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Introducton

@ Design of microdevices and new space crafts requires development of approaches
to computer modelling of three-dimensional rarefied gas flows.

@ One of such approaches is direct numerical soluton of the Boltzmann kinetic
equation (BKE) for the velocity distribution function.

@ Due to high dimensions and complexity the capabilities of the numerical codes to
solve the BKE in 3D are limited.

@ Two alternatives to direct numerical solution of the BKE exist

@ Direct Simulation Monte Carlo method (DSMC)

@ Derivation of the kinetic equations with approximate (model) collision intergarls and
development of methods to solve them numerically.

@ At present the model kinetic equation of E.M. Shakhov (so-called S-model) has
gained popularity for modelling monatomic gas flows

@ The present talk will concentrate on the numerics for S-model only.

@ However, most of the discussed approaches will be applicable to other models and
partly to the BKE.
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Construction of kinetic models for the monatomic gas

@ The differential part of the KE does not change.

@ The exact collision term [(f, f) is replaced by the approximate expression J(f, a),
where a — vector of unknowns, which is chosen in such a way that a few first
moments coincide:

/¢ I(F, F)de = /¢(£)J a)de, $(€) = 1€ € 66, .

@ Many models exist. Most popular are the following:
@ BGK, or Krook model, suggested in 1954

@ approximation conditions hold for conservation equations only (1, &, 52).
@ a second order model

@ Shakhov (1968) model

@ additionally satisfy the condition of the correct heat flux relaxation (652);
@ it is a so-called incomplete 3rd order approximations.

@ The BGK model does not guarantee the correct approach to the Navier-Stokes
equations as Kn — 0 (wrong Prandtl number) and is hence least accurate.

@ The S-model has a correct limit as Kn — 0.
@ Both models are exact for Kn = oo

@ The actual accuracy at intermediate values of Kn is unknown beforehand.
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S-model in the dimensional form

@ State of the gas is described by the velocity distribution function f = f(t, x, £).
@ Macroscopic variables are defined as integrals with respect to molecular velocity:

n:/t‘dg7 nu:/gfdg, gmnRgT+%mnu2:%m/f2fd€»
q:%’"/"‘ﬂfdéa v=£—u, p=mn, p=pR,T.

@ Kinetic equation is written in the following form

0 of P+ + _ 4.0 > 5
8tf+£a o, ﬂ(f f, f=fu|ltg(d=Pr)Sacalc —7 ],
1 v
= ———" - P e { = - 2 = .
M (27ngT)3/2 exp(—c), S n/cc d§, ¢ AT c” = caeg

Here Pr = 2/3 is Prandtl number, m — molecular mass, R; - gas constant.

@ Boundary condition of the diffusive reflection with complete thermal
accommodation to the surface temperature T, is given by

Ny &2 27
fw = A~ o+ 2/ — A5 -+ | w nf
(27 R T )3/ ex”( 2RgTw) n Re Tw / &nfd€.

&n<0
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Transformation to non-dimensional variables

@ Introduce the following change of variables:

’ X / ’ P / T
X =7, n=—, = T = T
I N P P T.
’ u / 6 ’ q ’ f
u = — = —), = — = —.
Vi ¢ v.. 17 e n. (3

where p. = mn.Rg T, — pressure, B« = /2R, T. — most probable molecular speed.

@ Degree of gas rarefaction is defined by the so-called rarefaction parameter §, which
is inversely proportional to the Knudsen number:
Ls ps 8 1 A

- ° - K .
W(THB.  BymKn T

Here \. is the mean free path at reference conditions .

@ In the rest of the presentation non-dimensional variables will be denoted by the
same symbols are dimensional ones.
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S-model in the non-dimensional form

@ The kinetic equation is re-written as

af 5a —J, J=u(f® _f), VZ%&

/*p* w (9 ( 4 2 5)
5= L =T 7 =fm(l+=-(1-Pr)Sc(c"—=)]),
/"L(T*)\/zRgT* Y " 5( r) ( 2)

. n v e _2q
fM—WeXP( ), c_—ﬁ, v=¢§—u, 5—7’17-3/2-

@ Macroscopic variables

(n, nu,gnTJrnuz,q) :/(1,5,52,%vv2) fd¢, p=nT

@ Boundary condition of diffuse reflection:

Nw &

f(X,g) = fW W exp (7-,—7“])7 fn = (gan) > 07
2

nw = Ni/N,, N = / EfdE, N, = / [ — )3/2 exp (—%)dg.

£n<0
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Conservative version of the discrete velocity method

@ The improper integrals in the velocity space are replaced by proper integrals over
some sufficiently large finite domain, e.g.

gnT+nu2 = /£2fd§z / E2rde, / Erde < 1
0<€<ér E>ER

@ We introduce in the velocity domain (generally unstructured) mesh with Ng cells.

@ Functions f, () will be assigned to the centres of cells and interpreted as vectors
with components

fi=f(t,x,&), 9= t,x¢&), &=(28), j=1,...Ne

@ Kinetic equation is re-written as a system of N¢ equations, written as a vector
conservation law

9 0 ¢ _ _ 9 _ _
af—l—EFa_L J=u(f f), =123

@ Here the components of "advection” fluxes are given by Fjo = jaf;.
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@ Integration over the spatial cell V; and fairly standard approximation of flux
integrals and the right hand side leads to the following

of; 1

— =R =— @, + Ji,

ot [Vi| ;

P = /(n1F1 + mF, + n3F3)) dS
Aji

@ The second order of spatial accuracy is achieved by computing numerical fluxes &
using an upwind TVD method on arbitrary mesh:

@ For the so-called boundary extrapolated value fj; for face / of cell i:
f,,- — f; + f-/;:orrection

For fgorrection e use either general 3D method or directional method (for hexa only).
@ The upwind flux function is written as follows:

1 _ . _
P, = §£nli o [F™ 4+ fT —sign(&ni) o (FY — F7)] A4l
@ Rusanov-type solver is also possible.
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Calculation of macroscopic variables

@ The main idea introduced in (Titarev 2003, 2007) is to discretize directly
approximation conditions of the S-model equation.

@ The vector of primitive variables W = (n, uy, ws, us, T, q1, g2, q3)T is found from
the following system:

N 1 0
3 ¢ 0
s
H(W)=; > | (F = w + 0 =0.
= vv? i 2Prq
@ Newton iteration procedure yields
MW (W =W ) = —HW"™), s=1,2,..., M:g—a/.

@ |Initial iteration - conventional quadrature rule.
@ The described approach is applicable to any kinetic model.
@ In case Pr = 1 the first 5 equations reduce to the method of Mieussens, 2000,

which is derived from different conditions.
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Solution of the equation for time increments

@ We use implicit Euler method in time:

;
At

_ pnt+l __ g+l en Af;i n % o’
=R, Af=f £, = 5 =R+ (5 ) AF.

@ Assuming 1st order approximation of the left hand side, we obtain

o®; AFf + oP; A, I~ Jt — UTAF.

L JARESE 1
Ii li + af," af;ln UB) i

@ Re-grouping and using upwind expressions for fluxes on the left, we simplify the
scheme into

1 n 1 .
((At + V,‘) Ig + m E/ ﬁh o (Ig + Slgnﬁh)|Ah|> o Af;
1 . n
+m E/ &y o (le —signg&y)|Ail o Af, = R/
@ In compact notation:

dio Af; + ZCI‘/ o Af, = R;.
I
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Solution time increments

@ The solution is constructed using an approximate LU-SGS factorization as
proposed for unstructured meshes in from Menshov & Nakamura, 1995.

@ Recall
d/OAf}+ZC;/OAﬁI = R,n
I
@ Two-step procedure:

@ Backward sweep for intermediate values Af*:
dio Af* == cioAff + R, i= Nspace,..- 1.
Lij<i
Forward sweep for final values:
dioAf=Af"— > cpoAfy, i=1,... Neace.
Ly >i

@ The procedure is matrix-free and computationally very fast.
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Organization of parallel computations

@ 3D kinetic calculations require the use of very large meshes

Typical 6-dimensional mesh size is at the order of 10° nodes/cells
@ General idea is to use geometrical mesh decomposition in

@ physical space - traditional in CFD
@ velocity space - specific to model kinetic equations

@ in both spaces

Standard approach: use message passing (MPI) for parallel computations
@ for decomposition in physical space all ideas from general CFD apply
@ for velocity space decomposition each MPI rank

@ performs calculations for its set (or range) of velocity nodes
@ sums up integral sum for computing macroscopic data

@ in general, velocity decomposition method is much easier to implement, but may be
not applicable to the exact BKE

@ However, pure MPI has its limitations - more on this later..
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Two-level parallel approach

o

© 006 o o

Modern x86-based HPC systems are built of computing multi/many core nodes
based on e.g.

@ Intel Xeon CPU (12+ cores)
@ Intel Xeon Phi co-processors (61 physical core, 244 logical cores).

Pure message passing (MPI) approach is not efficient for systems with so many
logical cores.

We use two-level OpenMP + MPI approach in order to use such systems with the
best efficiency

Upper level — MPI between nodes using velocity space decomposition as default.

Low level - decomposition of the spatial mesh into blocks and use of share-memory
model OpenMP.

It is important to stress that OpenMP + MPI approach is implemented for the
implicit time-evolution method without any visible loss in the steady-state
convergence properties.
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Final schematic of two-level parallel model

Complete problem:
6-dimensional mesh + time

! !

MPI rank 1:
portion of
velocity mesh

MPI rank N:
portion of
velocity mesh

MPI ALLReduce

OpenMP+
vectorization
within node

OpenMP+
vectorization
within node
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Details on the shared-memory parallelization inside the

node

@ Overall, time step advance consists of the following steps:
@ Compute f* on mesh faces (igey = 1,. .. Neeyy)
@ Compute numerical fluxes (iee = 1, ... Nice)
© Compute model collision term (iceyy = 1, ... Neey)
@ Compute time increment Af; and update f;
@ For steps (1) — (3) it is enough to use simple OMP loop with dynamic balancing:
chunk_size = flow_ptr¥%mesh¥%element_chunk
1$0MP parallel do schedule(dynamic,chunk_size) private(icell,Stencil_ptr)
do icell=1,mesh_ptr¥%NelementReconstruction
Stencil ptr => mesh_ptr%cellstencils(icell)
Call AtomicReconstruction(flow ptr,Stencil ptr)

enddo
1$0MP end parallel do

@ For the parallel LU-SGS method each thread works with its part of the spatial
mesh only; for "ghost” cells one can use Jacobi approximation:

Afi=Ri/d;
@ For spatial meshes of reasonable quality convergence properties are not affected.
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Software package " Nesvetay-3D"

@ "“Nesvetay-3D" consists of
@ the computing core
@ three-dimensional kinetic solver

@ spatial/velocity mesh preprocessor.
@ BGK and Shakhov models can be used.
@ 20000 lines of Fortran 2003 code with elements of OOP.

@ Two-level OpenMP + MPI model of parallel computations is used on computers
with large core count per node.

@ Development tools are Microsoft Visual Studio 2013 and Intel Fortran Compiler
version 16.

@ GIT is used for version control.

@ “Nesvetay-3D" has been succesfully run on the HPC systems of Cranfield
University, Lomonosov Moscow University, MIPT, JSCC and SPbU.

Vladimir Titarev (FRC CSC RAS) HLRS Stuttgart 2017 16 / 34



Velocity mesh construction for high-speed external flows

@ If we use integration of a Maxwellian function
f=n@2rT) > exp(—(& — u)’/T)
as a guide for choosing the cell size and domain size, than we have

AE<(05.. . )VT, [¢] < Uso+3VTo, T0:1+%M§O.

@ Naive velocity mesh construction is not useful for calculations as N ~ M3,
@ In the existing literature an octree-type velocity mesh is proposed, e.g.
Arslanbekov et al 2013, Baranger et al 2014.

@ In the present work we advocate a much simpler approach to the creation of
non-uniform velocity mesh, suitable for external flows with My, > 1:

@ Near £ = 0 and & = uso we use cubical subdomains with A¢ = 0.5/ T, A = 0.5,
respectively.
@ The rest of the domain is filled by tetrahedrons; their size grows up to =~ 0.5/ Tp.

@ As a result, N¢ dependence on the free-stream Mach number is rather weak, close
to linear.
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Verification study: flow over 6-inch cylinder

@ We compare our results with one of the leading DSMC code "Monaco”, published
in Ph.D. thesis of Lofthouse, 2008.

@ We consider gases argon and nitrogen and free-stream Mach number M., = 25.
@ Flow regimes: rarefied (§ ~ 1.6) and nearly continuum (§ ~ 40).

@ We use the following coefficients for comparison:

Pn — pso P E,

gn
Cp=—m—, C=-—=, Ch=2—
P 2 ) 2 )

S% S% S&

where force acting on an unit surface with normal vector n and energy flux vector
given by

P= 2/§n§fd§, M = %/5§2fd§.
Their normal and tangential projections are defined as

P,=P-n, P.=P—-P,;n, E,=M:n.
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Computational mesh

@ We use hexa mesh, with 115 x 40 cells in x-y plane and 3 cells along z axis.

@ Velocity mesh consisted of 35720 cells.

(a) Spatial mesh
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Results for argon: flow setup

@ Dimensional velocity Us = 6585 m/s, temperature T = 200K, T,, = 1500K.

@ Calculations were run for two values of free-stream density:
® poo = 1.127 x 107 kg/m3 so that 6 = 1.6
@ poo = 2.818 x 107> kg/m3 so that § = 40
@ Here § is computed using cylinder radius R = .0762m.

@ Non-dimensional free-stream velocity Soc = 22.82, temperature T,, = 7.5.

@ Viscosity law pu = 7%,
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Results for argon and 6 = 1.6

Shown are pressure ¢, friction ¢ and heat transfer ¢, coefficients
Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

Mach=25, deta=1.6
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Results for argon and 6 = 40

@ Shown are pressure ¢, friction ¢r and heat transfer ¢, coefficients
@ Red circles - DSMC solution by MONACO

@ Solid blue line - S-model solution

@ Dashed black line - BGK solution

012 —

(@) o
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Results for nitrogen: flow setup

@ Dimensional velocity Us, = 7208.7 m/s, temperature T, = 200K, T,, = 1500K.

Calculations were run for two values of free-stream density:
@ poo = 7.8995 x 107 kg/m3 so that § = 1.59
® poo = 1.974 x 107° kg/m?3 so that § = 39.7

@ Non-dimensional free-stream velocity Soo = 20.92, temperature T,, = 7.5.
@ Viscosity law p = T°7.

@ Note, that molar mass of nitrogen is used to compute non-dimensional input data!
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Results for nitrogen and 6 = 1.59

Shown are pressure ¢, friction ¢ and heat transfer ¢, coefficients
Red circles - DSMC solution by MONACO
Solid blue line - S-model solution

Dashed black line - BGK solution

Mach=25, deita=1.59 Mach=25, deta=1.60

S-model
----- BGK model

O  osme
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Results for nitrogen and 6 = 39.7

Shown are pressure c,, friction ¢ and heat transfer ¢, coefficients
Red circles - DSMC solution by MONACO

Solid blue line - S-model solution

Dashed black line - BGK solution

012 —

Mach=25, dolta=39.7

S-modal
oos—  J& %\ ----- BGK modal

O  oswe
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Test problem: external supersonic flow

@ We consider external supersonic flow over the TsaGl re-entry vehicle model

@ GLA model has a complicated form and consists of fuselage with blunted nose,
wings, vertical keel and flap.

@ The total length of the model is 10 meters.
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A flow setup

@ We consider external flow of air

@ Flight altitude 100 km, so that ps = 5.5507 x 1078 /3, T, = 196.6 K

@ Rarefaction parameter per meter: § = 0.71/m.

@ Solution computed for dimensional velocity Us, = 1500, 6000 and 7900 m/s;

@ Non-dimensional free-stream velocity Soc = 4.45, 17.8, 23.5, temperature T, = 5.
@ Viscosity law p = T3,

@ Angle of attack 25 degrees.

@ Results for 7900 m/s re-entry velocity is shown as the most representative case.

@ Computational meshes used:

@ Spatial mesh: either tetra-prism (401 kilo cells) or hexa (436 kilocells)
@ Velocity mesh: 45 kilo cells
@ Total number of cells is equal to 13 billions!
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VKA tetra-prism and multi-block hexa meshes

cells
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VKA: compare results on two different meshes

»©U

(a) Tetra-prism mesh, ¢, (left) and ¢ (right)

. [ .
en 005 0.1 075 .

(b) Hexa mesh, ¢, (left) and ¢, (right)
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VKA: flow field on hexa mesh

@ Shown are pressure levels and streamlines
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RSC " PetaStream” family of supercomputers

RSC %% RSC PetaStream massively parallel system

Compute chip Compute node Compute module
+ Intel® Xeon Phi™ + Intel® Xeon Phi™7120D - 8compute nodes
+ 6186 cores / 244 threads + One compute chip + Over 300 Gbps external [0 bandwidth
+ >12TFLOPS peak perf, + 16GB of RAM + Directliq i il
+ 352 GB/s peak mem. BW + 64Gbps I0 bandwidth « Integrated node management
0 MB shared cache + LinuxpOS + Effective DC 400V power system

|

Cabinet
+ Over 1.2PFLOPS peak performance
- 250K threads / 1024 nodes

« Upto 400 kW

« Integrated management

-+ 1m*/ 108 ft* space

System
- Path to ExaScale

+ Proven RSC Direct Liguid Cooling Technology

« Scalable/modular: tailored to customer’s needs.
- Flexible network options

- Based on COTS components
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Cylinder flow on " Polytechnic RSK PetaStream” of SPbPU

@ Flow regime: M.

=25, § = 1.6, compare 13800 vs 34500 hexa meshes

@ Node: Intel Xeon Phi 5120D co-processor (240 logical cores, 1,053 Ghz)

Nodes Nodes
0 64 128 192 256 0 64 128 192 256
- ! | | o | ! | |
M=25 flow over cylinder, // 4 M=25 flow over cylinder, // 4
13800 hexa mesh P 35400 hexa mesh ”
7 —@— Caloulation P b —@— Calcuiation o
----- Ideal scaling pid — = === Idealscaling Pd

0 T T T T T T T

30720
Hyperthreads

46080

(a) Complete mesh 0.5 billion cells
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0 T T T T T T 1
0 15360 30720 46080 61440
Hyperthreads

(b) Complete mesh 1.2 billion cells
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VKA flow on " Polytechnic R

SK PetaStream” of SPbPU

@ Flow regime: Uy = 1500 m/s, 100 km altitude

@ Hexa va tetra-prism spatial mesh, up
@ Parallel efficiency around 73%

to 280 nodes (67200 hyperthreads)

Nodes Nodes
32 % 160 224 288 32 % 160 224 288
s | | | | 0 | | | |
VKA flow on hexa mesh g VKA flow on tetra-prism mesh e
Calculation g Calculation il
1l ----- \deal scaling P 1l - Ideal scaling s7
v #
’ ,
i 4
’ ,
, ,
’ v
6 —| v 6 — 7
, ’
a ’ a .
g . g ;
, s
i ‘ i g
. .
& # & 4 ,
4 4
r 4
4 ' 4
4 4
L d
d 7
3 — s 3 7
7, 7
7, 7
P .
' I T I T I ' 1 T I T I ' I T 1
7680 23040 38400 53760 69120 7680 23040 38400 53760 69121
Hyperthreads Hyperthreads
(a) Hexa, 6D mesh 9.5 blin cells (b) Tetra-prism, 6D mesh 8.7 bin cells
HLRS Stuttgart 2017
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Conclusions

@ We have developed a parallel software package to model three-dimensional
monatomic rarefied gas flows

@ A two-level model of parallel computations is implemented, which allows to run on
tens of thousands of logical cores.

@ A comparison study shows good accuracy of kinetic model for high-Mach number
flows.

@ The capabilities are demonstrated by computing rarefied gas flow over GLA model
under angle of attack.

@ The work is supported by:
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