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Model overview
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Model overview
The system works like this:




Model overview

e The chain consists of plates and rocker pins
e Each pin has two halves rolling over each other
e There are many contact interactions
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Model overview

Pins, plates, and shatts are elastic




Model overview

21 generalized coordinates per chain link
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Model overview

There 1s contact friction

Contact forces Formulas
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Model overview

Pin-pulley contact surfaces are locally quadratic
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" point - _pinaxis




e Lagrange equations: (

Equations of motion
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e leadto A(q)§ = F(t,q, q)

o The inertia matrix A is sparse block-diagonal
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o Sometimes it really depends on g

e In the normal form, ODE system is & = f (¢, x)
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Model overview
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The problem

Software product with docs, fancy GUI,
scripting, postprocessing, visualization, etc.,
and support.

But it runs slow
e ] real time second costs ~10 hours CPU

time

The goal
o Make it run at least 100x faster

R R




Parallelization

e Problem features

o Tiny memory requirements (Just 3600 vars)
= Data most likely fits into cache

o Several different parts in model
» Including chain consisting of 80+ similar blocks
= And 300+ stmilar contact pairs

o f(t,x) costs ~1 ms for single thread

o Events (open/close contacts)

o Object oriented C++ code
= Not HPC-friendly memory organization

= Complicated memory access patterns
13
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Parallelization

Solving IVP for z = f(t,z) =

v, F(t,u,v)]"

Currently using explicit RK4 scheme
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o 2 dimension is about 3600

Parallelizing F'(t,u,v) evaluation



Parallelization

e First parallelize
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o (Chain forces
o Pin-pulley
contact forces

Big tasks within one

RK4 step
r = (u,v)? —> Q
© .L Chain forces ODE
S A(u) | Contact forces RHS
= J' Other forces
v
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Parallelization

10%

M Chain forces
W Contact forces
Other forces
M Inertia decomposition
M Constraint elimination
Other
B RK4

58%

Sequential code
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Parallelization

e Targeting SMP & NUMA architectures
o Single nodes (now)
o Clusters, with new runtime from HLRS (future)

» This project is part of planned joint Russian-
German project by St. Petersburg Polytechnical
university and HLRS

e Using OpenMP
o Thread-based parallelism (now)
o Task-based parallelism (future)

17



Parallelization

Hardware parameters and OS/GCC versions

Tesla Tornado
Cores per
socket 6 14
Sockets 2 2
NUMA
Nodes 2 2
CPU Intel Xeon CPU X5660 Intel Xeon CPU E5-2697 v3
5 9.80GHz 9.60GHz
[ inux Ubuntu 19.04.5 T TS CentOS Linux release 7.0.1406
(Core)
GCC version 4.6.3 4.8.2
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Parallelization

CPU time consumption in CVT simulation
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Parallelization

Relative speedup of chain forces evaluation
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Parallelization

Relative speedup of chain forces evaluation
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Parallelization

Relative "speedup” of contact forces evaluation
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Exploring numerical methods

o Explicit methods
o Easily implemented
o Step size limited by stability requirements
o But stability region can be extended...
e Semi-implicit methods
o Require system Jacobian or its approximation
o Linear system(s) at time step
e Truly implicit methods
o Require system Jacobian or its approximation
o Nonlinear system(s) at time step
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e Common RK schemes

Q O

O

O

O

Stability problems
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Explicit methods
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Semi-implicit methods

e Rosenbrock

e W-methods
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o Jacobian is expensive

O

O

O

O

O

Requires ODE RHS Jacobian

too slow (?)

Reuse Jacobin across steps
Could work quite fast
Schemes

= WI, SW2-4, X-SW1

Accuracy problems




Truly implicit methods

e Trapezoidal rule
o Excellent results at h = 2 - 10"
o Convergence problems at larger steps
o Lots of things to tweak in nonlinear solver
= How to compute Jacobian
= Recompute rarely
» Update to have superlinear convergence
= How to do linear search
= How to predict initial guess
= How to regularize equation

o Still too slow w/o specialized code for Jacobian
260



Truly implicit methods

e For trapezoidal rule, sample - /

curve at h = 2 - 107° is the same /
as the "exact" solution (RK4, o

h=2-10"°) e e
e Potentially, h could be greater, .
up to 107
o But this requires step size
control

Fixerd rategories: model = norsmocth

Varying categanes: siap, ODE =aler, Mevaon solver s=tings, Mewion solver tolerance

M le-2, rkd, nore, none Ze-6, trpz, ddir-simple, 1e-1
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Jacobian eigenvalue analysis
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Jacobian eigenvalue analysis

original x10 vy pin-pin
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Jacobian eigenvalue analysis

e System appears to be mildly stiff
e Natural frequencies up to 10° 1/s
e Real negative A up to —10% 1/s

o These are due to friction

» Pin-pin friction at driv; ™= -
chain branch is e et
the worst case . N0 h eennnt
" | ﬁ , N
Jacobian changes fast .| E e

......
I L
..........
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Future work

e Parallelization

o Better memory access and cache usage in NUMA

o Optimize & parallelize inertia matrix decomposition
e Numerical integration

o Try stabilized explicit RK

o Maybe try multistep methods

o Develop code to evaluate ODE RHS Jacobian faster
e Both

o Parallelize numerical integration algorithms, if any
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Conclusions

e Parallelization
o Chain forces scale good within one CPU
o But scale bad across NUMA CPUs
= Maybe a kind of cache fighting?
o There are more things to do
e Numerical methods
o None tested is faster @ given accuracy than RK4
o W-methods didn't work at all :(
o Implicit will be faster when J is computed faster
o There are more methods to try
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Thank you

Questions:’



