
Why Direct Particle-Fluid Simulations?

Wolfgang Schröder, Lennart Schneiders, Matthias Meinke

Institute of Aerodynamics, RWTH Aachen University

Aachen, Germany

and 

Jülich Aachen Research Alliance – High Performance Computing

Jülich Research Center, Jülich, Germany



2

Coming up

Motivation

Numerical Method

- grid generation 

- moving  boundaries

- varying boundary cells

- time stepping

Results

- summary of differential problem

- validation of particle-laden flows

- why direct particle-fluid simulation 

* Euler-Euler vs Euler-Lagrange analysis

* Kolmogorov-size-particle-laden flows  

Conclusions



3

Coming up

Motivation

Numerical Method

- grid generation 

- moving  boundaries

- varying boundary cells

- time stepping

Results

- summary of differential problem

- validation of particle-laden flows

- why direct particle-fluid simulation 

* Euler-Euler vs Euler-Lagrange analysis

* Kolmogorov-size-particle-laden flows  

Conclusions



4

Motivation

- small particles modify the apparent viscosity of any suspension       

(Einstein)

- the interaction of a particle with its surounding fluid leads to an 

additional loss of kinetic energy to the two-phase system (Bessel)

- common Lagrange point-particle models were derived for diameters 

much smaller than the characteristic length scale of the carrier fluid

- this assumption is questionable for many technical problems

- particle resolved simulations exist for particles whose diameter is 

much larger than the characteristic length scale of the flow field

- experimental and numerical analyses for particle diameters in the 

range of the Kolmogorov length extremely challenging

- new cut-cell approach allows a detailed investigation 
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Grid generation, data structure I

 Hierarchical cell-tree

• Vertical connections: parent-child pointers

• Horizontal connections: neighbor pointers only on the same level
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Grid generation, human nasal cavity
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Moving boundary  I

 Surface of the embedded boundary is represented by the 0-
contour of a signed-distance function 

• Implicit description

 Interface information available on the grid

• Efficient re-generation of cut cells 

after each time step 

• can be evolved by solving 

the level-set equation

body velocity

Cylinder in a vortex 

deformation field
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MB, constrained reinitialization I

 Constrained reinitialization equation

• S is a smoothed sign function

• semi-discrete form

 Forcing term F corrects the interface displacement

• takes the interface displacement explicitly into account

• derived from the constrained reinitialization scheme 

(JCP 2008)

• arbitrarily high-order spatial discretization can be used
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MB, constrained reinitialization II

 Significant reduction of interface displacements during the 

reinitialization

 High-order accurate approximation of the signed distance function

• better approximation of higher derivatives, i.e., curvature
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VBC: Emerging and merging cells

nt (n + 1) t

nt (n + 1) t
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VBC: Discrete operator weighting fct. I

interpolation plus flux redistribution to stabilize the RK update: 

mass  defect 

global conservation 

transition parameter 

differentiable transition function 
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W: weighting matrix,      : solution vector, A: coefficient matrix  b: right-hand vector

VBC: Discrete operator weighting fct. II

discrete gradient update to reconstruct the flux:

Taylor-series expansion about cut-cell centroid and its neighbors

with the scaling matrix S: weights balance the inverse volume 

with the pseudo inverse via svd
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VBC: Transversely oscillating circular cylinder I

Re = 185, yB = A cos (2fet)  ,    A = 0.2D  ,    fe = 0.8 f0 ,   

Sr = f0 D/u = 0.195

locally refined mesh

vorticity contours

(cyl. at tdc)
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VBC: Transversely oscillating circular cylinder II

𝒄𝒅 = 𝒇( Τ𝒚𝑩 𝑫)

cell-merging method vs. weighting-

function formulation (, w)
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VBC: Oscillating oblique settling of a sphere

computational domain Lx = Ly = 8.5 dp, Lz = 60 dp

phase diagram: vh (hor. vel.) vs. 

vz (settling vel.)
drag coeff. vs. settling vel. (spurious 

force oscillations: 0.0001)
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Runge-Kutta time stepping

standard multi-stage (MS) RK method

residual operator R(t; .)

PC RK method

speedup of PC RK vs. MS RK 1 + (s – 1) 

 = tinit / (tinit + texec);     tinit : time to construct the residual

texec: time to execute the new scheme

for s = 5 and 0.1    0.38 =>    speedup: 1.4 – 2.5
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Viscous fluid flow

conservation equations
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Rigid particle dynamics

linear acc. of solid particle

rotational motion
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Momentum and energy transfer 

at the material interfaces

fluid velocity on the surface

hydrodynamic force

hydrodynamic torque

rate of kinetic energy from particle to fluid 
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Particle-laden flow: Dynamic mesh refinement

70,000 particles; 2 . 109 cells; 30,000 cores; 

fully resolved particle flow field,000
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PLF: Dynamic load balancing

70,000 particles; 2 . 109 cells; 30,000 cores

speedup  4
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PLF: Decaying isotropic turbulence

energy spectrum 𝑬 𝒌 = ( ൗ𝟑𝒖𝟎
𝟐 𝟐) Τ𝒌 𝒖𝒌𝑷

𝟐 𝒆𝒙𝒑( Τ−𝒌 𝒌𝒑)

u0: rms velocity, kp: peak wave number, k0 = 2/L
Re = 79.1 Taylor-scale Reynolds number

(Lucci et al.: Re = 75)

current time step 3.5 times larger than that of Lucci et al. and

4.5 times larger than that of Gao et al.
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PLF:  6400 spherical particles in dit I

at t =  0.27  / 0 6400 particles are released

particle / fluid ratio:   Τ𝝆𝑷 𝝆𝒇 = 𝟓 ⇒ Stokes number 𝑺𝒕𝟎 = 𝟕𝟐

𝒅𝒑 = Τ𝑳 𝟑𝟐 ≈ 𝟏𝟔𝜼𝟎 𝒅𝒑: particle diameter,  𝜼𝟎: Kolmogorov length

𝚫𝒙 = 𝒅𝒑/𝟖;  particle volume loading; 0.1
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PLF:  6400 spherical particles in dit II

instantaneous particle locations and Q-crit. contours colored by velocity magnitude
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PLF:  6400 spherical particles in dit III

𝑹𝒆𝝀 = 𝟕𝟗. 𝟏 (Lucci et al.: 𝑹𝒆𝝀 = 𝟕𝟓 )
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PLF:  6400 spherical particles in dit IV

computational efficiency: weak-scaling measurements for 

single-phase and particle-laden flow

cells per compute core: 217 = 131,072

Cray XC40 (Hazel Hen) at HLRS

98% efficiency (single phase)

overall # of particles and diameter are const.,

successively decreasing overhead at 

increasing resolution of a fixed # of cells

correlation  

between particle 

overhead and 

cut-cell ratio
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PLF:  Ellipsoidal particles

DNS at Re = u´ / = 79,   2563 cells

prolate und oblate particles, aspect ratio 2
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Particle resolved simulation (PRS)

hydrodynamic force summed over surface elements

hydrodynamic torque summed over surface elements
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Spherical Lagrange model (SLM);

particle shape neglected

small solid, spherical particle; Maxey-Riley eqs.

heavy particles, gravity and drag dominate eqn. (*) 

=> fluid force on particle

with drag correction term

(*)
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Ellipsoidal Lagrange model (ELM);

particle inertia neglected

small heavy non-spherical particle, hydrodynamic drag force

diagonal resistance tensor

hydrodynamic torque

diagonal tensors



39

Parameters of particle-laden flow; 

PRS, SLM, PLM

Np number of particles,  aspect ratio, p / f particle-to-fluid density 

ratio,  Kolmogorov length, dmin , deq , minimum and equivalent  

particle diameter,  time scale: 

p/ = 109.9 , p/ = 28.4 , p/L = 3.6 , v = 3.5 10-4 , m = 0.49
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Instantaneous vortical structures

case P
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Temporal variation (PRS)

fluid kinetic energy viscous dissipation rate
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Temporal variation (PRS, SLM, ELM) 

viscous dissipation rate mean particle Reynolds 

number
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Orientation distribution function at  

t* = 2

odf between ellipsoids symmetry 

axis and strain-rate

eigendirection e1 (upper left),

e2 (upper right), e3 (lower left),
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Parameters of 5 simulations

Np numbers of particles, ρp/ρ particle-to-fluid density, dp particle 

diameter,  Kolmogorov length, L domain length, v particle volume 

fraction, m particle mass fraction



Instantaneous vortical structures

particle-laden flow, case 3, t* = 1



Instantaneous vortical structures

structures around individual particles, local mesh 

refinement

particle-laden flow, case 3, t* = 1



Glocal kinetic energy budget 
vs. time

a) total fluid kinetic energy
b) mean viscous dissipation rate 

(a) (b)

(c)

(d)

c)  total paricle kinetic energy
d)  mean interphase energy exchange



Temporal variation of fluid kinetic 
energy spectra

t∗ = 0.5, 1.0, 1.5, 2.0, 2.5

case 1 case 2

case 3 case 4



Mean relative velocity distribution
around particles

Contours of |u − vp| / u0 in a frame aligned Up − vp

case 1 case 2

case 3 case 4



Mean kinetic energy distribution 
around particles

Contours of difference of the local fluid kinetic energy 

and its global mean value

case 1 case 2

case 3 case 4



Viscous dissipation induced by 
particle acceleration

instantaneous dissipation rate



Integrated dissipation rate vs 
former RHS

scatter plot at  t∗ = 1, joint-pdf of integrated 

dissipation rate 𝐜𝐨𝐥𝐨𝐫𝐞𝐝

case 1 case 2

case 3 case 4



Particle inertia >> fluid inertia

neglegting

results in



Integrated dissipation rate vs 
former RHS

scatter plot at t∗ = 1, joint-pdf dissipation rate colored 

case 1 case 2

case 3 case 4
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Conclusions I

 highly efficient cut-cell method

 massively parallelized grid generator

 highly accurate and stable reinitialization method 

for level-set approach

 more efficient and more accurate treatment of 

temporally varying boundary cells

 improved Runge-Kutta formulation 
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Conclusions II

 particle-laden flow

 fully resolved analysis 

 excellent agreement with existing data

 shape of the particles can be arbitrary

 Euler-Euler vs Euler-Lagrange (sph. & non-sph. particles)

 velocities of prolate ellips. << spherical particles

 decay rate of fluid turb. kin. energy underpred. by Lagrange

 viscous diss. rate underpred. by Lagrange

 inclusion of inertia more important than non-sph. effects for

non-sph. particles  

 preferential orientation of non-sph. particles differs massively

for sph. models; ell. Lag. mod. OK, sph. Lag. mod. poor
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Conclusions III

 Kolmogorov-size-particle-laden flow

 particles locally increase dissipation due to intense strain 

generated near the particles surfaces via the cross.-traj. eff. 

 increasing particle inertia decouples rotational particle motion 

from the local fluid vorticity and strain-rate field

 analytical expression for the instantaneous visc. diss. derived      

 local balance of fluid kinetic energy around arbitrary shaped

particles can be determined

 two-way coupled Lagrange models impl. account for particle     

dissipation, however, disregard the length scales
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