own set of input/output units

• units are independent on each image

• Default input unit is preconnected on image 1 only

� read *,… , read(*,…)…

• Default output unit is avaiable on all images

� print *,… , write(*,…)…

� It is expected that the implementation will merge records

from each image into one stream

46

Program Termination

• STOP or END PROGRAM statements initiate normal

termination which includes a synchronisation step

• An image’s data is still available after it has initiated normal

termination

• Other images can test for this using STAT= specifier to

synchronisation calls or allocate/deallocate

� test for STAT_STOPPED_IMAGE (defined in

ISO_FORTRAN_ENV module)

• The ERROR STOP statement initiates error

termination and it is expected all images will be terminated.

47

Other features we will not cover

• Memory synchronization (sync memory)

� completion of remote operations but not

segment ordering

• critical section (critical , … , end critical)

� only one image executes the section at a time

• locks

� control access to data held by one image

• status and error conditions for image control

• atomic subroutines (useful for flag variables)

48

Future for coarrays in Fortran

• Additional coarray features may be described in a

Technical Report (TR)

• Work in progress and the areas of discussion are:

� image teams

� collective intrinsics for coarrays

� file operations by more than one image

� new atomics

� coarray pointers and non-symmetric allocation

� coscalars

49

Implementation Status

• History of coarrays dates back to Cray implementations

• Expect support from vendors as part of Fortran 2008

• G95 had multi-image support in 2010

• gfortran

� work progressing (4.6 trunk) for single-image support

• Intel: multi-process coarray support in Intel Composer XE 2011

(based on Fortran 2008 draft)

• Runtimes are SMP, GASNet and compiler/vendor runtimes

� GASNet has support for multiple environments

(IB, Myrinet, MPI, UDP and Cray/IBM systems) so

could be an option for new implementations

50

Implementation Status (Cray)

• Cray has supported coarrays and UPC on various architectures

over the last decade (from T3E)

• Full PGAS support on the Cray XT/XE

� Cray Compiling Environment 7.0 – Dec 2008

� Cray Compiler Environment 7.3 – Dec 2010

� Full Fortran 2008 coarray support

� Full Fortran 2003 with some Fortran 2008 features

• Fully integrated with the Cray software stack

� Same compiler drivers, job launch tools, libraries

� Integrated with Craypat – Cray performance tools

� Can mix MPI and coarrays

51

References

• ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

“Coarrays in the next Fortran Standard”, John Reid, April 2010

• http://lacsi.rice.edu/software/caf/downloads/documentation/

nrRAL98060.pdf- Co-array Fortran for parallel programming,

Numrich and Reid, 1998

• ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

“Coarrays in the next Fortran Standard”, John Reid, April 2010

• Ashby, J.V. and Reid, J.K (2008). Migrating a scientific

application from MPI to coarrays. CUG 2008 Proceedings. RAL-

TR-2008-015

See http://www.numerical.rl.ac.uk/reports/reports.shtml

52

