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Introducton

Design of microdevices and new space crafts requires development of approaches
to computer modelling of three-dimensional rarefied gas flows.

One of such approaches is direct numerical soluton of the Boltzmann kinetic
equation (BKE) for the velocity distribution function.

Due to high dimensions and complexity the capabilities of the numerical codes to
solve the BKE in 3D are limited.

Two alternatives to direct numerical solution of the BKE exist

Direct Simulation Monte Carlo method (DSMC)

Derivation of the kinetic equations with approximate (model) collision intergarls and
development of methods to solve them numerically.

At present the model kinetic equation of E.M. Shakhov (so-called S-model) has
gained popularity for modelling monatomic gas flows

The present talk will concentrate on the numerics for S-model only.

However, most of the discussed approaches will be applicable to other models and
partly to the BKE.
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Construction of kinetic models for the monatomic gas

The differential part of the KE does not change.

The exact collision term I (f , f ) is replaced by the approximate expression J(f , a),
where a – vector of unknowns, which is chosen in such a way that a few first
moments coincide:∫

φ(ξ)I (f , f )dξ =

∫
φ(ξ)J(f , a)dξ, φ(ξ) = 1, ξ, ξ2, ξξ2, . . .

Many models exist. Most popular are the following:
BGK, or Krook model, suggested in 1954

approximation conditions hold for conservation equations only (1, ξ, ξ2).
a second order model

Shakhov (1968) model
additionally satisfy the condition of the correct heat flux relaxation (ξξ2);
it is a so-called incomplete 3rd order approximations.

The BGK model does not guarantee the correct approach to the Navier-Stokes
equations as Kn→ 0 (wrong Prandtl number) and is hence least accurate.

The S-model has a correct limit as Kn→ 0.

Both models are exact for Kn =∞

The actual accuracy at intermediate values of Kn is unknown beforehand.
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S-model in the dimensional form

State of the gas is described by the velocity distribution function f = f (t, x , ξ).

Macroscopic variables are defined as integrals with respect to molecular velocity:

n =

∫
fdξ, nu =

∫
ξfdξ,

3

2
mnRgT +

1

2
mnu2 =

1

2
m

∫
ξ2fdξ,

q =
1

2
m

∫
vv 2f dξ, v = ξ − u, ρ = mn, p = ρRgT .

Kinetic equation is written in the following form

∂

∂t
f + ξα

∂f

∂xα
=

p

µ
(f + − f ), f + = fM

[
1 +

4

5
(1− Pr) Sαcα

(
c2 − 5

2

)]
,

fM =
n

(2πRgT )3/2
exp (−c2), Si =

1

n

∫
cic

2fdξ, c =
v√

2RgT
, c2 = cβcβ .

Here Pr = 2/3 is Prandtl number, m – molecular mass, Rg - gas constant.

Boundary condition of the diffusive reflection with complete thermal
accommodation to the surface temperature Tw is given by

fw =
nw

(2πRgTw)3/2
exp

(
− ξ2

2RgTw

)
, nw =

√
2π

RgTw
Ni , Ni = −

∫
ξn<0

ξnfdξ.
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Transformation to non-dimensional variables

Introduce the following change of variables:

x ′ =
x
l∗
, n′ =

n

n∗
, p′ =

p

p∗
, T ′ =

T

T∗
,

u′ =
u
v∗
, ξ′ =

ξ

v∗
, q′ =

q
mn∗β3

∗
, f ′ =

f

n∗β3
∗
.

where p∗ = mn∗RgT∗ – pressure, β∗ =
√

2RgT∗ – most probable molecular speed.

Degree of gas rarefaction is defined by the so-called rarefaction parameter δ, which
is inversely proportional to the Knudsen number:

δ =
l∗p∗

µ(T∗)β∗
=

8

5
√
π

1

Kn
, Kn =

λ∗
l∗
.

Here λ∗ is the mean free path at reference conditions ∗.

In the rest of the presentation non-dimensional variables will be denoted by the
same symbols are dimensional ones.
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S-model in the non-dimensional form

The kinetic equation is re-written as

∂f

∂t
+ ξα

∂f

∂xα
= J, J = ν(f (S) − f ), ν =

nT

µ
δ,

δ =
l∗p∗

µ(T∗)
√

2RgT∗
, ν = Tω, f (S) = fM

(
1 +

4

5
(1− Pr)Sc(c2 − 5

2
)

)
,

fM =
n

(πT )3/2
exp (−c2), c =

v√
T
, v = ξ − u, S =

2q
nT 3/2

.

Macroscopic variables(
n, nu,

3

2
nT + nu2, q

)
=

∫ (
1, ξ, ξ2,

1

2
vv 2

)
fdξ, p = nT

Boundary condition of diffuse reflection:

f (x , ξ) = fw =
nw

(πTw)3/2
exp

(
− ξ2

Tw

)
, ξn = (ξ, n) > 0,

nw = Ni/Nr , Ni = −
∫

ξn<0

ξnfdξ, Nr = +

∫
ξn>0

ξn
1

(πTw)3/2
exp

(
− ξ2

Tw

)
dξ.
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Conservative version of the discrete velocity method

The improper integrals in the velocity space are replaced by proper integrals over
some sufficiently large finite domain, e.g.

3

2
nT + nu2 =

∫
ξ2fdξ ≈

∫
0≤ξ≤ξR

ξ2fdξ,

∫
ξ>ξR

ξ2fdξ � 1

We introduce in the velocity domain (generally unstructured) mesh with Nξ cells.

Functions f , f (S) will be assigned to the centres of cells and interpreted as vectors
with components

fj = f (t, x , ξj), f
(S)
j = f (S)(t, x , ξj), ξj = (ξj1, ξj2, ξj3), j = 1, . . .Nξ

Kinetic equation is re-written as a system of Nξ equations, written as a vector
conservation law

∂

∂t
f +

∂

∂xα
Fα = J , J = ν(f (S) − f ), α = 1, 2, 3

Here the components of ”advection” fluxes are given by Fjα = ξjαfj .
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General form of the semi-discrete method

Integration over the spatial cell Vi and fairly standard approximation of flux
integrals and the right hand side leads to the following

∂fi
∂t

= Ri = − 1

|Vi |
∑
l=1

Φli + Ji ,

Φli =

∫
Ali

(n1F1 + n2F2 + n3F3)) dS

The second order of spatial accuracy is achieved by computing numerical fluxes Φli

using an upwind TVD method on arbitrary mesh:

For the so-called boundary extrapolated value fli for face l of cell i :

fli = fi + f correction
li

For f correction
li we use either general 3D method or directional method (for hexa only).

The upwind flux function is written as follows:

Φli =
1

2
ξnli ◦

[
f − + f + − sign(ξnli ) ◦ (f + − f −)

]
|Ali |.

Rusanov-type solver is also possible.
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Calculation of macroscopic variables

The main idea introduced in (Titarev 2003, 2007) is to discretize directly
approximation conditions of the S-model equation.

The vector of primitive variables W = (n, u1, u2, u3,T , q1, q2, q3)T is found from
the following system:

H(W ) =

Nξ∑
j=1


1
ξ
ξ2

vv 2


j

(f (S) − f )jωj +


0
0
0

2 Pr q

 = 0.

Newton iteration procedure yields

M(W s−1)(W s −W s−1) = −H(W s−1), s = 1, 2, . . . , M =
∂H
∂W

.

Initial iteration - conventional quadrature rule.

The described approach is applicable to any kinetic model.

In case Pr = 1 the first 5 equations reduce to the method of Mieussens, 2000,
which is derived from different conditions.
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Solution of the equation for time increments

We use implicit Euler method in time:

∆fi
∆t

= Rn+1
i , ∆fi = f n+1

i − f n
i , → ∆fi

∆t
= Rn

i +

(
∂R
∂f

)
∆fi .

Assuming 1st order approximation of the left hand side, we obtain

Φn+1
li ≈ Φn

li +
∂Φn

li

∂f n
i

◦∆fi +
∂Φn

li

∂f n
il

◦∆fil , Jn+1
i ≈ Jn

i − νni ∆fi .

Re-grouping and using upwind expressions for fluxes on the left, we simplify the
scheme into((

1

∆t
+ νni

)
Iξ +

1

2|Vi |
∑
l

ξli ◦ (Iξ + signξli )|Ali |

)
◦∆fi

+
1

2|Vi |
∑
l

ξil ◦ (Iξ − signξli )|Ali | ◦∆fil = Rn
i .

In compact notation:

di ◦∆fi +
∑
l

cil ◦∆fil = Rn
i .
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Solution for time increments

The solution is constructed using an approximate LU-SGS factorization as
proposed for unstructured meshes in from Menshov & Nakamura, 1995.

Recall
di ◦∆fi +

∑
l

cil ◦∆fil = Rn
i .

Two-step procedure:

Backward sweep for intermediate values ∆f ∗i :

di ◦∆f ∗i = −
∑
l :il<i

cil ◦∆f ∗il + Rn
i , i = Nspace , . . . 1.

Forward sweep for final values:

di ◦∆fi = ∆f ∗i −
∑
l :il>i

cil ◦∆fil , i = 1, . . .Nspace .

The procedure is matrix-free and computationally very fast.
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Organization of parallel computations

3D kinetic calculations require the use of very large meshes

Typical 6-dimensional mesh size is at the order of 109 nodes/cells

General idea is to use geometrical mesh decomposition in

physical space - traditional in CFD

velocity space - specific to model kinetic equations

in both spaces

Standard approach: use message passing (MPI) for parallel computations

for decomposition in physical space all ideas from general CFD apply

for velocity space decomposition each MPI rank

performs calculations for its set (or range) of velocity nodes

sums up integral sum for computing macroscopic data

in general, velocity decomposition method is much easier to implement, but may be
not applicable to the exact BKE

However, pure MPI has its limitations - more on this later..
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Two-level parallel approach

1 Modern x86-based HPC systems are built of computing multi/many core nodes
based on e.g.

Intel Xeon CPU (12+ cores)
Intel Xeon Phi co-processors (61 physical core, 244 logical cores).

2 Pure message passing (MPI) approach is not efficient for systems with so many
logical cores.

3 We use two-level OpenMP + MPI approach in order to use such systems with the
best efficiency

4 Upper level – MPI between nodes using velocity space decomposition as default.

5 Low level - decomposition of the spatial mesh into blocks and use of share-memory
model OpenMP.

6 It is important to stress that OpenMP + MPI approach is implemented for the
implicit time-evolution method without any visible loss in the steady-state
convergence properties.
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Final schematic of two-level parallel model

MPI rank 1: 
portion of 

velocity mesh 

MPI rank N: 
portion of 

velocity mesh 

Complete problem:  
6-dimensional mesh + time 

 
MPI ALLReduce 

 

OpenMP+ 
vectorization 
within node 

OpenMP+ 
vectorization  
within node 

Vladimir Titarev (FRC CSC RAS) HLRS Stuttgart 2017 14 / 34



Details on the shared-memory parallelization inside the
node

Overall, time step advance consists of the following steps:

1 Compute f ± on mesh faces (icell = 1, . . .Ncell )

2 Compute numerical fluxes (iface = 1, . . .Nface)

3 Compute model collision term (icell = 1, . . .Ncell )

4 Compute time increment ∆fi and update fi

For steps (1) – (3) it is enough to use simple OMP loop with dynamic balancing:

For the parallel LU-SGS method each thread works with its part of the spatial
mesh only; for ”ghost” cells one can use Jacobi approximation:

∆fi = Ri/di

For spatial meshes of reasonable quality convergence properties are not affected.
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Software package ”Nesvetay-3D”

“Nesvetay-3D” consists of

the computing core

three-dimensional kinetic solver

spatial/velocity mesh preprocessor.

BGK and Shakhov models can be used.

20000 lines of Fortran 2003 code with elements of OOP.

Two-level OpenMP + MPI model of parallel computations is used on computers
with large core count per node.

Development tools are Microsoft Visual Studio 2013 and Intel Fortran Compiler
version 16.

GIT is used for version control.

“Nesvetay-3D” has been succesfully run on the HPC systems of Cranfield
University, Lomonosov Moscow University, MIPT, JSCC and SPbU.
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Velocity mesh construction for high-speed external flows

If we use integration of a Maxwellian function

f = n(2πT )−3/2exp(−(ξ − u)2/T )

as a guide for choosing the cell size and domain size, than we have

∆ξ ≤ (0.5 . . . 1)
√
T , |ξ| ≤ U∞ + 3

√
T 0, T0 = 1 +

1

3
M2
∞.

Naive velocity mesh construction is not useful for calculations as Nξ ≈ M3
∞.

In the existing literature an octree-type velocity mesh is proposed, e.g.
Arslanbekov et al 2013, Baranger et al 2014.

In the present work we advocate a much simpler approach to the creation of
non-uniform velocity mesh, suitable for external flows with M∞ � 1:

Near ξ = 0 and ξ = u∞ we use cubical subdomains with ∆ξ = 0.5
√
Tw , ∆ξ = 0.5,

respectively.
The rest of the domain is filled by tetrahedrons; their size grows up to ≈ 0.5

√
T0.

As a result, Nξ dependence on the free-stream Mach number is rather weak, close
to linear.
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Verification study: flow over 6-inch cylinder

We compare our results with one of the leading DSMC code ”Monaco”, published
in Ph.D. thesis of Lofthouse, 2008.

We consider gases argon and nitrogen and free-stream Mach number M∞ = 25.

Flow regimes: rarefied (δ ≈ 1.6) and nearly continuum (δ ≈ 40).

We use the following coefficients for comparison:

cp =
Pn − p∞

S2
∞

, cf =
Pτ
S2
∞
, ch = 2

En

S3
∞
,

where force acting on an unit surface with normal vector n and energy flux vector
given by

P = 2

∫
ξnξfdξ, M =

1

2

∫
ξξ2fdξ.

Their normal and tangential projections are defined as

Pn = P · n, Pτ = P − Pnn, En = M · n.
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Computational mesh

We use hexa mesh, with 115× 40 cells in x-y plane and 3 cells along z axis.

Velocity mesh consisted of 35720 cells.

(a) Spatial mesh (b) Velocity mesh
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Results for argon: flow setup

Dimensional velocity U∞ = 6585 m/s, temperature T∞ = 200K, Tw = 1500K.

Calculations were run for two values of free-stream density:

ρ∞ = 1.127× 10−6 kg/m3 so that δ = 1.6

ρ∞ = 2.818× 10−5 kg/m3 so that δ = 40

Here δ is computed using cylinder radius R = .0762m.

Non-dimensional free-stream velocity S∞ = 22.82, temperature Tw = 7.5.

Viscosity law µ = T 0.734.
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Results for argon and δ = 1.6

Shown are pressure cp, friction cf and heat transfer ch coefficients

Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

(a) cp (b) cf (c) ch
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Results for argon and δ = 40

Shown are pressure cp, friction cf and heat transfer ch coefficients

Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

(a) cp (b) cf (c) ch
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Results for nitrogen: flow setup

Dimensional velocity U∞ = 7208.7 m/s, temperature T∞ = 200K, Tw = 1500K.

Calculations were run for two values of free-stream density:

ρ∞ = 7.8995× 10−7 kg/m3 so that δ = 1.59

ρ∞ = 1.974× 10−5 kg/m3 so that δ = 39.7

Non-dimensional free-stream velocity S∞ = 20.92, temperature Tw = 7.5.

Viscosity law µ = T 0.7.

Note, that molar mass of nitrogen is used to compute non-dimensional input data!
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Results for nitrogen and δ = 1.59

Shown are pressure cp, friction cf and heat transfer ch coefficients

Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

(a) cp (b) cf (c) ch
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Results for nitrogen and δ = 39.7

Shown are pressure cp, friction cf and heat transfer ch coefficients

Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

(a) cp (b) cf (c) ch
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Test problem: external supersonic flow

We consider external supersonic flow over the TsaGI re-entry vehicle model

GLA model has a complicated form and consists of fuselage with blunted nose,
wings, vertical keel and flap.

The total length of the model is 10 meters.
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VKA flow setup

We consider external flow of air

Flight altitude 100 km, so that ρ∞ = 5.5507× 10−8 /3, T∞ = 196.6 K

Rarefaction parameter per meter: δ = 0.71/m.

Solution computed for dimensional velocity U∞ = 1500, 6000 and 7900 m/s;

Non-dimensional free-stream velocity S∞ = 4.45, 17.8, 23.5, temperature Tw = 5.

Viscosity law µ = T 0.5.

Angle of attack 25 degrees.

Results for 7900 m/s re-entry velocity is shown as the most representative case.

Computational meshes used:

Spatial mesh: either tetra-prism (401 kilo cells) or hexa (436 kilocells)
Velocity mesh: 45 kilo cells
Total number of cells is equal to 13 billions!
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VKA tetra-prism and multi-block hexa meshes

(a) Tetra-prism mesh, 401 thousand cells

(b) Hexa mesh, 436 thousand cells
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VKA: compare results on two different meshes

(a) Tetra-prism mesh, cp (left) and ch (right)

(b) Hexa mesh, cp (left) and ch (right)

Vladimir Titarev (FRC CSC RAS) HLRS Stuttgart 2017 29 / 34



VKA: flow field on hexa mesh

Shown are pressure levels and streamlines
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RSC ”PetaStream” family of supercomputers

Vladimir Titarev (FRC CSC RAS) HLRS Stuttgart 2017 31 / 34



Cylinder flow on ”Polytechnic RSK PetaStream” of SPbPU

Flow regime: M∞ = 25, δ = 1.6, compare 13800 vs 34500 hexa meshes

Node: Intel Xeon Phi 5120D co-processor (240 logical cores, 1,053 Ghz)

(a) Complete mesh 0.5 billion cells (b) Complete mesh 1.2 billion cells
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VKA flow on ”Polytechnic RSK PetaStream” of SPbPU

Flow regime: U∞ = 1500 m/s, 100 km altitude

Hexa va tetra-prism spatial mesh, up to 280 nodes (67200 hyperthreads)

Parallel efficiency around 73%

(a) Hexa, 6D mesh 9.5 bln cells (b) Tetra-prism, 6D mesh 8.7 bln cells
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Conclusions

We have developed a parallel software package to model three-dimensional
monatomic rarefied gas flows

A two-level model of parallel computations is implemented, which allows to run on
tens of thousands of logical cores.

A comparison study shows good accuracy of kinetic model for high-Mach number
flows.

The capabilities are demonstrated by computing rarefied gas flow over GLA model
under angle of attack.
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