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Discontinuous Galerkin Method (DGM)

Is employed to solve hyperbolic, parabolic and elliptic problems.

Combines different features commonly attributed to finite element and
to finite difference methods.

Provides high-order accuracy.
Can easily handle adaptive strategies.

Bernardo Cockburn An Introduction to the Discontinuous Galerkin Method for Convection -
Dominated Problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes
in Mathematics, 1998, Volume 1697/1998, 151-268
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P - the density of the fluid
u, v, w - the components of velocity
¢ - the specific internal energy
p - thepressure,
T — the temperature

p=p(p,¢)
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Discontinuous Galerkin Method for Navier-Stokes equations

Let’s consider the Navier-Stokes equations, written in the form of first-order equations:

(l—%yjﬁ(div v)+2uS(v), S(v) =(VV+(VV)*)/2, qQ(U)=—kVT

N\

E= p(g n (uz 192+ w2 ) / 2) -total energy per unit volume.

u —dynamic viscosity, A — volume or second viscosity,
supplemented with the appropriate initial and boundary conditions, the type of which depends on the specific

objectives and will be specified further
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Godunov flux

Rusanov—Lax—Friedrichs flux

HLILC flux

Diffusion fluxes

To calculation Diffusion fluxes at the element boundary we use stabilizing
additions as for heat conductivity equation

F'onysoB C.K. Pa3HOCTHBIN METO YU CJIEHHOTO pacueTa pa3pbIBHBIX pelIeHU I YPaBHEHUN T'HIPOANHAMUKHA

//Marewm. cb., 1959, 47(89):3, 271—306.
Lax P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. //Communications

on Pure and Applied Mathematics. 1954,7, N21, 159 -193
Pycanoe B.B. Pacuer B3aMMOJEMCTBHA HECTAIIMOHAPHBIX YAAPHBIX BOJH C HNPENATCTBHAMH. 1961, KypHan

BBIYHCJIUTEJIPHOM MaTEMaTUKH M MaTeMaTUUecKou ¢pusuku, T.I, N°2, 267- 279.

A K. Pany and S.Yadav An hp-Local Discontinuous Galerkin method for Parabolic Integro-Differential Equations,
OCCAM, Report N 09/30

Arnold D.N., Brezzi F., Cockburn B., Marini L.D. Unified analysis of discontinuous Galerkin methods for elliptic problems. // SIAM
Journal on Numerical Analysis, 2002, 29, pp. 1749—1779.
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A —1s the mass matrix

U — is the global vector of degrees of freedom (the expansion
coefficients of all the sought-for functions)

R(U) — is the vector of the right hand sides.

dU”
dt

=A"'R(U")

The Runge—Kutta time discretization

v = A, {U” +AtL(U”)},

U@ = Al, {i v’ +411U(D +iAtL(U*)},

U™ = AT, {; U" +§U(2) +§AtL(U(2))},



Cocburn’s limiter
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Bernardo Cockburn An Introduction to the Discontinuous Galerkin Method for Convection - Dominated
Problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1998,
Volume 1697/1998, 151-268

Lilia Krivodonova, Limiters for high-order discontinuous Galerkin methods, 2007, Journal of Computational Physics,
vol. 226,pp. 879-896.
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/\‘ " USING THE GRID-OPERATOR APPROACH TO THE
G e PROGRAMMING

The grid-operator approach makes possible compact encoding of mathematical
formulas at the programs and facilitates their porting to parallel
architectures such as NVidia CUDA u Intel Xeon Phi.

The methods of template metaprogramming of the C++ language are used to
speed up the calculations.

Metaprogramming — computation of types and integer constants at the
compilation stage.

In DGM metaprogramming is used for computation of:
Factorials;
Integrals of monomials over the mesh element;
Integrals of polynomials over an arbitrary tetrahedron (automatic opening of parentheses);

Templates of expressions in the operator of volume integration.

M.M.Kpactos, OniepaTopHasa GHOJIHOTEKA /IS PENIEHUA TPEXMEPHBIX CETOYHBIX 3a/1a4 MaTeMaTHYeCKOM (PU3UKH C
HCIIOJIb30BaHueM rpadpuueckux miat ¢ apxurekrypoit CUDA. // MaTtemaTuueckoe MOJIeJINpOBaHue, 2015, T. 27, NO 3, c.
109-120



gridmath library

gridmath library is an implementation of the grid-
operator approach to programming.

The library implements:
Grid functions;
Grid evaluators;
Arithmetic of grid evaluators and grid operators;

Parallelization of computations on common
memory using OpenMP u CUDA.

The applied programmer can implement grid
operators and data exchange using MPI.



Distribution of roles

Applied programmer:
orid operators, MPI

gridmath: grid functions,
grid evaluators

C++: metaprogramming,
expression templates
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C/“\W) Example of writing down
of a mathematical formula

In the distributed Galerkin method at each time step five volume integrals

need to be calculated for each cell of the grid:

0¢; 9, dg; Writing down of the same formulas using gridmath
2= j [(pu)% + (pv)ai;j + (pw) %] av libr ary:g g8
Ty

u ) do; de; JoF
IrSj — f (pu2 + p)a—? + (puv)ai; + (puw)%] av R = A*(]om(
Tie - . ; 5 vol _int(rho_u,rho_v,rho_w)(U),
I = f () =L + (pv? + p) =2 + (pvw) L dv VOl—int(rhO_u%u"' ,rho_u*v,rho_u*w)(U),
, dx Oy 9z vol_int(rho_v*u,rho_v*v+p,rho_v*w)(U),

Ty
» i 09 d9; d0; vol int(rho_w*u,rho_w*v,rho_w*w+p)(U),
1= [ |ewo g + w52+ ow? +P>a—;]dv VoL int((E+p)*u,ED)™,(E+ D) W)(U)
Tie ~ ) - hflow(U));

d¢; 0¢; 99;
(E + p)uﬁ + (E + p)vw + (E + p)WE av

—
- |

Ty

Here U — grid function, keeping 5 conservative variables (mass, three
components of impulse and energy) for each cell of the grid;

vol_int — volume integration operator;

hflow — flow through faces operator;

A — mass matrix (grid function).



Advantages of the grid-operator approach

Clearness. The external view of the program looks
much more like mathematical formulas than in
traditional programs.

Portability. The text of the programs is ported on
parallel architectures (CUDA, OpenMP) practically
without any changes.

Productivity. It becomes much easier to write and
de-bug the programs. The possibility of mistakes
lessens.

Efficiency. Due to the use of “lazy” evaluations, it
is possible to save random-access memory for
intermediate computations.



(ﬁ\[M) Strong Scaling

K-100 Strong Scaling 1 100%
2 CPU Intel Xeon X5670, (grid size is fixed) N-T,

12 computational cores and

3 graphic cards 5

nVidia Fermi C2050 on each node N cells ™ 10

CUDA, time 116,64 64,12 37,58 22 11,9




Strong Scaling

K-100

2 CPU Intel Xeon X5670, Grid N, ~ 10°
12 computational cores and

3 graphic cards

nVidia Fermi C2050 on each node

CPU ppniz2,
time

82,57 302,85 150,6 80,61 55,55 42,16 22 51

CPU ppn4,
time 76,16 51,4 36,99 23,01

CUDA ppn3,

35,2 18,16

10,49 5,47 3,76 2,91 1,54




Problem of shock wave interaction with a triangular prism

Geometry of the
computational domain:
- s { L =02 L =015 L =L,

b=002 [=0.01/3

Shock wave parameters:

- Q ]h Ly M, =13

| Parameters of the background
! 'R flow:
// : y=14 p,=005MPa T,=300°K
Incident shock wave Grld OptionS:

Nells ~ 107

C

Arnab Chaudhuri, Abdellah Hadjadj, Ashwin Chinnayya “On the use of immersed boundary methods for shock/obstacle
interactions”, Journal of Computational Physics 230 (2011) 1731-1748

Se-Myong Chang, Keun-Shik Chang «On the shock—vortex interaction in Schardin’s problem» Shock Waves (2000) 10: 333—343



Results of the numerical simulation




h = 0.002500 h = 0.001250 h = 0.000625



The modeling of the supersonic inviscid flow with Mach number 3.5
past a triangular prism

Density

0.121 266 5.19 7.73 10.3
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Oblique shock theoretical value of the angle [ is

M:sin® -1
M?2(y +cos2f8)+2

- tan6’=200t,8{ } ) 3~ 34.58°

numerical value of the angle B is s 3 ~ 34.90°



The modeling of the supersonic inviscid flow past a cylinder

Geometry of the
computational domain:

x/D=-3 u x/D= 21,y/D=-3 u
y/D=3
Shock wave parameters:
M, =35

Parameters of the background
flow:
p, =101324,13Pa T, =298,15°K
y=14 R=287,0 Lo/ (xeK)

Grid options:
N, ~6.2-10°

C




The Euler equations

The Navier-Stokes equations (Re=10000)

Density
6.027e-02 1.288 2516 3.743 4.971e+00
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In supersonic flow past a cylinder, the pressure at the critical point on the
front wall of the cylinder is determined analytically by the formula

Do =D S 1 se—p Po =0.947071

p1, M, - Pressure and Mach number in the free stream.

po=09117 ~ p,=0.9572

numerical value of the critical pressure —p



Numerical modeling of the flow in the compression corner

Mach number 6.01

pressure p,, = 9.72 - 105 Pa
50 [} temperature T, = 380 °K
B o~ Reynolds number a Re; = 6 - 105 on L = 50 mm
angle of attach a = o°
@)
S/

Unstructured tetrahedral mesh

Density
6.798e+00

tS,M?

34861

with ~ 10° cells

[1.5303
1.744e-01

V. 1. Zapryagaev, [.N. Kavun, and I. I. Lipatov. Supersonic laminar separated flow structure at a ramp for a
free-stream Mach number of 6 //Progress in Flight Physics 5 (2013) 349-362
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Distribution of density and Mach numbers.

Density
1.744e-01 1.83 3.486 5.142

6.798e+00
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Mach number
2.420e-03 2.08

] 6.23 8.309e+00
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The pressure coefficient in the symmetry plane of the model
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Numerical simulation of flow X-43 hypersonic aircraft




Conclusions

Software package based on the discontinuous Galerkin method for
calculating aerodynamic flows on unstructured grids was
developed.

A series of verification tasks was performed

Numerical results are in good agreement with the experimental
and numerical ones and the complex flow pattern is accurately
captured.

The use of the meta-programming of C++ language has allowed to
reduce overall program execution time

The use of the grid-operator approach has permitted to create an
efficient software implementation of the algorithm, which can be
easily ported to the modern parallel computing architecture,
including graphics accelerators.
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grant N2 16-01-00333 and grant N° 17-01-00361_A
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