
Gemini description, MPI

Jason Beech-Brandt

jason@cray.com

2

Cray Gemini ASIC

� Supports 2 Nodes per ASIC

� 3D Torus network

� XT5/XT6 systems field

upgradable

� Scales to over 100,000 network
endpoints

� Link Level Reliability and Adaptive
Routing

� Advanced Resiliency Features

� Advanced features

� MPI – millions of messages /
second

� One-sided MPI

� UPC, Coarray FORTRAN,
Shmem, Global Arrays

� Atomic memory operations

LO

Processor

Gemini

Hyper

Transport 3

NIC 1

Netlink

Block

48-Port

YARC Router

Hyper

Transport 3

NIC 0

Gemini vs SeaStar – Topology

XT6 Module with SeaStar

XE6 Module with Gemini

Y

X

Z

3

Gemini MPI Features

• FMA (Fast Memory Access)

� Mechanism for most MPI transfers

� Supports tens of millions of MPI requests per second

• BTE (Block Transfer Engine)

� DMA offload engine , supports asynchronous block transfers

between local and remote memory, in either direction

• Gemini provides low-overhead OS-bypass features for short

transfers

� MPI latency around 1.4us in current release

� NIC provides for many millions of MPI messages per second

20 times better than Seastar

• Much improved injection bandwidth – 6 GB/s user data injection

with HT3 link

4

Gemini Advanced Features

• Globally addressable memory provides efficient support

for UPC, FORTRAN 2008 with Coarrays, Shmem and Global

Arrays

� Much improved one-sided communication mechanism

with hardware support

� Cray compiler targets this capability directly

• Pipelined global loads and stores

� Allows for fast irregular communication patterns

• Atomic memory operations

� AMOs provide a faster synchronization method for barriers

� Provides fast synchronization needed for one-sided

communication models

5

Gemini NIC Design

• Hardware pipeline maximizes

issue rate

• HyperTransport 3 host interface

• Fast memory access (FMA)

� Low latency and high issue rate

for small transfers

• Block transfer engine (BTE)

� Gemini does the transfer on

behalf of the rank/image

• Hardware translation of user

ranks and addresses

• Global AMOs

• Network bandwidth dynamically

shared between NICs

Slide 6

BTE vs FMA

• FMA PROS

� Lowest latency (~1.2 usecc)

� All data has been read by the time dmapp return

� More than one transfer active at the same time

• FMA CONS

� CPU involved in the transfer

� Performance can vary depending on die used

• BTE PROS

� Transfer done by gemini, asynchronous with CPU
� Transfers are queued if Gemini is busy

� Seems to get better P2P bandwidth in more cases

• BTE CONS

� Higher latency : ~2 usec if queue is empty
� Transfers are queued if Gemini is busy

� Only one BTE active at a time

Slide 7

Gemini Reliability Features

• Error protection and detection

� Link level error detection with hardware retry

� Packet CRCs provide end-to-end error protection

� NIC/Router memories protected by ECC

• Diagnosis, error handling and reconfigurability

� Auto-degrading network channels tolerate single-lane hard failures

� Adaptive routing reduces packet loss in the event of hard link failures

� Can warm-swap blades and reconfigure network without rebooting

� HT link failures will not backpressure/deadlock network

• Capabilities

� System can ride through network failures and reconfigure network

while live

� Cray MPI implementation is resilient to network failures; provides end-

to-end reliable delivery

Slide 8

Gemini Software Stack

Slide 9

MPICH2 on CRAY XE (aka Gem/Ari)

Cray Inc.

Proprietary
10

Application

MPI Interface

MPICH2

ADI3

CH3 Device

CH3 Interface

xpmem

Nemesis NetMod Interface

GNIGMMXPSMIBTCP

mvapich2 1.5

Cray specific

components

P
M

I

Nemesis

Jo
b

 la
u

n
ch

e
r

ROMIO

ADIO

Lus. GPFS ...

Latency comparison at scale

• Low Infiniband latencies seen in micro-benchmarks are not sustained

across a large system. Data from LLNL and Sandia shows Infiniband latency

and performance variability increasing with system size

XT systems shows constant latency at scale.

Slide 11

MPI

Communications

on the Cray XE6

Cray MPI basics

• Our MPI is based on MPICH-2 from Argonne National

Laboratory

• Implements the MPI-2.2 standard except for

� Cancelling of MPI send requests

� Dynamic process management

� external32 data representation

� MPI_LONG_DOUBLE datatype is not supported

• Currently MPI is distributed in the “xt-mpt” module

� Contains both MPI and SHMEM libraries

� For dynamic linking users must swap to xt-mpich2 or xt-

shmem

� As of CLE3.1UP02, xt-mpich2 will be the default MPI

module

13

• Due to lack of messaging hardware on Gem/Ari, a connection

oriented approach is used (GNI SMSG mailboxes)

• The relatively limited memory registration resources have a

major impact on the MPICH2 GNI Netmod design. Using large

pages generally helps alleviate problems associated with these

limited memory registration resources.

• All network transactions are tracked at some level. No fire-

and-forget. Helps with dealing with transient network errors.

How MPICH2 Uses GNI – Key Concepts

14

How MPICH2 Uses GNI – SMSG Mailboxes

• Uses put-with-notification hardware on Gemini. This allows

implementing a one-way-through network messaging scheme.

• Can recover from transient network errors

• Flow control

• MPICH2 and GNILND (Lustre, DVS, etc.) share same mailbox

code

• By default, connections (mailboxes) are established

dynamically. Note mailboxes are actually allocated in blocks

due to limited memory registration resources on NIC.

• Process private and shared SMSG mailboxes available. Current

MPICH2 only uses private ones.

15

MPICH2 GNI Netmod Message Protocols

• Eager Protocol

� For a message that can fit in a GNI SMSG mailbox (E0)

� For a message that can’t fit into a mailbox but is less than

MPICH_GNI_MAX_EAGER_MSG_SIZE in length (E1)

• Rendezvous protocol (LMT)

� RDMA Get protocol – up to 512 KB size messages by

default

� RDMA Put protocol – above 512 KB

16

• Protocol for messages that can fit into a GNI SMSG mailbox

• The default varies with job size, although this can be tuned by

the user to some extent

ranks in job maximum bytes of user data

<= 1024

>1024 &&

<=16384

> 16384

984

472

216

Maximum message size for E0 varies with Job Size

17

MPI

Environment Variables for

Inter-node Point-to-Point Messaging

• Several environment variables are available to control MPI

features (man mpi or intro_mpi)

• MPICH_ENV_DISPLAY

� If set, causes rank 0 to display all MPICH environment

variables

• MPICH_CPUMASK_DISPLAY

� If set, causes each MPI rank in the job to display its CPU

affinity bitmask

• MPICH_MAX_THREAD_SAFETY

� Specifies thread-safety level

� MPI_THREAD_MULTIPLE requires a specific library:

link to -lmpich_threadm

MPICH2 environment variables

19

MPICH2 environment variables

• MPICH_ABORT_ON_ERROR

� If set, causes MPICH-2 to abort and produce a core dump

when MPICH-2 detects an internal error. Note the shell

coredumpsize must be set appropriately to enable

coredumps.

• MPICH_VERSION_DISPLAY

� If set, causes MPICH2 to display the CRAY MPICH2 version

number as well as build date information.

• MPICH_MEMCPY_MEM_CHECK

� If set, enables a check of the memcpy() source and

destination areas. If they overlap, the application asserts

with an error message. If this error is found, correct it

either by changing the memory ranges or possibly by using

MPI_IN_PLACE.

20

MPI

Gemini specific env. variables

• Can be used to control the maximum size message that can go

through the private SMSG mailbox protocol (E0 eager path).

• Default varies with job size.

• Maximum size is 1024 bytes. Minimum is 80 bytes.

• If you are trying to demonstrate an MPI_Alltoall at very high

count, with smallest possible memory usage, may be good to

set this as low as possible.

• If you know your app has a scalable communication pattern,

and the performance drops at one of the edges shown on the

table (page 21), you may want to set this environment variable.

• Pre-posting receives for this protocol avoids a potential extra

memcpy at the receiver.

MPICH_GNI_MAX_VSHORT_MSG_SIZE

22

• Default is 8192 bytes

• Maximum size message that go through the eager (E1)

protocol

• May help for applications sending medium size messages

• Maximum allowable setting is 131072 bytes

• Pre-posting receives can avoid potential double memcpy at the

receiver.

• Note that a 40-byte Nemesis header is included in account for

the message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

23

• Default is now 1024 bytes

• Controls the threshold at which the GNI netmod switches from

using FMA for RDMA read/write operations to using the BTE.

• Since BTE is managed in the kernel, BTE initiated RDMA

requests can progress even if the applications isn’t in MPI.

• But using the BTE may lead to more interrupts being generated

MPICH_GNI_RDMA_THRESHOLD

24

• Default is enabled. To disable

export MPICH_GNI_NDREG_LAZYMEM=disabled

• Controls whether or not to use a lazy memory deregistration

policy inside UDREG. Memory registration is expensive so this

is usually a good idea.

• Only important for those applications using the LMT (large

message transfer) path, i.e. messages greater than

MPICH_GNI_MAX_EAGER_MSG_SIZE.

• Disabling may be a workaround for some UDREG issues

• However, disabling results in a significant drop in measured

bandwidth for large transfers ~40-50 %.

MPICH_GNI_NDREG_LAZYMEM

25

• Only relevant for mixed MPI/SHMEM/UPC/CAF codes

• For Danube systems, want to leave enabled so MPICH2 and

DMAPP can share the same memory registration cache,

reducing pressure on memory registration resources on the

NIC

• May have to disable for SHMEM codes that call shmem_init

after MPI_Init.

• May want to disable if trying to add SHMEM/CAF to an MPI

code and notice a big performance drop.

• Syntax:

export MPICH_GNI_DMAPP_INTEROP=disabled

MPICH_GNI_DMAPP_INTEROP

Cray Inc.

Proprietary
26

• Default is 64

• Controls the number of 32KB DMA buffers available for each

rank to use in the GET-based Eager protocol (E1).

• May help to modestly increase. But other resources constrain

the usability of a large number of buffers, so don’t go berserk

with this one.

• Syntax:

export MPICH_GNI_NUM_BUFS=X

MPICH_GNI_NUM_BUFS

27

• Provides a means for controlling which memories on a node

are used for some SMSG mailboxes (private).

• Default is to place the mailboxes on the memory where the

process is running when the memory for the mailboxes is

faulted in.

• For optimal MPI message rates, better to place mailboxes on

memory of die0 (where Gemini is attached).

• Only applies to first 4096 mailboxes of each rank on the node.

• Feature only available in very recent CLE versions (not all

UP01s?) and very most recent MPT build (actually none yet

due to build issues as of today).

• Syntax for enabling placement of mailboxes near the Gemini:

export MPICH_GNI_MBOX_PLACEMENT=nic

MPICH_GNI_MBOX_PLACEMENT

28

• Enabled by default

• Normally want to leave enabled so mailbox resources

(memory, NIC resources) are allocated only when the

application needs them

• If application does all-to-all or many-to-one/few, may as well

disable dynamic connections. This will result in significant

startup/shutdown costs though.

• Recent bugs have been worked around by disabling dynamic

connections.

• Syntax for disabling:

export MPICH_GNI_DYNAMIC_CONN=disabled

MPICH_GNI_DYNAMIC_CONN

29

MPICH_GNI_FORK_MODE

• This environment variable controls the behaviour of registered

memory segments when a process invokes a fork or related

system call. There are three options:

� NOCOPY

� FULLCOPY

� PARTCOPY

• Be aware this exists, but most apps don’t do this.

30

MPI

Environment Variables for Collective communication

31

MPICH_COLL_OPT_OFF

• Collectives use, by default, architecture specific algorithms for

some MPI collective operations.

• Generally a good thing!

• However they can be disabled for debugging purposes, or for

bitwise reproducibility requirements

• Setting this variable to 1 disables all collective optimizations

• Setting to a comma-delimited list of collective operations will

disable these selectively

� For example MPICH_COLL_OPT_OFF=mpi_allgather.

� The following collective names are recognized

MPI_Allgather, MPI_Allgatherv, andMPI_Alltoall.

32

MPICH_COLL_SYNC

• If set, a Barrier is performed at the beginning of each specified

MPI collective function. This forces all processes participating

in that collective to sync up before the collective can begin.

• To enable this feature for all MPI collectives, set the value to 1.

• To enable this feature for selected MPI collectives, set the

value to a comma-separated list of the desired collective

names. Names are not case-sensitive. Any unrecognizable

name is flagged with a warning message and ignored. The

following collective names are recognized: MPI_Allgather,

MPI_Allgatherv, MPI_Allreduce, MPI_Alltoall, MPI_Alltoallv,

MPI_Alltoallw, MPI_Bcast, MPI_Exscan, MPI_Gather,

MPI_Gatherv, MPI_Reduce, MPI_Reduce_scatter, MPI_Scan,

MPI_Scatter, and MPI_Scatterv.

33

• With MPT 5.1 switched to using Seastar-style algorithm where

for short transfers/rank: use MPI_Gather/MPI_Bcast rather

than ANL algorithm

• Switchover from Cray algorithm to ANL algorithm can be

controlled by the MPICH_ALLGATHER_VSHORT_MSG

environment variable. By default enabled for transfers/rank of

1024 bytes or less

• The Cray algorithm can be deactivated by setting

export MPICH_COLL_OPT_OFF=mpi_allgather (bash)

setenv MPICH_COLL_OPT_OFF mpi_allgather (tcsh)

MPI_Allgather

Cray Inc.

Proprietary
34

ANL = Argonne National Lab, birthplace of MPICH2

• With MPT 5.1 switched to using Seastar-style algorithm where

for short transfers/rank: use a specialized

MPI_Gatherv/MPI_Bcast rather than ANL algorithm

• Switchover from Cray algorithm to ANL algorithm can be

controlled by the MPICH_ALLGATHERV_VSHORT_MSG

environment variable. By default enabled for transfers/rank of

1024 bytes or less.

• The Cray algorithm can be deactivated by setting

export MPICH_COLL_OPT_OFF=mpi_allgatherv (bash)

setenv MPICH_COLL_OPT_OFF mpi_allgatherv (tcsh)

MPI_Allgatherv

Cray Inc.

Proprietary
35

• Optimizations added in MPT 5.1

• Switchover from ANL’s implementation of Bruck algorithm

(IEEE TPDS, Nov. 1997) is controllable via the

MPICH_ALLTOALL_SHORT_MSG environment variable.

Defaults are

MPI_Alltoall

Cray Inc.

Proprietary
36

ranks in

communicator Limit (in bytes) for using Bruck

<= 512

>512 && <=1024

> 1024

2048

1024

128

� Larger transfers use an optimized pair-wise exchange algorithm

� New algorithm can be disabled by

export MPICH_COLL_OPT_OFF=mpi_alltoall

• The ANL smp-aware MPI_Allreduce/MPI_Reduce algorithms

can cause issues with bitwise reproducibility. To address this

Cray MPICH2 has two new environment variables starting with

MPT 5.1 -

• MPICH_ALLREDUCE_NO_SMP

disables use of smp-aware MPI_Allreduce

• MPICH_REDUCE_NO_SMP

disables use of smp-aware MPI_Reduce

MPI_Allreduce/MPI_Reduce

37

• Starting with MPT 5.1, all ANL algorithms except for binomial

tree are disabled since the others perform poorly for

communicators with 512 or more ranks

• To disable this tree algorithm-only behavior, set the

MPICH_BCAST_ONLY_TREE environment variable to 0, i.e.

export MPICH_BCAST_ONLY_TREE=0

MPI_Bcast

38

MPICH_SCATTERV_SYNCHRONOUS

• MPI_Scatterv uses asynchronous sends by default

• Setting this variable forces the use of synchronous sends

• Can be beneficial in some cases

� Large data sizes

� High process counts

39

MPI

Environment Variables for

Intra-node Point-to-Point Messaging

• Default is 8192 bytes

• Specifies threshold at which the Nemesis shared memory

channel switches to a single-copy, XPMEM based protocol for

intra-node messages

MPICH_SMP_SINGLE_COPY_SIZE

41

• In MPT 5.1 the default is enabled

• Specifies whether or not to use a XPMEM-based single-copy

protocol for intra-node messages of size

MPICH_SMP_SINGLE_COPY_SIZE bytes or larger

• May need to set this environment variable if

� Finding XPMEM is kernel OOPses (check the console on

the SMW)

� Sometimes helps if hitting UDREG problems. XPMEM goes

kind of crazy with Linux mmu notifiers and causes lots of

UDREG invalidations (at least the way MPICH2 uses

XPMEM).

MPICH_SMP_SINGLE_COPY_OFF

42

MPI

Environment variables for MPI-IO

43

MPI-IO

• Wildcard matching for filenames in MPICH_MPIIO_HINTS

• MPI-IO collective buffering alignment(MPT 3.1 and MPT 3.2)

� This feature improves MPI-IO by aligning collective buffering file

domains on Lustre boundaries.

� The new algorithms take into account physical I/O boundaries

and the size of the I/O requests. The intent is to improve

performance by having the I/O requests of each collective

buffering node (aggregator) start and end on physical I/O

boundaries and to not have more than one aggregator reference

for any given stripe on a single collective I/O call.

� The new algorithms are enabled by setting the

MPICH_MPIIO_CB_ALIGN env variable.

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and transfers

both of 1M bytes and a strided access pattern. Tested on an XT5 with 32 PEs, 8

cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

M
B

/S
e

c

IOR benchmark 10,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and transfers

both of 10K bytes and a strided access pattern. Tested on an XT5 with 32 PEs, 8

cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

M
B

/S
e

c

0

20

40

60

80

100

120

140

160

HYCOM MPI-2 I/O

On 5107 PEs, and by application design, a subset of the Pes(88), do the writes. With

collective buffering, this is further reduced to 22 aggregators (cb_nodes) writing to

22 stripes. Tested on an XT5 with 5107 Pes, 8 cores/node

M
B

/S
e

c

0

500

1000

1500

2000

2500

3000

3500

4000

HDF5 format dump file from all PEs

Total file size 6.4 GiB. Mesh of 64M bytes 32M elements, with work divided amongst all PEs.

Original problem was very poor scaling. For example, without collective buffering, 8000 PEs

take over 5 minutes to dump. Note that disabling data sieving was necessary. Tested on an

XT5, 8 stripes, 8 cb_nodes

S
e

co
n

d
s

PEs

1

10

100

1000

w/o CB

CB=0

CB=1

CB=2

MPICH_MPIIO_CB_ALIGN

• Determines the algorithm to use for dividing IO when using

MPI collective IO.

• Default value of 2 divides IO workload into Lustre stripe sized

pieces and assigns them to collective buffering nodes

(aggregators). Ensures that aggregators always access the

same set of stripes – minimizes Lustre lock contention

• A value of 1 uses physical IO boundaries to divide IO load – like

method 2 but no fixed association between file stripe and

aggregator from call to call.

• Value of 0 divides IO workload amongst aggregators evenly

without regard to physical IO boundaries or Lustre stripes.

Inefficient if there are only a small number of stripes

49

MPICH_MPIIO_HINTS

• If set, override the default value of one or more MPI I/O hints.

This also overrides any values that were set by using calls to

MPI_Info_set in the application code. The new values apply to

the file the next time it is opened using an MPI_File_open()

call.

• Wildcard matching for filenames supported.

• Supported hints – striping_factor, striping_unit, direct_io,

romio_cb_read, romio_cb_write, cb_buffer_size, cb_nodes,

cb_config_list, romio_no_indep_rw, romio_ds_read,

romio_ds_write, ind_rd_buffer_size, ind_wr_buffer_size

• See “Getting Started on MPI I/O” from docs.cray.com

• MPICH_MPIIO_DISPLAY_HINTS – rank 0 in the participating

communicator displays hints

50

MPI

Environment variables to control rank placement

51

MPICH_RANK_REORDER_METHOD

• Overrides the default MPI rank placement scheme. If this

variable is not set, the default aprun launcher placement policy

is used. The default policy for aprun is SMP-style placement.

• Value of 0 specifies round-robin placement. Sequential MPI

ranks are placed on the next node in the list. When every

node has been used, the rank placement starts over again with

the first node.

• Value of 1 specifies SMP-style placement. This is the default

aprun placement. For a multi-node core, sequential MPI ranks

are placed on the same node.

52

MPICH_RANK_REORDER_METHOD, cont

• Value of 2 specifies folded-rank placement. Sequential MPI

ranks are placed on the next node in the list. When every node

has been used, instead of starting over with the first node

again, the rank placement starts at the last node, going back to

the first.

• Value of 3 specifies a custom rank placement defined in the file

named MPICH_RANK_ORDER. The MPICH_RANK_ORDER file

must be readable by the first rank of the program, and reside

in the current running directory. The order in which the ranks

are listed in the file determines which ranks are placed closest

to each other, starting with the first node in the list.

• MPICH_RANK_REORDER_DISPLAY – If set causes rank 0 to

display which node each MPI rank resides in.

53

MPI Rank Reorder

• MPI rank placement with environment variable

• How do you know which to try? And even more importantly,

how do I create a custom rank file?

� Craypat will do this for you!

54

0 1 2 34 5 6 7

� Distributed placement

� SMP style placement

0 2 4 61 3 5 7

� Folded rank placement

0 1 2 37 6 5 4

� User provided rank file

? ? ? ?? ? ? ?

MPI Rank Placement Suggestions

• When to use?

� Point-to-point communication consumes significant

fraction of the program time and have a significant

imbalance

� When there seems to be a load imbalance of another type

� Can get a suggested rank order file based on user time

� Can have a different metric for load balance

� Also shown to help for collectives (alltoall) on

subcommunicators (GYRO)

� Spread out IO across nodes (POP)

• Information in resulting report

� Custom placement files automatically generated

� Table notes in report has instructions on how to use

55

Rank Order and CrayPAT

• One can also use the CrayPat performance measurement tools

to generate a suggested custom ordering.

� Available if MPI functions traced (-g mpi or –O apa)

� pat_build –O apa my_program

� see Examples section of pat_build man page

• pat_report options:

� mpi_sm_rank_order

� Uses message data from tracing MPI to generate suggested MPI rank

order. Requires the program to be instrumented using the pat_build -g mpi

option.

� mpi_rank_order

� Uses time in user functions, or alternatively, any other metric specified by

using the -s mro_metric options, to generate suggested MPI rank order.

Reordering with CrayPAT Workflow

• module load perftools

• Rebuild your code

• pat_build –O apa a.out

• Run a.out+pat

• pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ >

pat.report

• Creates MPICH_RANK_REORDER_METHOD.x file

• Then set env var MPICH_RANK_REORDER_METHOD=3 AND

• Link the file MPICH_RANK_ORDER.x to MPICH_RANK_ORDER

• Rerun code

CrayPAT example

Table 1: Suggested MPI Rank Order

Eight cores per node: USER Samp per node

Rank Max Max/ Avg Avg/ Max Node

Order USER Samp SMP USER Samp SMP Ranks

d 17062 97.6% 16907 100.0% 832,328,820,797,113,478,898,600

2 17213 98.4% 16907 100.0% 53,202,309,458,565,714,821,970

0 17282 98.8% 16907 100.0% 53,181,309,437,565,693,821,949

1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7

•This suggests that

1. the custom ordering “d” might be the best

2. Folded-rank next best

3. Round-robin 3rd best

4. Default ordering last

Reordering example

GYRO

• GYRO 8.0

� B3-GTC problem with 1024 processes

• Run with alternate MPI orderings

� Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.d

Reorder method Comm. time

Default 11.26s

0 – round-robin 6.94s

2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT

suggestion

almost right!

Reordering example

TGYRO

• TGYRO 1.0

� Steady state turbulent transport code using GYRO, NEO, TGLF

components

• ASTRA test case

� Tested MPI orderings at large scale

� Originally testing weak-scaling, but found reordering very

useful

Reorder

method

TGYRO wall time (min)

20480 40960 81920

Default 99m 104m 105m

Round-robin 66m 63m 72m

Huge win!

Rank Reordering Case Study
� Application data is

in a 3D space, X x

Y x Z.

� Communication is

nearest-neighbor.

� Default ordering

results in 12x1x1

block on each

node.

� A custom

reordering is now

generated: 3x2x2

blocks per node,

resulting in more

on-node

communication

Rank Reorder Case Study: PFLOTRAN

• Instrument binary

� % module load perftools

� % make pflotran

� % pat_build -Oapa pflotran

� Results in executable pflotran+pat

• Run PFLOTRAN

� Results in raw data file

• Process collected data

� Results in text report

� Customized instrumentation template file for next

experiment

� file for input into Cray Apprentice2

� csv format available for scalability graphs
62

Performance Data Analysis

• Used csv format to plot time vs MPI ranks for top routines to

look at scaling

• Found good scaling with computation (TRAN) phase

• Found poor scaling with communication (FLOW) phase

� Candidate for MPI rank placement suggestions

� Candidate for load imbalance analysis

• Generated MPI rank placement suggestions

� % pat_report –O mpi_sm_rank_order pflotran+apa.ap2

• Used visualization tool to look for load imbalance

63

TRAN Phase Scales

64

FLOW Phase Doesn’t Scale

65

Allreduce synchronization time – sorted by

ranks

66

Experiment with rank placement suggestions

• Run with placement file provided by pat_report

• PFLOTRAN reported wall clock times:

� Default MPI rank placement on (1024 ranks)

� Wall Clock Time: 2,065.4 sec

� Placement from auto-detected communication pattern

� Wall Clock Time: 1,489.1 sec

• > 25% speedup with no source file changes!

67

Documentation

• man intro_mpi

• http://www-unix.mcs.anl.gov/mpi/index.html

• http://www-unix.mcs.anl.gov/mpi/mpich2

• http://www.mpi-forum.org/

• http://docs.cray.com/

68

