Investigation of possibility to

apply OpenMP for speeding

up dynamics simulation for a
model of low dimension

S.G. Orlov, A.K. Kuzin, N.N. Shabrov

Computer technologies in engineering dept.

Peter the Great St. Petersburg Polytechnic
University

German-Russian Conference "Supercomputing in Scientific and Industrial Problems”
Mar. 27-29 2017, HLRS, Stuttgart, Germany

Outline

Model overview

Parallelization

o OpenMP for ODE right hand side
o Results

Exploring numerical methods

o Explicit

o Implicit

o Jacobian eigenvalue analysis
Conclusions

Model overview

3D view top view
sheaves ______ rocker pins plates driving moving | driving fixed
\ sheave A sheave
driving shaft i

driving far
support

driving near
support

driven shaft

driven fixed | \ ________ J | driven moving
sheave sheave

driven shaft

, pin-sheave ol M N
= rFiven tar | o Hven near
contact points support support

driving shaft

supports

Model overview
The system works like this:

Model overview

e The chain consists of plates and rocker pins
e Each pin has two halves rolling over each other
e There are many contact interactions

o pin — pulley

L rocker pins plates

| F‘F’
| _| ﬁ:f"% - .y ; - :.____ J
o ' | == N ey
pin — plate | NS T ———
| RO)
1 L 02 - /

A

o pln — pin ®)

Model overview

Pins, plates, and shatts are elastic

Model overview

21 generalized coordinates per chain link

; - Y | |
|I |||| ﬁ|‘| l-] [-:-:|I| :|| ||

'% | il

Model overview

There 1s contact friction

Contact forces Formulas

)R

F? — N? + R?, F*—N°+ R’
NP — —N* = Nn®, N = N¢ 4+ N4
Nel — Cﬁl%fﬂ} N? — pA
RP=—-R*=—f (\VU}NEI) Neélr ||

T =V /v, v =(1-nn%)- (v’ —v°)

Normal force law
(Hertz)

g /
3 A () v

Friction law (nonsmooth!)

Model overview

Pin-pulley contact surfaces are locally quadratic

contact . .
" point - _pinaxis

e Lagrange equations: (

Equations of motion

—

0L

94

)_

e leadto A(q)§ = F(t,q, q)

o The inertia matrix A is sparse block-diagonal

0L

dq
=—

—

=@
g:F(taQ:‘j)

o Sometimes it really depends on g

e In the normal form, ODE system is & = f (¢, x)

10

O

qQq=1u
q ="

)

€T —

U

U

?

f =

U

- F(t,u,v)

Model overview

stabilisatlon_har

AHYIET_Lhi4
PP
far support PP

rearsuppot B @®
@

& slab_omegaz
far pul. atach. near pul. atiach.
1] 0
*® @@ &8 @
A 0 1 0 1 A
il =

- |
PP_fixed PE_moveable @
1]
Wl

a8 ® Se®

o e Heterogeneous system
. o different parts

S5P_movaabla

hydraudics
-

lorque appl. ar pu. attach.

wragpor | @@ @@ @8 @® oo suppon

0 ﬂg :é § § ﬂi
A
11

= A

12

The problem

Software product with docs, fancy GUI,
scripting, postprocessing, visualization, etc.,
and support.

But it runs slow
e] real time second costs ~10 hours CPU

time

The goal
o Make it run at least 100x faster

R R

Parallelization

e Problem features

o Tiny memory requirements (Just 3600 vars)
= Data most likely fits into cache

o Several different parts in model
» Including chain consisting of 80+ similar blocks
= And 300+ stmilar contact pairs

o f(t,x) costs ~1 ms for single thread

o Events (open/close contacts)

o Object oriented C++ code
= Not HPC-friendly memory organization

= Complicated memory access patterns
13

14

Parallelization

Solving IVP for z = f(t,z) =

v, F(t,u,v)]"

Currently using explicit RK4 scheme

ky = f (£, 2™)

2 = f (¢ o %:-’13(”) + %klj

3 = f (" +3,2™ + 5ky)

4 . f (t(n) T h .,."'}(n) T hk’g)
.CII(+1) — .CE(R + = (k'l -2]412—

- 2ks + ky) .

Model has about 1800 generall

1zed coordinates

o 2 dimension is about 3600

Parallelizing F'(t,u,v) evaluation

Parallelization

e First parallelize

15

o (Chain forces
o Pin-pulley
contact forces

Big tasks within one

RK4 step
r = (u,v)? —> Q
© .L Chain forces ODE
S A(u) | Contact forces RHS
= J' Other forces
v

A=LU — = (LU)'Q

(") — ki —=» ko = k3 = ky

2R TR R

RK4 p(n+1)

Parallelization

10%

M Chain forces
W Contact forces
Other forces
M Inertia decomposition
M Constraint elimination
Other
B RK4

58%

Sequential code

16

Parallelization

e Targeting SMP & NUMA architectures
o Single nodes (now)
o Clusters, with new runtime from HLRS (future)

» This project is part of planned joint Russian-
German project by St. Petersburg Polytechnical
university and HLRS

e Using OpenMP
o Thread-based parallelism (now)
o Task-based parallelism (future)

17

Parallelization

Hardware parameters and OS/GCC versions

Tesla Tornado
Cores per
socket 6 14
Sockets 2 2
NUMA
Nodes 2 2
CPU Intel Xeon CPU X5660 Intel Xeon CPU E5-2697 v3
5 9.80GHz 9.60GHz
[inux Ubuntu 19.04.5 T TS CentOS Linux release 7.0.1406
(Core)
GCC version 4.6.3 4.8.2

13

Parallelization

CPU time consumption in CVT simulation

1

0.9

s All cores were explicitly
05 assigned with
04 GOMP_CPU_AFFINITY
03 variable so only one
02 - NUMA node was used
) -
& & #..aﬁ' & & &
ﬁﬁ =) ¢ & o &

&

1 thread =6 threads

19

Parallelization

Relative speedup of chain forces evaluation

8

.

6

5 All cores were explicitly

4 assigned with

3 GOMP_CPU_AFFINITY

2 variable so only one NUMA
1 node was used 1f possible
%0 2 4 6 3 10 12 14

Number of cores

¥ Ideal #tesla ¥ tornado

20

Parallelization

Relative speedup of chain forces evaluation

8
.
6
i GOMP_ CPU_AFFINITY
; variable not used so both
, NUMA nodes were used 1t
: possible
0

0 2 4 6 8 10 12 14

Number of cores

|ldeal #tesla ¥ tornado

21

Parallelization

Relative "speedup” of contact forces evaluation

o

F

oY

_

- with thread pinning

O = b Wy & O Ch o-J 3

0 2 4) 8 10 12 14

Mumber of cores

% |deal #tesla ¥ tornado

Relative "speedup" of contact forces evaluation

no thread pinning

[T T % (T O I = = |

0 2 4 5] & 10 12 14

mMumber of cores

% |deal #tesla ¥ tornado

22

Exploring numerical methods

o Explicit methods
o Easily implemented
o Step size limited by stability requirements
o But stability region can be extended...
e Semi-implicit methods
o Require system Jacobian or its approximation
o Linear system(s) at time step
e Truly implicit methods
o Require system Jacobian or its approximation
o Nonlinear system(s) at time step

23

e Common RK schemes

Q O

O

O

O

Stability problems

24

Explicit methods

A

DOPRI4)
DOPRIS6
DOPRI78

GBS (smoothed)
Extrapolated Euler

L3 - E

Fixed categaries: model - atan-vexli-a Warying categonies: soheer

B dopridgs @ dopriss dopri f8 B s2heuler @ x2h-gragg-smooth
B =th-culer W sth-grage-smoath W sGh-euler @ x8h-gragg-smocth

L
i

HoE g
| I I

Lo EE S

| ! ! 1
[EICR T I A0EIA Oen [

Fixed cateqories: rnde! = ransmanth varying categnries: arep, sohver

B e-5 rkd | W Se-7, dopsiSE W Se-T, dopritd W Se-T, ks @ Se-T, x2h-euler

e-r, =2h-gragg-smocth W@ 9e-7, =dh-gragg-zmoath @ 5e-7. 2bh-gragg-smooth

Local error

Sample curve

Semi-implicit methods

e Rosenbrock

e W-methods

25

O

o Jacobian is expensive

O

O

O

O

O

Requires ODE RHS Jacobian

too slow (?)

Reuse Jacobin across steps
Could work quite fast
Schemes

= WI, SW2-4, X-SW1

Accuracy problems

Truly implicit methods

e Trapezoidal rule
o Excellent results at h = 2 - 10"
o Convergence problems at larger steps
o Lots of things to tweak in nonlinear solver
= How to compute Jacobian
= Recompute rarely
» Update to have superlinear convergence
= How to do linear search
= How to predict initial guess
= How to regularize equation

o Still too slow w/o specialized code for Jacobian
260

Truly implicit methods

e For trapezoidal rule, sample - /

curve at h = 2 - 107° is the same /
as the "exact" solution (RK4, o

h=2-10"°) e e
e Potentially, h could be greater, .
up to 107
o But this requires step size
control

Fixerd rategories: model = norsmocth

Varying categanes: siap, ODE =aler, Mevaon solver s=tings, Mewion solver tolerance

M le-2, rkd, nore, none Ze-6, trpz, ddir-simple, 1e-1

27

Jacobian eigenvalue analysis

F 3 &

f / f
v
original no friction

v

A Sy
" F
Al T ;
"“.". W

L |] . -
[] . .
-'. 1e2
L
T&1 Tal
1 ‘ * =1
13 " 89 1:§ (B B T e » |
L]
-1e1 . ‘ -1
[]

Disable friction at all

- = . &
L] * - .-I] - L
* - -"Hi L]
* L] -'." ‘-._.'. L]
“led > > i v R
Cds IMGELEL e, L e
-1e5 L re
-le? -le6 -1e5 -leq -lel -led -lel e

28

N

Jacobian eigenvalue analysis

original x10 vy pin-pin

.
f LF 29 =
- oy .
. 1ed s AT
- L ‘= g « g
Tad : - s .

0 U

" &2 o '_..._- -
Jlr 1ot "1.".'."\'+ -_-{ b
. iy

b an 1E21]
!U |I Ta1

= fala
0 L .
. o 8"
.-"-‘-

Nw ; . o' '
' . J® _gam

T - . ‘f] -
@\J et Mﬂ?r" e

x10 vy pin-plate x10 vy pin-pulley

‘mﬂ‘-ﬂ. - ‘N—--"I , *a
. " . -
l’ I-Il'_ 4.-' BEg & a F*i.“ :‘““
L™ o, . (] L S
= .. W = . " e .
L L L] - - 1]
[': l’ - i e - . L
" a . . e — -
. e, _i . a - .]
»
T n L *
| F B — *h E— #’-IFF s ta
R : ¥
| | - - i .
‘ | | ® +;,.. & ..i'.] . . b . . .
LT . i oW * ®
:!-II:I L-b': & —) [T _‘"" ‘I B i 5
-4 L Lo S | | -
' st ¥, . i II_JLH) II . ""..i 2
. . T " i
| - . s lk_h . I\‘_h: s « o RS
= L/ o
' B [e
J" [Tisf 1§ I k] 12 11 Tl II I 17 T [51 T4 13 1 In1

‘O Decrease slope of linear friction part

Jacobian eigenvalue analysis

e System appears to be mildly stiff
e Natural frequencies up to 10° 1/s
e Real negative A up to —10% 1/s

o These are due to friction

» Pin-pin friction at driv; ™= -
chain branch is e et
the worst case . N0 h eennnt
" | ﬁ , N
Jacobian changes fast .| E e

......
I L
..........

30

Future work

e Parallelization

o Better memory access and cache usage in NUMA

o Optimize & parallelize inertia matrix decomposition
e Numerical integration

o Try stabilized explicit RK

o Maybe try multistep methods

o Develop code to evaluate ODE RHS Jacobian faster
e Both

o Parallelize numerical integration algorithms, if any

31

Conclusions

e Parallelization
o Chain forces scale good within one CPU
o But scale bad across NUMA CPUs
= Maybe a kind of cache fighting?
o There are more things to do
e Numerical methods
o None tested is faster @ given accuracy than RK4
o W-methods didn't work at all :(
o Implicit will be faster when J is computed faster
o There are more methods to try

32

33

Thank you

Questions:’

