AYUDAME Technical manual

Steffen Brinkmann et al.

HLRS, Universitat Stuttgart

Disclaimer: The information contained in this manual is not garanteed to be complete
at this stage. It is subject to changes without further notice. Please send comments,
corrections and additional text to temanejo@hlrs.de.

Steffen Brinkmann et al.:AYUDAME Technical Manual.

(© 2009-2013, HLRS, University of Stuttgart, all rights reserved

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

mailto:temanejo@hlrs.de

Contents

1

2

Introduction

Quick start guides
2.1 For application programmers e e
2.2 For runtime programmers

Events and requests
3.1 Events L. e e
3.2 Requests

The callback functions
4.1 The AYU_event callback function

Sources
A.1 The header Ayudame.h

11

11
11

11

1 Introduction

AYUDAME is a generic library for communicating events occuring while running a StarSs
task parallel application to the outside. The present version will set up a tcp/ip socket
server, wait for a client to connect and send messages to it. A client designed to work
with AYUDAME is TEMANEJO.

2 Quick start guides

2.1 For application programmers

In order to use AYUDAME you will have to compile the library. This is done with

make && make install

This compiles the library and creates a link to it in the directory <ayudame directory > /lib.
If you encounter problems please read the README file in the AYUDAME directory and
the comments in the Makefile.

To execute an application with AYUDAME enabled, run it as follows:

LD_PRELOAD=<ayudame_directory>/lib/libayudame.so ./application <parameters>

The application will run until the start of the task parallel part. It will then pause and
wait for a client (e.g. TEMANEJO) to connect. Then it will wait until a "step" request
is issued by the client which is done by pressing the "Play" button in TEMANEJO.

2.2 For runtime programmers

In order to connect to programmes like TEMANEJO, the StarSs runtime has to call the
AYU_event callback function. This function will send the appropriate message depending
on the input parameters. Generally a call to AYU_event looks like this:

#if USE_AYUDAME
if (AYU_event) AYU_event(<event_id>, <task_id>, <void_data_pointer>);
#endif

The statement is enclosed in a preprocessor directive in order to be able to switch the
AYUDAME support of when compiling the runtime. It is suggested to do so and to set
USE_AYUDAME while configuring the runtime (when using autotools).

Furthermore the statement is only executed if an implementation of AYU_event is
found at execution time. For details see sec. 4.

The event_id indicates which type of event is being communicated. It is an integer
of type enum ayu_event_t declared in the header Ayudame.h:

© 0 N > O s W N =

enum ayu_event_t {
AYU_EVENT_NULL = O,
AYU_PREINIT = 1,
AYU_INIT = 2,
AYU_FINISH = 3,
AYU_REGISTERFUNCTION = 4,
AYU_ADDTASK = 5,
AYU_ADDHIDDENTASK 6,
AYU_ADDDEPENDENCY 7,
AYU_ADDTASKTOQUEUE = 8,
AYU_PRESELECTTASK = 9,
AYU_PRERUNTASK = 10,
AYU_RUNTASK = 11,
AYU_POSTRUNTASK = 12,
AYU_RUNTASKFAILED = 13,
AYU_REMOVETASK = 14,
AYU_WAITON = 15,
AYU_BARRIER = 16,
AYU_ADDWAITONTASK = 17

s

Not all of these events are necessary. A minimalistic sequence of events could look
like this:

#include <Ayudame.h>

ayu_runtime_t ayu_rt = AYU_RT_OMPSS; //for OMPSs runtime
AYU_event (AYU_PREINIT, 0, (void*) &ayu_rt);

int64_t AYU_datal[2] = { function_id_1, task_is_critical_1 };
AYU_event (AYU_ADDTASK, 1, AYU_datal);

int64_t AYU_data2[2] = { function_id_2, task_is_critical_2 };
AYU_event (AYU_ADDTASK, 2, AYU_data2);

uintptr_t Ayu_data3[3] = { 1, mem_address, original_mem_address };
AYU_event (AYU_ADDDEPENDENCY, 2, AYU_data3);

Please note that Ayudame .h has to be in the include path and that for easier readability
the checks of the form if (AYU_event) were omitted. Thus this code will only work if
libayudame.so is preloaded.

Let us step through the example above. In line 1 the header Ayudame.h is included.
This is necessary for providing the declarations of the callback functions and the event
enum type. In line 2 a variable of type ayu_runtime_t is declared and defined to hold an
identifier for the runtime. These identifiers are declared in Ayudame.h (see Appendix).
In line 3 AYU_event is called for the first time with the event id AYU_PREINIT. When this
event is sent, AYUDAME will set up the socket server and wait for a client to connect.
The port of the socket connection is set by the environment variable AYU_PORT. If this

variable is not defined, the port is set to
port = pid % 1000 + 5000,

i.e. for a process id of 23674, the port will result in 5674.

In line 4 the additional data is set up for adding a task to the dependency graph. It
consists of the function id of the task and an integer indicating whether the task is to
be executed with priority (1) or not (0).

In the next line (1) the creation of the task is com-
municated to AYUDAME. The function parameters
are the type of the event (AYU_ADDTASK), the task
id (1) and the additional data. We repeat the last
to steps for another task with the task id 2.

Finally we define a dependency between these
tasks in lines s and ¢. Here the additional data con-
sists of the task id of the task which “causes” the
dependency, the memory address of the dependency
and (in the case of renaming, see SMPSs manual)
the original memory address.

The call to AYU_event contains the type of event
AYU_ADDDEPENDENCY, the task id of the task “suffer-
ing” the dependency and the additional data.

This piece of code will result in a dependency graph shown i iaigure 1.

Figure 1: minimalistic example

3 Events and requests

Genrally speaking the interactions of AYUDAME with the world can be divided into two
types: events and requests. Events represent the information flow from the application
and the runtime environment to the outside world (e.g. a file, a logging tool or a
debugger) while requests are passed from the outside world to the application.

The events are handled runtime-independant by the AYU_event () callback function.
Requests on the other hand are highly runtimme dependant. The set of available request
varies strongly from one runtime to the other.

3.1 Events

Events are communicated by the use of the AYU_event () callback function. It is declared
in Ayudame.h as follows:

void AYU event(ayu event t event, const int64 t taskId, void xp)
_attribute ((weak));

This declaration permits to leave the header included even if the library 1ibayudame . so
is not linked or preloaded. In that case the callback name AYU_event is equivalent to
false. Therefore it is recommended to call this function within a conditional clause:

if (AYU event) AYU event(AYU ADDTASK, 1, Ayu_ data);

The parameters passed to AYU_event consist in an event type, a task id and additional
data the content of which depends on the event type. Three events are mandatory for
building the graph: AYU_PREINIT, AYU_ADDTASK and AYU_ADDDEPENDENCY.

Find a comprehensive list of events in following:

AYU_EVENT_NULL: dummy event
optional for initialisation of event variables, event Id: 0

Does not represent an event.

AYU_PREINIT: Pre-initialisation
mandatory for logging, event Id: 1

Should latest be emmited just before the parallel execution starts. Must be the first
event to be emitted.

The additional data consists of two items. The first is an integer denoting which
runtime is in use: CppSs (1), SMPSs (2), OMPSs (3), GOMP (4) or (CILK), the second
parameter is optional and consists of the integer process id (PID).

uint64_t AYU_data[2] = {(uint64_t) AYU_RT_SMPSS, (uint64_t) getpid()};
if (AYU_event) { AYU_event(AYU_PREINIT, 0, (voidx) AYU_data); }

AYU_INIT: Initialisation
optional for logging, event Id: 2

Should be sent just after AYU_PREINIT. The execution will pause if pausing is available
for the specified runtime until a request is received in order to proceed to execute the
parallel part of the application.

if (AYU event) { AYU event(AYU_ INIT, 0, NULL); }

AYU_FINISH: Finalisation
recommended for closing socket connection, event Id: 3

This event notifies that the parallel part of the application has finished. The socket
connection will be closed.

if (AYU event) {AYU event(AYU FINISH, 0, NULL); }

AYU_REGISTERFUNCTION: Register taskified functions
optional for function name display, event Id: J

This event registers the function name and the function Id of a taskified function.

if (AYU event) { AYU_ event(AYU REGISTERFUNCTION, id, (void x)name); }

AYU_ADDTASK: Create task
mandatory for graph display, event Id: 5

A task is represented by a node in the dependency graph. When a task is created a
notification should be emitted containing the task Id and the function Id of the function
executed by the task. It is recommended to either make sure that every function is
registered before the first task for this function is created, or not to register function
names at all.

The additional data must be a pointer to an integer denoting whether the task is
critical (high-priority, =1) or not (=0).

int64 t AYU data[2] = {functionId ,(int)task—>isCritical ()};
if (AYU_event) { AYU_event (AYU_ADDTASK, task—>getId (), AYU_data); }

AYU_ADDHIDDENTASK: Add hidden task
do not use, development in progress, event Id: 6

Do not use! This is under development!

AYU_ADDDEPENDENCY: Define dependency
mandatory for graph display, event Id: 7

A dependency is represented by an edge in the dependency graph. When a dependency
is created, the application should notify that passing along the task Id of the predecessor,
the memory address of the variable or array causing the dependency and the original
memory address of the variable (in case of renaming). The address can be 0 if unknown.

It is necessary that both tasks (the dependant and the task it depends on) are already
created when defining a dependency.

uintptr _t Ayu data[3]={0,0,0};
Ayu data|0] = otherTask—getld ();
Ayu data[l] = mem addr_of dependecy;
Ayu data[2] = original mem addr of dependecy;
if (AYU_event) {
AYU _event (AYU_ADDDEPENDENCY, task—>getId (), (voidx) Ayu_data);
}

AYU_ADDTASKTOQUEUE: Queue task notification
recommended for graph display, event Id: 8

When a task does not depend on any other tasks it can be marked as queued. The task
must exist prior to this event. Additionally the Id of the thread which queued the task
can be passed.

intptr _t thread id=getThreadld ();
if (AYU event) {

AYU event (AYU ADDTASKTOQUEUE, task—>getId (), &thread id);
}

AYU_PRESELECTTASK: Task is about to be dequeued
do not use, debugging event, event Id: 9

This event notifies that the runtime is checking the queue(s) for a task to run. As this
event will usually occur many times, it is completely ignored, i.e. not even logged.

AYU_PRERUNTASK: Prerun task notification
recommended for graph display, event Id: 10

When a task is scheduled for execution, i.e. an execution thread has dequeued the task
it can be marked as “about to run”. This event is recommended to be emitted before
pausing the execution when stepping through the dependency graph.

The number of nodes marked this way is at any time equal or less the number of
execution threads. Additionally the Id of the thread which runs the task can be passed.
Note, that the thread Id needs to be non-negative here.

intptr _t thread id=getThreadld ();
if (AYU_event) {

AYU_event (AYU_PRERUNTASK, task—>getld (), &thread_id);
}

AYU_RUNTASK: Run task notification
optional for time measurement, event Id: 11

Just before the task is executed a “run task” event can be emitted. This event is intended
for time measurement. Between this event and the actual execution of the task there
should be as less code as possible to ensure exact time stamps.

if (AYU event) { AYU_ event(AYU RUNTASK, task—>getId (), NULL); }

AYU_POSTRUNTASK: Task execution finished
optional for logging, event Id: 12

if (AYU_event) { AYU_event (AYU_POSTRUNTASK, task—>getId (), NULL); }

AYU_RUNTASKFAILED: Task execution failed
optional for failed tasks, event Id: 13

if (AYU event) { AYU_ event(AYU RUNTASKFAILED, task—>getId (), NULL); }

10

AYU_REMOVETASK: Task execution finished
recommended for graph display and time measurement, event Id: 14

When a task has finished this event should be emitted.

if (AYU event) { AYU_ event(AYU REMOVETASK, taskNode—>getId (), NULL); }

AYU_WAITON: Wait-on event
do not use, development in progress, event Id: 15

For treating wait-on events.
Do not use! This is under development!

AYU_BARRIER: Barrier notification
recommended for graph display with horizontal barrier lines, event Id: 16

Notifies of a barrier.

if (AYU event) { AYU_ event(AYU BARRIER, 0,NULL); }

AYU_ADDWAITONTASK: Wait-on event
do not use, development in progress, event Id: 17

For treating wait-on events.
Do not use! This is under development!

3.2 Requests
thd.

4 The callback functions

These functions are declared in the header file Ayudame.h as weak references. This way
it is possible to check whether an implementation of the functions exist during runtime.
This enables an application to run with or without the preloaded AYUDAME library
without recompiling (see code example in sec. 2.2).

4.1 The AYU_event callback function
tbhd.

A Sources

A.1 The header Ayudame.h

11

Listing 1: The main header of the Ayudame package

/xxxxHx Ayu/Ayudame.h

* NAME
Ayudame.h — header file containing the event and request types of the
Ayudame package and callback function declarations.
DESCRIPTION

This header file declares the following enumeration types:
* ayu_event_t
* ayu_request t
* ayu runtime t
And these function declarations:
* AYU event
AYU _ getBreakpoint
AYU getNumThreads
AYU getPriorityLevel
AYU _isBlocked
AYU registerTask
* AYU _ setNumThreads
And these global constants:
* AYU buf size
* AYU string buf size
COPYRIGHT
(C) 2010—2013 HLRS, University of Stuttgart
Ayudame is published under the terms of the BSD license.
Hokok ok ok ok

* ¥ ¥ ¥ *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

#ifdef SWIG

7{

#include "Ayudame.h"

%o}

// SWIG does not understand _ attribute _, so unset it.
#define _ attribute (x)

#endif

#ifndef Ayudame H
#define Ayudame H
#define AYU API VERSION 1

#include <stdint .h>
#include <unistd .h>

#ifndef AYU MASTER TASKID
define AYU MASTER TASKID 0
#endif

#ifdef cplusplus
extern "C" {

#endif

/xxxxtx Ayudame/ayu event t

*+ NAME

* ayu event t — enum of events

* DESCRIPTION

* ayu_event t consists of the following events:

* * AYU EVENT NULL — "no event", used for initialisation etc.

* * AYU_ PREINIT — establish socket connection. This should be the

* first event to be issued. It will notify Ayudame of the Runtime type.
* * AYU INIT — can be issued after runtime initialisation. Can contain
* the number of processing resources. Temanejo will pause the program
* when AYU INIT is issued by default.

* * AYU FINISH — notify of the end of the parallel execution.

12

* * AYU REGISTERFUNCTION — can be issued to pass the function name of a
* taskified function.

* * AYU ADDTASK —— to notify of the creation of a task instance.

* * AYU ADDHIDDENTASK — deprecated

* * AYU ADDDEPENDENCY — notify of a dependecy between two tasks. Can

* contain two ids (e.g. memory addresses) to dispay coloures edges in
* Temanejo .

* * AYU ADDTASKTOQUEUE — notify of queueing a task.

* * AYU PRESELECTTASK — deprecated

* * AYU PRERUNTASK — notify that a task is dequeued and assigned to

* a precessing resource.

* * AYU RUNTASK — to be issued just before a task is executed. For time
* measurement .

* * AYU POSTRUNTASK — to be issued right after task finished. For time
* measurement .

* * AYU RUNTASKFAILED — notify of failure to run task

* * AYU REMOVETASK — notify of successfully finished task. Removed from
* the graph.

* * AYU WAITON — notify of "wait—on" event

* * AYU BARRIER — notify of "barrier” event

* * AYU ADDWAITONTASK — deprecated

*

* SOURCE

*/

typedef enum ayu event t {
AYU_EVENT NULL = 0,
AYU PREINIT = 1,
AYU_INIT = 2,
AYU FINISH = 3,
AYU_ REGISTERFUNCTION = 4,
AYU ADDTASK = 5,
AYU ADDHIDDENTASK = 6,
AYU ADDDEPENDENCY = 7,
AYU ADDTASKTOQUEUE = 8,
AYU PRESELECTTASK = 9,
AYU PRERUNTASK = 10,
AYU RUNTASK = 11,
AYU POSTRUNTASK = 12,
AYU RUNTASKFAILED = 13,
AYU REMOVETASK = 14,
AYU WAITON = 15,
AYU BARRIER = 16,
AYU ADDWAITONTASK = 17

} ayu_event t;

IEETEEEY

/xxxxtx Ayudame types.h/ayu request t

* NAME

* ayu request t — enum of requests

* DESCRIPTION

* ayu event t consists of the following events:

* * AYU REQUEST NULL — "no request", used for initialisation

* * AYU NOREQUEST — explicit "no request"

* *+ AYU PAUSEONEVENT — pause request , event upon which the program should
* pause is given as third parameter, fourth parameter is 0 for "off"

* ("un—pause") and 1 for "on"

* * AYU PAUSEONTASK — pause request, task id is given as third parameter,
* fourth parameter is 0 for "off" ("un—pause") and 1 for "on"

* * AYU PAUSEONFUNCTION — pause request , function id is given as third

* parameter , fourth parameter is 0 for "off" ("un—pause”) and 1 for "on"

13

* * AYU STEP — run until next pause condition is reached

* * AYU BREAKPOINT — set breakpoint, i.e. don’t assign new tasks, third
* parameter is 0 for "off" ("un—pause") and 1 for "on"

* * AYU BLOCKTSK — to block a specific task. Task id has to be passed.
* * AYU PRIORITISETASK — to set the priority level of a specific task.
* * AYU SEINUMTHREADS — to set the number of processing resources.

* SOURCE

*/

typedef enum ayu request t{
AYU REQUEST NUILL = 0,
AYU NOREQUEST = 1,
AYU PAUSEONEVENT = 2,
AYU PAUSEONTASK — 3,
AYU PAUSEONFUNCIION = 4,
AYU_STEP = 5,
AYU BREAKPOINT = 6,
AYU BLOCKTASK = 7,
AYU PRIORITISETASK = 8,
AYU SETNUMTHREADS = 9

} ayu request t;

/% sokokok ok |

/x*xxtx Ayudame types.h/ayu runtime t

*+ NAME

* ayu runtime t — enum of runtime ids

* DESCRIPTION

* ayu runtime t consists of the following ids:
* * AYU RT' UNKNOWN — no or unknown runtime, used for initialisation
* * AYU RT CPPSS — CPPSS runtime

* * AYU RT SMPSS — SmpSs runtime

* * AYU RT OMPSS — OmpSs runtime

* * AYU RT STARPU — StarPU runtime

* * AYU RT FASTFLOW — FastFlow runtime

* * AYU RT MPI — MPI runtime

* * AYU RT' GOMP — GNU OpenMP runtime

* * AYU RT CILK — CILK runtime

* SOURCE

*

/

typedef enum ayu runtime t{
AYU RT UNKNOWN = 0,
AYU RT CPPSS = 1
AYU_RT SMPSS = 2
AYU RT _OMPSS = 3
AYU RT STARPU = 4,
AYU RI_FASIFLOW — 5,
AYU RT MPI = 6
AYU RT GOMP
AYU RT CIK =

} ayu_ runtime t;

IEETEEEY

)
)
)

I
0 ~J -

/*xxxxfx Ayudame/AYU event

x NAME

* AYU _event

* — callback for the %Ss runtime

x SYNOPSIS

* AYU event(event, taskId, pointer)

* DESCRIPTION

* this function is called from the task parallel runtime to communicate
* with the Ayudame package. Events of type ayu event t, the task ID

* of the calling task and a pointer to additional data can be sent.

14

the information.
PARAMETERS
ayu_event t event // type of event

RETURN VALUE
void
SOURCE

* X ¥ ¥ X ¥ X ¥

*

*/
#ifndef SWIG

AYU event will connect to a client via tcp sockets and pass on

const int64 t taskId // taskId from which the event is sent
void *p // pointer to further data

void AYU event(ayu event t event, const int64 t taskId, void *p)

__attribute ((weak));
Hendif

[skokoskok k[

[#ssx f+ Ayudame/AYU getBreakpoint
* NAME

* AYU getBreakpoint

* — return AYU breakpoint

* SYNOPSIS

* breakpoint = AYU getBreakpoint ()

* DESCRIPTION

* Locks the global variable AYU breakpoint, returns

* and unlocks it

* PARAMETERS

* void

* RETURN VALUE

* 1 if AYU_ breakpoint is set

* 0 if AYU breakpoint is not set

* SOURCE

*/
#ifndef SWIG

int AYU getBreakpoint(void) attribute ((weak));
#endif T T

[skokokok ok /

/#xxxxfx Ayudame/AYU isBlocked
NAME

*

its value

((weak));

* AYU isBlocked

* — return true if task is blocked

x SYNOPSIS

* if (AYU isBlocked(taskId)) { do_something(); }

* DESCRIPTION

* Locks the global variable AYU blockedTask using the

* breakpoint mutex lock , compares to it

* taskld given as parameter and returns result

x PARAMETERS

* * const int taskIld

* RETURN VALUE

* true if task is blocked

* false if task is not blocked

* SOURCE

*/
#ifndef SWIG

unsigned AYU isBlocked(const int taskId) attribute
Jtendif T -

IEE LY

J#ssx fx Ayudame/AYU getPriorityLevel
* NAME
* AYU getPriorityLevel

15

* — returns priority of task

x SYNOPSIS

* AYU getPriorityLevel(taskId)

* DESCRIPTION

* returns the priority of a task identified by its id.
* If the priority has not been changed in Ayudame it
* returns —1.

x PARAMETERS

* int taskId

* RETURN VALUE

* —1: if priority has not changed

* 0: low (no) priority

* positive integer: priority level

* SOURCE

*
#ifndef SWIG

int AYU_getPriorityLevel(int taskId) _ attribute ((weak));
#endif

IEETEE Y

[#sxx £+ Ayudame/AYU getNumThreads
* NAME

* AYU getNumThreads

* — returns number of threads set by Ayudame

x SYNOPSIS

* runtime setNumThreads (AYU getNumThreads());

* DESCRIPTION

* returns the number of threads as set by ayudame

* PARAMETERS

* void

* RETURN VALUE

* unsigned int: number of threads

* SOURCE

*/
#ifndef SWIG

unsigned int AYU_ getNumThreads() attribute ((weak));
#endif T T

[skokokok k[

[#sxx £+ Ayudame/AYU setNumThreads
* NAME

* AYU setNumThreads

* — sets number of threads in the runtime

x SYNOPSIS

* AYU setNumThreads(n _threads);

* DESCRIPTION

* This callback function can be implemented in the StarSs

* runtime. If it is not implemented, the client of the

* Ayudame library will not be able to change the number of

* threads.

* PARAMETERS

* unsigned int n_threads

* RETURN VALUE

* void

*/
#ifndef SWIG

void AYU_ setNumThreads(unsigned int n_threads) attribute ({weak));
#endif T T

[skokokok ok /

[*xsxf+ Ayudame/AYU registerTask

16

NAME
AYU registerTask
— obsolete. kept for backward compatibility
SYNOPSIS
DESCRIPTION
PARAMETERS

RETURN VALUE

¥ O K X X X X X X X ¥

SOURCE

*

*/
#ifndef SWIG

void AYU_registerTask(voidx) attribute ((weak));
#endif

IEETEE Y

#ifdef cplusplus
¥
#endif

#endif //Ayudame H

17

	Introduction
	Quick start guides
	For application programmers
	For runtime programmers

	Events and requests
	Events
	Requests

	The callback functions
	The AYU_event callback function

	Sources
	The header Ayudame.h

