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Discontinuous Galerkin Method (DGM)

� Is employed to solve hyperbolic, parabolic and elliptic problems.

� Combines different features commonly attributed to finite element and 
to finite difference methods.

� Provides high-order accuracy.

� Can easily handle adaptive strategies.

Bernardo  Cockburn   An   Introduction  to  the  Discontinuous   Galerkin Method   for  Convection -

Dominated    Problems,  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes 

in Mathematics, 1998, Volume 1697/1998, 151-268



Let’s consider the Navier-Stokes equations, written in the form of first-order equations:

( )( )2 2 2 2E u v wρ ε= + + +

( , )p p ρ ε=

supplemented with the appropriate initial and boundary conditions, the type of which depends on the specific
objectives and will be specified further
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- the density of the fluid

- the components of velocity

- the specific internal energy

- the pressure,

T – the temperature
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-total energy per unit volume.

Discontinuous Galerkin Method for Navier-Stokes equations
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µ − dynamic viscosity, λ − volume or second viscosity, 

( )q U k T= − ∇



Flux functions

Godunov  flux

Rusanov–Lax–Friedrichs flux

Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики
//Матем. сб., 1959, 47(89):3, 271–306.
Lax P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. //Communications 
on Pure and Applied Mathematics. 1954,7, №1, 159 -193
Русанов В.В. Расчет взаимодействия нестационарных ударных волн с препятствиями. 1961, Журнал
вычислительной математики и математической физики, т.I, №2, 267- 279.

 

0T  

1T   

−u  

−u  

−u  

+u  

+u  

+u  

HLLC  flux

Diffusion fluxes

To calculation Diffusion fluxes at the element boundary we use stabilizing 
additions as for heat conductivity equation

A.K. Pany and S.Yadav An hp-Local Discontinuous Galerkin method for Parabolic Integro-Differential Equations,
OCCAM, Report N 09/30

Arnold D.N., Brezzi F., Cockburn B., Marini L.D. Unified analysis of discontinuous Galerkin methods for elliptic problems. // SIAM
Journal on Numerical Analysis, 2002, 29, pp. 1749–1779.
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А – is the mass matrix
U – is the global vector of degrees of freedom (the expansion
coefficients of all the sought-for functions)

R(U) – is the vector of the right hand sides. 
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The Runge–Kutta time discretization



Cocburn’s limiter

Bernardo Cockburn An Introduction to the Discontinuous Galerkin Method for Convection - Dominated

Problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1998,
Volume 1697/1998, 151-268
Lilia Krivodonova, Limiters for high-order discontinuous Galerkin methods, 2007, Journal of Computational Physics,
vol. 226,pp. 879-896.
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USING THE GRID-OPERATOR APPROACH TO THE 
PROGRAMMING

� The grid-operator approach makes possible compact encoding of mathematical 

formulas at the programs and facilitates their porting to parallel 

architectures such as NVidia CUDA и Intel Xeon Phi. 

� The methods of template metaprogramming of the C++ language are used to 

speed up the calculations.

Metaprogramming – computation of types and integer constants at the 

compilation stage.

In DGM metaprogramming is used for computation of:

� Factorials;

� Integrals of monomials over the mesh element;

� Integrals of polynomials over an arbitrary tetrahedron (automatic opening of parentheses);

� Templates of expressions in the operator of volume integration.

М.М.Краснов, Операторная библиотека для решения трёхмерных сеточных задач математической физики с 
использованием графических плат с архитектурой CUDA. // Математическое моделирование, 2015, т. 27, № 3, с. 
109-120



gridmath library

gridmath library is an implementation of the grid-
operator approach to programming. 

The library implements:

� Grid functions;

� Grid evaluators;

� Arithmetic of grid evaluators and grid operators;

� Parallelization of computations on common 
memory using OpenMP и CUDA.

The applied programmer can implement grid 
operators and  data exchange using MPI.



Distribution of roles

C++: metaprogramming, 
expression templates

gridmath: grid functions,
grid evaluators

Applied programmer:
grid operators, MPI



Example of writing down
of a mathematical formula

�
Writing down of the same formulas using gridmath 
library:

R = A*(join(
vol_int(rho_u,rho_v,rho_w)(U),
vol_int(rho_u*u+p,rho_u*v,rho_u*w)(U),
vol_int(rho_v*u,rho_v*v+p,rho_v*w)(U),
vol_int(rho_w*u,rho_w*v,rho_w*w+p)(U),
vol_int((E+p)*u,(E+p)*v,(E+p)*w)(U)

) - hflow(U));

Here U – grid function, keeping 5 conservative variables (mass, three 
components of impulse and energy) for each cell of the grid;

vol_int – volume integration operator;
hflow – flow through faces operator;
A – mass matrix (grid function).

In the distributed Galerkin method at each time step five volume integrals 
need to be calculated for each cell of the grid:



Advantages of the grid-operator approach

� Clearness. The external view of the program looks 
much more like mathematical formulas than in 
traditional programs.

� Portability. The text of the programs is ported on 
parallel architectures (CUDA, OpenMP) practically 
without any changes.

� Productivity. It becomes much easier to write and 
de-bug the programs. The possibility of mistakes 
lessens.

� Efficiency. Due to the use of “lazy” evaluations,  it 
is possible to save random-access memory for 
intermediate computations.
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Strong Scaling 

К-100
2 CPU Intel Xeon X5670,
12 computational cores and
3 graphic cards
nVidia Fermi C2050 on each node

1 proc. 2 proc. 4 proc. 8 proc. 16 proc.

CUDA, time 116,64 64,12 37,58 22,7 11,9

Strong 
Scaling 

90,9 77,6 64,2 61,3

Strong Scaling
(grid size is fixed) 

1 100%
N

T

N T
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510~cellsN



Strong Scaling 

К-100
2 CPU Intel Xeon X5670,
12 computational cores and
3 graphic cards
nVidia Fermi C2050 on each node

1 proc. 2 proc. 4 proc. 8 proc. 12 proc. 16 proc. 32 proc.

CPU ppn12,
time

582,57 302,85 150,6 80,61 55,55 42,16 22,51

Strong 
Scaling 

96 97 90 87 86 81

CPU ppn4,
time

76,16 51,4 36,99 23,01

Strong 
Scaling 

94 94 98 79

CUDA ppn3,
time

35,2 18,16 10,49 5,47 3,76 2,91 1,54

Strong 
Scaling 

94 84 80 78 76 71

Grid
610~cellsN



Problem of shock wave interaction with a triangular prism

3.1=sM

2.0=xL 15.0=yL

02.0=b 301.0=l

4.1=γ MPap 05.00 =

yz LL =

710≈cellsN

Geometry of the 
computational domain:

Shock wave parameters:

Parameters of the background 
flow:

Grid options:

KT o3000 =

Arnab Chaudhuri, Abdellah Hadjadj, Ashwin Chinnayya “On the use of immersed boundary methods for shock/obstacle 
interactions”, Journal of Computational Physics 230 (2011) 1731–1748

Se-Myong Chang, Keun-Shik Chang «On the shock–vortex interaction in Schardin’s problem» Shock Waves (2000) 10: 333–343



Results of the numerical simulation

st µ53= st µ102=

st µ130= 152t sµ=



h = 0.002500 h = 0.001250 h = 0.000625



The modeling of the supersonic inviscid flow with Mach number 3.5  
past a triangular prism

( ) 








++

−
=

22cos

1sin
cot2tan

2

22

βγ
β

βθ
s

s

M

M
o58.34≈β

numerical value of the angle β is o90.34≈β

theoretical value of the angle β is



The modeling of the supersonic inviscid flow past a cylinder

3.5M∞ =

4.1=γ
101324,13p Pа∞ =

56.2 10cellsN ≈ ⋅

x/D=-3 и x/D= 21, y/D=-3 и 
y/D=3

298,15T K∞ =
o

287,0 / ( ·K)R Дж кг=

Geometry of the 
computational domain:

Shock wave parameters:

Parameters of the background 
flow:

Grid options:



The Navier-Stokes equations (Re=10000)

The Euler equations



In supersonic flow past a cylinder, the pressure at the critical point on the 
front wall of the cylinder is determined analytically by the formula
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1 1,p M - Pressure and Mach number in the free stream.

0 0.947071p =

0 00.9117   ~  0.9572p p= =numerical value of the critical pressure  



V. I. Zapryagaev,  I.N. Kavun, and I. I. Lipatov.  Supersonic laminar separated flow structure at a ramp for a 

free-stream Mach number of 6 //Progress in Flight Physics 5 (2013) 349-362

Numerical modeling  of the flow in the compression corner

Mach number 6.01
pressure p0∞ = 9.72 � 105 Pa
temperature T0∞ = 380 ◦K 
Reynolds number а ReL = 6 � 105 on L = 50 mm

angle of attach α = 0◦

Unstructured tetrahedral mesh 

with ∼ 106 cells



Distribution of density and Mach numbers.

The pressure coefficient in the symmetry plane of the model



Numerical simulation of flow X-43 hypersonic aircraft



Conclusions

� Software package based on the discontinuous Galerkin method for 
calculating aerodynamic flows on unstructured grids was 
developed.

� A series of verification tasks was performed

� Numerical results are in good agreement with the experimental 
and numerical ones and the complex flow pattern is accurately 
captured.

� The use of the meta-programming of C++ language has allowed to 
reduce overall program execution time

� The use of the grid-operator approach has permitted to create an 
efficient software implementation of the algorithm, which can be 
easily ported to the modern parallel computing architecture, 
including graphics accelerators.
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