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Structure of nonlinear phenomena

I looking for stable structures in unsteady flow

I here: Mevis Aorta Benchmark , flow in aorta
Mirzaee, H., Henn, T., Krause, M. J., Goubergrits, L., Schumann, C., Neugebauer,
M., Kuehne, T., Preusser, T. and Hennemuth, A. (2016), MRI-based computational
hemodynamics in patients with aortic coarctation using the lattice Boltzmann
methods: Clinical validation study. J. Magn. Reson. Imaging. doi:10.1002/jmri.25366
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Intention: a way to analysis of time dependent data

I Assume a simulation of the unsteady Navier-Stokes equations

I Is there a (approximative) decomposition in time invariant (complex) vector fields?

I What significance has such a decomposition?

I Is there a general approach?
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Linear versus Nonlinear

I Let ϕ be an operator with some reasonable properties.
Assume K a compact topological space and ϕ a continuous transformation

ϕ : K −→ K (1)

ϕ may be a linear or nonlinear.

I K might be part of a (discrete) function space, e.g. state vectors for the
Navier-Stokes operator. K might also have no vector space structure.

I If ϕ is a linear operator, it admits a spectral decomposition in stable subspaces,
helping the analysis of the described phenomenon.

I But if ϕ is nonlinear?
Spacewise and timewise local linearizations do not characterize the solution globally.

I There is a way to embed the given problem in a larger space where it appears as a
linear one.
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The Koopman-Operator: definition

I Assume F ⊂ C (K) (the space of all continuous functions with values in R or C)
being a linear subspace of ”observables” with the stability property

f ∈ F ⇒ f ◦ ϕ ∈ F (2)

Observables are e.g. the mean pressure of a fluid domain or the evaluation operators
δx at all points x ∈ Ω for continuous functions defined on the domain Ω.

I The operator Tϕ defined by

Tϕ : F −→ F (3)

f 7→ Tϕf = f ◦ ϕ (4)

is named the Koopman-Operator of ϕ on F
(B.O. Koopman, ”Hamiltonian systems and transformations in Hilbert space”,
(1931) Proceedings of the National Academy of Sciences of the USA, 17, pp.
315–318.)
The investigating mathematical discipline is named ergodic theory
(T.Eisner, B. Farkas, M.Haase, R.Nagel: ”Operator Theoretic Aspects of Ergodic
Theory”, Graduate Texts in Mathematics, Springer 2015. )

I ⇒ Tϕ is linear and continuous! No other assumptions are necessary.
It may have eigenvalues and eigenvectors in F .

I but acting on an infinite dimensional space.
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The Koopman-Operator: unusual properties

I Even for simple cases the space of observables F is large. For numerical applications
it can be restricted in a still meaningful way.

I Only a small finite part of the point spectrum can be approximated in a numerical
way.

I The eigenvectors are elements of the space of observables F , not of the state space
K as in the linear case.
They fulfill by definition Schröders functional equation

f (ϕq) = λf (q) ∀ q ∈ K
(Schröder, Ernst (1870). ”Ueber iterirte Functionen”. Math. Ann. 3 (2): 296–322.
doi:10.1007/BF01443992.)
It might be difficult but will be interesting to be interpret this equation in terms of
physical phenomena.
Remark: also f is typically nonlinear. |λ| ≤ 1 is necessary.

I The point spectrum Pσ (Tϕ) has unexpected properties.
Dependent on the extent of the space of observables F and eigenpairs (λ, f),
(λ1, f1), (λ2, f2) with f1 · f2 6= 0 we have the following:

λ1 · λ2 ∈ Pσ (Tϕ) with eigenfunction f1 · f2
|λ| ∈ Pσ (Tϕ) with eigenfunction |f |

assuming, that f1 · f2, |f | ∈ F .
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references

I A different approach to the ideas shown here is the analysis of measurements as
given by
P. J. Schmid, ”Dynamic mode decomposition of numerical and experimental data”,
J. Fluid Mech. 656, 24 (2010).

I The analysis of the Koopman operator in terms of applications in the field of Control
Theory is investigated by a Igor Mezic and others
Marko Budǐsić, Ryan Mohr, and Igor Mezić; ”Applied Koopmanism”; Chaos 22,
047510 (2012); doi: 10.1063/1.4772195; http://dx.doi.org/10.1063/1.4772195
and
K. K. Chen, J. H. Tu, and C. W. Rowley. ”Variants of dynamic mode decomposition:
boundary condition, Koopman, and Fourier analyse”. J. Nonlinear Sci.
22(6):887–915, 2012.

I An overview on the Koopman operator in terms of functional analysis can be found in
Kari Küster, ”The Koopman Linearization of Dynamical Systems”,
Diplomarbeit,März 2015, Arbeitsbereich Funktionalanalysis, Mathematisches Institut,
Eberhard-Karls-Universität Tübingen
(http://homepages.laas.fr/henrion/mfo16/kari-kuester.pdf)
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Schröders equation and Koopman eigenvectors

I How to define a numerical approach for the approximation of Schröders equation
resp. the eigenvectors of the Koopman-operator?

I We are here only interested in calculating the relation on a trajectory of discrete
values fj .

I Assume a sequence f = (fj)j=0,1,··· of scalars or vectors or functions with

fj = f
(
ϕjq0

)
.

I Even fj = ϕjq0 is allowed if K is a compact subset of a vector space (ϕj is the
j-times repeated application of operator ϕ).

I As an example j may be the time step number, ϕ the discretization of the
Navier-Stokes equations on a reasonable domain .
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Approximation of an λ-eigenmode along a trajectory 1/5

I Assume a finite complex sequence α = (αk)k=0,··· ,p−1 defining the polynom

C 3 µ 7→ α (µ) =
∑p−1
k=0 αk µ

k. α is the polynom coefficient vector.

I Assume further a complex number λ not being root of this polynom, α (λ) 6= 0 .

I Define an induced sequence f̂α,λ =
(
f̂α,λj

)
j=0,1,···

summing up p sequential

weighted values along the trajectory

f̂α,λj =
1

α (λ)

p−1∑
k=0

fj+k αk ∀ j = 0, 1, 2, · · · (5)

I The sum over α starts repeatedly at all fj .
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Approximation of an λ-eigenmode along a trajectory 2/5

I example:
sum over αk, k = 0, . . . , 7 moving along trajectory of
values (fj)j=0,...,14

I f̂α,λj = 1
α(λ)

∑8−1
k=0 fj+k αk ∀ j = 0, 1, · · · , 7

I If fj = f
(
ϕjq0

)
results from an observable f , which fulfills Schröders equation

f (ϕq) = λf (q) ∀q, we have f̂α,λj = λjf (q0) (the sum is ”consistent” with respect

to Schröders equation).

I What are the conditions for α, so that f̂α,λ approaches Schröders equation and is an
approximative Koopman eigenvector?
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Approximation of an λ-eigenmode along a trajectory 3/5

I The error εα,λ of
(
λ, f̂α,λ

)
to solve Schröders equation is given by

εα,λj = −λf̂α,λj + f̂α,λj+1 =
1

α (λ)

p∑
k=0

fj+k ck ∀ j = 0, 1, · · · (6)

with the polynom coefficient vector

c0 = −λα0

ck = −λαk + αk−1 ∀ k = 1, · · · , p− 1 (7)

cp = αp−1

I As a polynom, c is the product of polynom α and the linear divisor given by the
polynom µ 7→ µ− λ

c = α ∗
[
−λ
1

]
(8)

”∗” is the convolution operator defining the product of two polynoms. α as a
polynom is dividing the polynom c.
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Approximation of an λ-eigenmode along a trajectory 4/5

I For a matrix Ap(c) with infinite number of columns and rows given by the shifted c
we get

εα,λ =
1

α (λ)

[
f0, f1, f2, · · ·

]


c0
c1 c0
c2 c1 c0
. c2 c1 ·
. . · ·
cp cp−1 cp−2 ·

cp cp−1 ·
cp ·

·


=

1

α (λ)
f Ap(c)

!
≈ 0

(9)

I The sequence f̂α,λ will be an approximative eigenmode of the underlying iteration
operator iff ‖f̂α,λ‖ � ‖εα,λ‖ ≈ 0 .

I We have f̂α,λ = 1
α(λ)

f Ap−1(α) for the approximative eigenmode (10) .

I In the following we assume that εα,λ is small by a well suited selection of c.
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Approximation of an λ-eigenmode along a trajectory 5/5

I By Vieta’s theorem there are additional p− 1 roots λl of the polynom defined by c

defining αl = c /

[
−λl

1

]
(unless there exist multiple roots).

I They all share the similar approximation quality 1
αl(λl)

f Ap(c) ≈ 0 depending on the

fraction 1
αl(λl)

I That means we get a set of candidates(!) for additional approximative eigenvectors if
we start with a single one.

I These might (nearly) vanish. In this case we refuse them as approximative
eigenvectors.

I λ = 1 together with an optimal α is a good initial eigenvalue.

I The degree p of polynom c has to be as small as possible.
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The λ-eigenmode mapping operator 1/3

I We denominate the map •̂λ defined by approximative eigenmode (10)

•̂λ : f 7→ f̂λ = f̂α,λ (10)

the λ-eigenmode mapping operator. This operator can be applied to a sequence of
scalars or vectors or functions or vector fields in the appropriate spaces.

I Under reasonable conditions we have the following properties:
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The λ-eigenmode mapping operator: linear properties 2/3

I In the case of continuous or differentiable or integrable functions f the operator •̂λ
is linear and commutes with limites and (discrete) differentiable and integration
operators

̂af + bg
λ

= a f̂λ + b ĝλ

lim
n→∞

f̂n
λ

= l̂im
n→∞

fn
λ

ĝrad f
λ

= grad f̂λ ∆̂ f
λ

= ∆ f̂λ

D̂ v
λ

= D v̂λ d̂iv v
λ

= div v̂λ r̂ot v
λ

= rot v̂λ

̂∫
V
f (x) dx

λ

=

∫
V
f̂λ (x) dx

̂∮
∂V

< v (x) , df(x) >

λ

=

∮
∂V

< v̂λ (x) df(x) >

all these elements are approximative eigenmodes for the eigenvalue λ as long as
approximation-error εα,λ (9) is small.
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The λ-eigenmode mapping operator: boundary conditions 3/3

I Assume a discretized time dependent solution of a partial differential equation.

I The λ-eigenmode mapping operator •̂λ can as well be applied to the trajectory of
boundary conditions.

I A timewise constant boundary condition b is an eigenvector for λ = 1.
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Example: incompressible Navier-Stokes equations 1/3

I In differentiable form

div v = 0 (11)

∂t v = − div v ⊗ v −
1

ρ
grad p+ ν∆v (12)

div v ⊗ v is the nonlinear term. The integral form could be used alternatively.

I We discretize the time derivative in a simple way and get for k = 0, · · · , p− 1 and
j = 0, 1, 2, · · ·

div vj+k = 0 (13)

vj+k+1 = vj+k + ∆t

(
− div (v ⊗ v)j+k −

1

ρ
grad pj+k + ν∆vj+k

)
(14)

The operators in 3D-space can be understood as differentiation or discretization
operators.
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Example: incompressible Navier-Stokes equations 2/3
the associated eigenproblem

I Applying the λ-eigenmode mapping operator •̂λ with respect to eigenvalue λ

div v̂j
λ = 0

1

∆t

(
λv̂j

λ − v̂jλ
)

= −div ̂(vj ⊗ vj)
λ
−

1

ρ
grad p̂j

λ + ν∆v̂j
λ ∀ j = 0, 1, 2, · · ·

(15)

After dividing by λj this gives an approximate decomposition into time indepen-
dent complex components.

I Remark, that the equation reflects the actual spatial discretizations of grad, div,∆
as long as these are linear.

I Remark, that

̂(vj ⊗ vj)
λ
6=
(
v̂j
λ ⊗ v̂jλ

)
∀ j = 0, 1, 2, · · · (16)

This is the nonlinear term and couples eigenmodes of different eigenvalues (but not
all).
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Example: incompressible Navier-Stokes equations 3/3
assumptions for the polynom coefficient vector c

I To get all of this by a small approximation-error εα,λ (9) we assume that by an
appropriate selection of c the relevant entities are small after multiplication by Ap(c)
from the right  v

v ⊗ v
p

Ap(c) = G Ap(c)
!
≈ 0 (17)

We use here the sequences of all iterations v = [vj ]j , v ⊗ v = [vj ⊗ vj ]j and

p = [pj ]j . Remark that we are using (discrete) functions.

I In the case of a small approximation-error εα,λ (9) we have for ∀j = 0, 1, 2, · · ·

v̂j+1
λ ≈ λ v̂jλ

̂(vj+1 ⊗ vj+1)
λ
≈ λ ̂(vj ⊗ vj)

λ

p̂j+1
λ ≈ λ p̂jλ

(18)
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Who to determine a good polynom coefficent vector c?

I instead of the minimizing the approximation-error εα,λ (9)

G Ap(c) ≈ 0,

we solve the matrix inequality

Ap(c)T GTG Ap(c)� Ap(c)TAp(c)

I There are alternatives to calculate the vector c.

I The whole procedure is related to Dynamic Mode Decomposition (DMD) of Peter
Schmidt.

I For the roots λl of c we force |λl| ≤ 1 , essential for their distribution in the unit
circle and in getting approximations of Koopman eigenvectors (this is different to
DMD).
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Computing costs and performance aspects

I The dimension of matrix GTG is given by the number of time steps.

I We have a technique to analyse also a large number of time steps.

I The number of rows of G is typically very large. (#dof ∗#nodes ∗#repetitions).

I The calculation of GTG or alternatively the Singular Value Decomposition (SVD) of
G is very compute intensive.

I Even where most of the computational work is done by matrix x matrix
multiplication as the best performing kernel on todays machines, IO of the collected
data might be the bottleneck. There is some similarity to data-analytics algorithms.

I We hope, that some iterative forms of SVD might help.

I The algorithm ends (no described here) with the multiplication of G with a complex
matrix from the right, also expensive in computation and data output.
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Application examples

I Taylor-Green Vortex

I Mevis Aorta benchmark
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Application example: Taylor-Green-Vortex 1/2

I eigenvalues λ distribution for
Taylor-Green Vortex

I they are the centers of the circles

I the diameters of circles are
proportional to the size of the
related time invariant eigenmode

I the eigenvalues are uniformly
distributed along the circle
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Application example: Taylor-Green-Vortex 2/2

I norm of eigenmodes along the unit circle in dependence of time step (30 and 300)

I uniformly distributed peaks are smoothly imbedded

I some eigenmodes disappear for large time steps

25/29 :: Eigenmodes of Nonlinear Systems :: German-Russian Conference SSupercomputing in Scientific and Industrial ProblemsMMarch 27th-29th 2017 ::



:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Application example: Mevis Aorta Benchmark 1/2

I square root of size of
|λkmax |-weighted eigenmodes for
eigenvalues near 1 for aorta flow
for the latest time step kmax

I values on x-axis in degree in the
range [−10,+10]

I the eigenvalues λl of the dominant
eigenmodes nearly satisfy λql = 1
where ∆T = q ∆t is the time
difference of two flow stagnation
events.
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Application example: Mevis Aorta Benchmark 2/2

I The following movie shows the largest of the (nearly) time invariant complex modes
vl together with their conjugate

time step k 7−→ 2 Re λkl vl = λkl vl + λl
k
vl (19)

I These are weighted because of their very different sizes.

I The first belongs to eigenvalue 1 and remains constant.

I The others involve frequencies which are multiples of some smallest.

I Here the collection of eigenmodes Taylor Green Vortex

I Here the collection of eigenmodes Mevis Aorta Benchmark liste 0 5 5

I Here the collection of eigenmodes mevis pre01 liste 0 7 7

I Here the collection of eigenmodes for periodically driven cavity
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Conclusions

I An unsteady nonlinear problem with an quasiperiodic characteristic may be
approximately decomposed in a sum of complex stationary modes muliplied by terms
λkl representing the time behaviour. (Not discussed here.)

I We have shown an algorithm decomposing an unsteady nonlinear problem
approximately into appropriate eigenmodes.

I and how these relate to the (discretized) Navier-Stokes equations.

I There is a broad range of potential applications in CFD and in other areas.

I An open question is the differentiation between well suited and non suited problems.

I We expect IO as bottleneck.
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