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Motivation

Performance, power and energy of hardware and software are important aspects in High
Performance Computing (HPC)

Power delivered to 15 cabinets of Hazel Hen (41 cabinets in total)
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← Electric power of the
workstation components
(E5-2687W);

I Various loads (Idle,
Comp., I/O);

I With up to 80%, the CPU
has the greatest share in
the power dissipation of
entire workstation;

I The compute nodes of a
supercomputer (Hazel
Hen) only includes
components, which are
necessary;
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Approximation of Power Dissipation (CPU and RAM)

Pcmos = Pstatic + Pdynamic + Pshortcircuit [1];
I Pstatic = Ileakage ∗ Vdd - Transistors conduct a small amount of current even when they

are turned off.
I Pdynamic = CL ∗ V 2

dd ∗ fclk - Is caused by charge and discharge of semiconductor
devices.

I Pshortcircuit = Isc ∗ Vdd - Short circuit aries when both the NMOS and PMOS
transistors simultaneously active.

Vdd - Supply voltage (in some cases known);
CL - Loading capacitance (is unknown);
fclk - Clock frequency (CPU is simultaneously clocked at multiple frequencies);
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Approximation of Power Dissipation
Power of a kernel operation depends on

I Hardware (CPU, SDRAM);
I Data sizes (L ∈ L1, L2, L3,RAM);
I Number of active cores/threads (p);
I Core frequency (f : Pw(f = 0) 6= 0 - Static power);

PwI(f )L,p = α0,L,p + α1,L,p × fλL,p ;

εL2 =

√
nf∑

i=0
(Pwfi L,p − PwI(fi )L,p)2;

εrel = max0≤i<mf
|

Pwfi L,p
−PwI (fi )L,p

Pwfi L,p
|;

L : L ∈ {L1, L2, L3,RAM};
p : 1 ≤ p ≤ np;
np : Number of CPU cores;
f : Core frequency;
fi : Core frequency by i-th P-State;
mf : Number of CPU P-States;
Pwfi L,p : Measured values for f = fi , array length L, number of threads p;
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Pseudocode of Kernel Operation ADD A[i]=B[i]+C[i]

I A simple example to evaluate the procedure: two read streams, one write stream and
one FLOP per 3× 8 Bytes;

I There is no dependencies between the concurrent computations on the cores;
I Each of the threads is pinned exclusively to one core (no hyperthreading);
I Configurated for various number of active cores and core frequencies (P-States);
I Configurated for various array lengths to fit L1, L2, L3 and main memory;

for (act_cores =1; act_cores <num_cores +1; act_cores ++)
for (i=0; i<num_p_states;i++)
#pragma omp parallel( act_cores )
set_core_frequency(freq[i]);
#pragma omp parallel( act_cores )
{
const long length=length_per_thread;
const long thread_num = omp_get_thread_num ();
for(j=0; j<length;j++)
A[thread_num ][j]=B[thread_num ][j]+C[thread_num ][j];

}
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Source code of Kernel Operation ADD A[i]=B[i]+C[i]

Listing 1: Source code of the kernel opera-
tion ADD (icc with -O1).
#pragma omp parallel

{

const long length=length_per_thread;

const long tests = num_tests;

double* __restrict loc_a=a[thread_num ];

...

for(jj=0; jj<length;jj +=32){

__m256d C=_mm256_load_pd(loc_a+ii);

__m256d B=_mm256_load_pd(loc_b+ii);

__m256d A=_mm256_add_pd(A,B);

...

__m256d C8=_mm256_load_pd(loc_c+ii+28);

__m256d B8=_mm256_load_pd(loc_b+ii+28);

__m256d A8=_mm256_add_pd(C8,B8);

_mm_store_pd(loc_a+ii , A)

...

_mm_store_pd(loc_a+ii+28, A8)

}

...

}

Listing 2: Assembler code of the kernel
operation ADD.
...

vmovupd (%r13 ,%rax ,8), %ymm0

lea 32(%r13 ,%rax ,8), %rsi

vmovupd (%rsi), %ymm1

vmovupd 32(% rsi), %ymm2

...

vaddpd (%r12 ,%rax ,8), %ymm0 , %ymm8

lea 32(%r12 ,%rax ,8), %r8

vaddpd (%r8), %ymm1 , %ymm9

vaddpd 32(%r8), %ymm2 , %ymm10

...

vmovupd %ymm8 , (%rbx ,%rax ,8)

lea 32(%rbx ,%rax ,8), %r10

vmovupd %ymm9 , (%r10)

vmovupd %ymm10 , 32(% r10)

...

AVX registers, loop unrolling (8 times),
reordering, use of LEA command
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Performance of Kernel Operation ADD (L1)

The data fits in L1 cache. The performance depends linearly on the number of active threads/cores
and core frequency. The CPUs are Ivy Bridge (E5-2690v2) and Haswell (E5-2680v3).
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Power of Kernel Operation ADD (L1)
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Energy Costs of Kernel Operation ADD (L1)
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Performance of Kernel Operation ADD (SDRAM)

● ● ● ● ● ● ● ● ● ●
●

●
● ● ●

● ● ● ● ● ●
●

●
● ● ●

● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

ADD (DDR3;8xUNROLL;AVX); Ivy Bridge;
1 core
2 cores
3 cores
4 cores
5 cores

6 cores
7 cores
8 cores
9 cores
10 cores

Mittelwert
Minimum
Maximum
1. Apprx.

1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

● ● ● ● ●

● ●
● ● ●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
● ●

1 core
2 cores
3 cores
4 cores
5 cores

6 cores
7 cores
8 cores
9 cores
10 cores

Mittelwert
Minimum
Maximum
1. Apprx.

1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Core Frequency (GHz)

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

Ivy Bridge (E5-2690v2, DDR3 16GB):
I Performance saturation with 6 cores;
I Small increase in core frequency leads

first to the strong performance increase;
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Haswell (E5-2680v3, DDR4 64GB):
I Performance saturation with 7 cores;
I Slight dependence between core

frequency and performance;

No simple elementary function was found for the approximation.
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Outlook: CPU data transfer model1

BWLLC↔L2 [B/s]

BWL2↔L1 [B/s]

BWL1↔AVX [B/s]

Register File
SSE, AVX, . . .

LLC Slices

L2 Caches

L1 Caches

SDRAM DDRX

BWDDR↔LLC [B/s]

fiMC

fUncore

fCore

fCore

I Execution of the simple kernel
operations (streams) can be
modelled as a data transfer.

I The data has to be transfered
between many levels of memory
hierarchy.

I The interfaces between the levels of
memory hierarchy have various
frequencies.

I What is the influence of the
frequencies on performance, power
dissipation and energy costs ?

1Existing models (for example ECM[3], Roofline[2]) doesn’t consider various frequencies and doesn’t include any
accurate approximation of the power dissipation.
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Outlook: Measured Bandwidth of Kernel Operation ADD (SDRAM)

The number of active cores is shown at the x-axis.
The bandwidth is shown at the y-axis (Bw = k × R).
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With the Data Transfer Model, we are going to show that the differences in the
behaviour go back to the independent frequency of Haswell’s LLC Ring Bus.
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Outlook: Energy Costs of Kernel Operation ADD (SDRAM)
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∀p: The higher frequencies are expensive and provides a minor performance benefit.
Ivy Bridge: The computation with less active cores is faster than with all cores.
Haswell: consumes more power than Ivy Bridge.
Note: We consider CPU and memory power consumption.
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Outlook: Power consumption on Hazel Hen

Hazel Hen has the embedded power sensors (10 Hz). All components (except of the
network) of a compute nodes are measured.

Use case: convection-diffusion with ug4.
Weak scaling study, 4M DoFs (1 node) to 1G DoFs (256 nodes)
All results normalized to corresponding value at base clock frequency (2.5 GHz)!
What‘s the optimal clock frequency at different amounts of parallelism?
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Conclusion

I Performance approximation method works well on chip;
I Performance approximation method doesn’t work with SDRAM;
I Much more sophisticated methods are needed to describe the memory performance

(consider multiple frequencies);
I Power approximation works well in many cases;
I The distributed data transfer between the compute nodes is also to be consider;
I Multiple frequencies make the analysis very complex;
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The End
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