
Höchstleistungsrechenzentrum Stuttgart

MPI+X - Hybrid Programming on

Modern Compute Clusters with

Multicore Processors and

Accelerators

 Rolf Rabenseifner1) Georg Hager2)
 Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Erlangen Regional Computing Center (RRZE), University of Erlangen, Germany

CAUTION

Druckanleitung:

• Fürs Web:

• Im ppt

Druckmenü:

• Handzettel

• 2 Folien pro

Seite

• Via pdf995

• Papier-Titel:

• Im ppt

Druckmenu:

• Folien 1

• Papier-Folien:

• Im ppt-Menue

Folien alle

• Via pfd995

Treiber

• Im Treiber

setup:

• 4 Folien pro

Seite

• Landscape

Derzeit

146 Folien

eingeblendet

COFFEE

BREAK

before

explaining

slide 85

Tutorial tut146 at SC14,

Nov. 16, 2014, New Orleans, LA, USA

GHa14

Rabenseifner, Hager, Jost Slide 2 / 170

Hybrid Parallel Programming

General Outline (with slide numbers)

• Motivation (3)

– Cluster hardware today: Multicore,

multi-socket, accelerators (4)

– Options for running code (7)

• Introduction (8)

– Prevalent hardware bottlenecks (9)

– Interlude: ccNUMA (13)

– The role of machine topology (20)

– Cost-Benefit Calculation (30)

• Programming models (32)

– Pure MPI (33)

– MPI + MPI-3.0 shared memory (60)

– MPI + OpenMP on multi/many-core (82)

– MPI + Accelerators (138)

GHa14

• Tools (154)

– Topology & Affinity (155)

– Performance (156)

• Conclusions (163)

Major opportunities and

challenges of “MPI+X”

– MPI+OpenMP (164)

– MPI+MPI-3.0 (167)

– Pure MPI (168)

– Aknowledgements (169)

– Conclusions (170)

• Appendix (171)

– Abstract (172)

– Authors (173)

– References (175)

Rab

2014

TODO:

Caution: slide

numbers are here

and on slide 82

(subtitle-page of

MPI+OpenMP)

Rabenseifner, Hager, Jost Slide 3 / 170

Hybrid Parallel Programming

Motivation

Rabenseifner, Hager, Jost Slide 4 / 170

Hybrid Parallel Programming

Hardware and Programming Models

Hardware

• Cluster of

– ccNUMA node

with several multi-core CPUs

– nodes with

multi-core CPU + GPU

– nodes with

multi-core CPU + Intel PHI

– …

Programming models

• MPI + Threading

– OpenMP

– Cilk

– TBB (Threading Building Blocks)

• MPI + MPI shared memory

• MPI + Accelerator

– OpenACC

– OpenMP 4.0

accelerator support

– CUDA

– OpenCL

– …

• Pure MPI

Rabenseifner, Hager, Jost Slide 5 / 170

Hybrid Parallel Programming

Background

Node Interconnect

Socket 1

Quad-core

CPU

SMP node SMP node

Socket 2

Quad-core

CPU

Socket 1

Quad-core

CPU

Socket 2

Quad-core

CPU

3) Mixed model

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

2) Fully hybrid

MPI process

8 x multi-

threaded

MPI process

8 x multi-

threaded

1) MPI everywhere

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model

is fastest?

08/28/08, Author:

Rolf Rabenseifner

• MPI everywhere?

• Fully hybrid

MPI & OpenMP?

• Something between?

(Mixed model)

?
• Often hybrid programming

slower than pure MPI

– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core

CPU

SMP node SMP node

Socket 2

Quad-core

CPU

Socket 1

Quad-core

CPU

Socket 2

Quad-core

CPU

Foreground

Rabenseifner, Hager, Jost Slide 6 / 170

Hybrid Parallel Programming

More Options

GHa14

Node Interconnect

Socket 1

Quad-core

CPU

Socket 2

Quad-core

CPU

Socket 1

Quad-core

CPU

Socket 2

Quad-core

CPU

PCIe PCIe

Number of options multiply if

accelerators are added

• One MPI process per

accelerator?

• One thread per accelerator?

• Which programing model on

the accelerator?

– OpenMP shared memory

– MPI

– OpenACC

– OpenMP-4.0 accelerator

– CUDA

– …

GPGPU/Phi

Rab 2014

Rab 2014

Rabenseifner, Hager, Jost Slide 7 / 170

Hybrid Parallel Programming

Splitting the Hardware Hierarchy

Hierarchical hardware

 Cluster of

 ccNUMA nodes with

 CPUs with

 N x

 M cores with

 Hyperthreads

Hierarchical parallel programming

o MPI (outer level) +

o X (e.g. OpenMP)

Where is the main bottleneck?

Ideal choice may be extremely problem-dependent.

No ideal choice for all problems.

Many possibilities for splitting the

hardware hierarchy into MPI + X:

 1 MPI process per ccNUMA node
 …  …  …
 OpenMP only for hyperthreading

Rab

2014

Rabenseifner, Hager, Jost Slide 8 / 170

Hybrid Parallel Programming

Outline
Motivation

Introduction

Pure MPI

MPI + MPI-3.0 shared memory

MPI + OpenMP on multi/many-core

MPI + Accelerators

Rabenseifner, Hager, Jost Slide 9 / 170

Hybrid Parallel Programming

Introduction
Typical hardware bottlenecks and challenges

GHa14

Rabenseifner, Hager, Jost Slide 10 / 170

Hybrid Parallel Programming

Hardware Bottlenecks

• Multicore cluster

– Computation

– Memory bandwidth

– Inter-node communication

– Intra-node communication (i.e., CPU-to-CPU)

– Intra-CPU communication (i.e., core-to-core)

• Cluster with CPU+Accelerators

– Within the accelerator
• Computation

• Memory bandwidth

• Core-to-Core communication

– Within the CPU and between the CPUs
• See above

– Link between CPU and accelerator

GHa14

G
P

U

#
1

G
P

U

#
2

P
C

Ie

N
IC

,…

Rabenseifner, Hager, Jost Slide 11 / 170

Hybrid Parallel Programming

Hardware Bottlenecks

Example:

• Sparse matrix-vector-multiply with stored matrix entries

 Bottleneck: memory bandwidth of each CPU

• Sparse matrix-vector-multiply with calculated matrix entries

(many complex operations per entry)

 Bottleneck: computational speed of each core

• Sparse matrix-vector multiply with highly scattered matrix entries

 Bottleneck: Inter-node communication

GHa14

Rabenseifner, Hager, Jost Slide 12 / 170

Hybrid Parallel Programming

Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals

– NEC SX

– Intel 1-socket (Xeon 12XX) – rare in cluster environments

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…

(all dead)

• Instead, systems have become “non-isotropic” on the node level,

with rich topology:

– ccNUMA (AMD Opteron, SGI UV, IBM Power,

Intel Nehalem/SandyBridge/…)
• Inter-domain access, contention

• Consequences of file I/O for page placement

• Placement of MPI buffers

– Multi-core, multi-socket
• Intra-node vs. inter-node MPI performance

• Shared caches, bandwidth bottlenecks

• Topology-dependent OpenMP overhead

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 13 / 170

Hybrid Parallel Programming

Interlude: ccNUMA

GHa14

Rabenseifner, Hager, Jost Slide 14 / 170

Hybrid Parallel Programming

A short introduction to ccNUMA

• ccNUMA:

– whole memory is transparently accessible by all processors

– but physically distributed

– with varying bandwidth and latency

– and potential contention (shared memory paths)

– Memory placement occurs with OS page granularity (often 4 KiB)

C C C C

M M

C C C C

M M

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 15 / 170

Hybrid Parallel Programming

How much bandwidth does non-local access cost?

• Example: AMD Magny Cours 4-socket system (8 chips, 4 sockets)
STREAM Triad bandwidth measurements

09/2011, Author:

Georg Hager

0

1

2

3

6

7

4

5

Rabenseifner, Hager, Jost Slide 16 / 170

Hybrid Parallel Programming

How much bandwidth does non-local access cost?

• Example: Intel Sandy Bridge 2-socket system (2 chips, 2 sockets)
STREAM Triad bandwidth measurements

09/2011, Author:

Georg Hager

0 1

General rule:

The more ccNUMA domains, the

larger the non-local access penalty

GHa14

TODO:

Diese Folie 16 is

ausgeblendet

aber hatte kein

„Skipped“.

[rab] ich habe es

hinzugefügt.

Rabenseifner, Hager, Jost Slide 17 / 170

Hybrid Parallel Programming

ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA

– Less of a problem with pure MPI, but see below

• What factors can destroy locality?

– MPI programming:
• processes lose their association with the CPU the mapping took place on

originally

• OS kernel tries to maintain strong affinity, but sometimes fails

– Shared Memory Programming (OpenMP, hybrid):
• threads losing association with the CPU the mapping took place on originally

• improper initialization of distributed data

• Lots of extra threads are running on a node, especially for hybrid

– All cases:
• Other agents (e.g., OS kernel) may fill memory with data that prevents optimal

placement of user data

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 18 / 170

Hybrid Parallel Programming

Avoiding locality problems

• How can we make sure that memory ends up where it is close to

the CPU that uses it?

– See next slide

• How can we make sure that it stays that way throughout program

execution?

– See later in the tutorial

• Taking control is the key strategy!

08/29/08, Author:

Georg Hager

GHa14

Rabenseifner, Hager, Jost Slide 19 / 170

Hybrid Parallel Programming

Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

• Consequences

– Process/thread-core affinity is decisive!

– Data initialization code becomes important even if it takes little

time to execute (“parallel first touch”)

– Parallel first touch is automatic for pure MPI

– If thread team does not span across ccNUMA domains,

placement is not a problem

• See later for more details and examples

08/29/08, Author:

Georg Hager

GHa14

Rabenseifner, Hager, Jost Slide 20 / 170

Hybrid Parallel Programming

Interlude: Influence of

topology on low-level

operations

GHa14

Rabenseifner, Hager, Jost Slide 21 / 170

Hybrid Parallel Programming

What is “topology”?

Where in the machine does core (or hardware thread) #n reside?

Core #3

Core #17

Why is this important?

• Resource sharing

(cache, data paths)

• Communication

efficiency (shared vs.

separate caches, buffer

locality)

• Memory access locality

(ccNUMA!)

GHa14

Rabenseifner, Hager, Jost Slide 22 / 170

Hybrid Parallel Programming

Output of likwid-topology

CPU name: Intel Core i7 processor

CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2

Cores per socket: 4

Threads per core: 2

HWThread Thread Core Socket

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 2 0

5 1 2 0

6 0 3 0

7 1 3 0

8 0 0 1

9 1 0 1

10 0 1 1

11 1 1 1

12 0 2 1

13 1 2 1

14 0 3 1

15 1 3 1

05/25/10, Author:

Georg Hager

GHa14

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Rabenseifner, Hager, Jost Slide 23 / 170

Hybrid Parallel Programming

likwid-topology continued

• … and also try the ultra-cool -g option!

Socket 0: (0 1 2 3 4 5 6 7)

Socket 1: (8 9 10 11 12 13 14 15)

Cache Topology

Level: 1

Size: 32 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2

Size: 256 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3

Size: 8 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)

05/25/10, Author:

Georg Hager

GHa14

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Rabenseifner, Hager, Jost Slide 24 / 170

Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 cores):

• Intranode (1S): aprun -n 2 -cc 0,1 ./a.out

• Intranode (2S): aprun –n 2 -cc 0,16 ./a.out

• Internode: aprun –n 2 –N 1 ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

 if(rank.eq.0) then

 MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)

 MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

 status,ierr)

 else

 MPI_RECV(…)

 MPI_SEND(…)

 endif

enddo

wc = MPI_WTIME() - wc

08/29/08, Author:

Georg Hager

C
ra

y
 X

E
6
 n

o
d
e

Rabenseifner, Hager, Jost Slide 25 / 170

Hybrid Parallel Programming

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Cray XE6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

internode intranode 2S intranode 1S

1.8

0.56

0.3

L
a
te

n
c
y
 [

µ
s
]

Affinity matters!

08/29/08, Author:

Georg Hager

TODO:

Diese Folie 25

hat ein „Skipped“

aber war nicht

ausgeblendet.

[rab] Was

möchtest Du?

Ich habe sie

vorläufig

audgeblendet.

Rabenseifner, Hager, Jost Slide 26 / 170

Hybrid Parallel Programming

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Cray XE6

08/29/08, Author:

Georg Hager

Between two cores of

one socket

Between two nodes

via InfiniBand

Between two sockets

of one node

Bandwidth:

Surprisingly

similar!

Latency: Very

different!

Rabenseifner, Hager, Jost Slide 27 / 170

Hybrid Parallel Programming

The throughput-parallel vector triad benchmark

Microbenchmarking for architectural exploration

• Every core runs its own, independent bandwidth benchmark

•  pure hardware probing, no impact from OpenMP overhead

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

June 2013, Author:

Georg Hager

Repeat many times

Actual benchmark

loop

Prevent smart-ass

compilers from

optimizing away the

outer loop

Rabenseifner, Hager, Jost Slide 28 / 170

Hybrid Parallel Programming

Throughput vector triad on Sandy Bridge socket (3 GHz)

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

June 2013, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 29 / 170

Hybrid Parallel Programming

Conclusions from the observed topology effects

• Know your hardware characteristics:

– Hardware topology (use tools such as likwid-topology)

– Typical hardware bottlenecks
• These are independent of the programming model!

– Hardware bandwidths, latencies, peak performance numbers

• Learn how to take control

– Affinity control is key! (What is running where?)

– Affinity is usually controlled at program startup

 know your system environment

• See later in the “How-To” section for more on affinity control

GHa14

Rabenseifner, Hager, Jost Slide 30 / 170

Hybrid Parallel Programming

Remarks on

Cost-Benefit Calculation

Rab

2014

Rabenseifner, Hager, Jost Slide 31 / 170

Hybrid Parallel Programming

Remarks on Cost-Benefit Calculation

Costs

• for optimization effort

– e.g., additional OpenMP parallelization

– e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

• from reduced CPU utilization

– e.g., Example 1:

100,000 € hardware costs of the cluster

x 20% used by this application over whole lifetime of the cluster

x 7% performance win through the optimization

= 1,400 €  total loss = 13,600 €

– e.g., Example 2:

10 Mio € system x 5% used x 8% performance win

= 40,000 €  total win = 25,000 €

Question: Do you want to spend work hours without a final benefit?

05/28/10, Author:

Rolf Rabenseifner
June 2014, Author:

Rolf Rabenseifner

GHa14

Rab

2014

Rabenseifner, Hager, Jost Slide 32 / 170

Hybrid Parallel Programming

Programming

models

Rabenseifner, Hager, Jost Slide 33 / 170

Hybrid Parallel Programming

Programming

models

- pure MPI

Rabenseifner, Hager, Jost Slide 34 / 170

Hybrid Parallel Programming

Pure MPI

Advantages

– No modifications on existing MPI codes

– MPI library need not to support multiple threads

Major problems

– Does MPI library use different protocols internally?
• Shared memory inside of the SMP nodes

• Network communication between the nodes

– Is the network prepared for many communication links?

– Does application topology fit on hardware topology?
• Minimal communication

between MPI processes AND between hardware SMP nodes

– Unnecessary MPI-communication inside of SMP nodes!

– Generally “a lot of” communicating processes per node

– Memory consumption: Halos & replicated data

pure MPI
one MPI process

on each core

2004-2006, Author:

Rolf Rabenseifner

GHa14

Rab 2014

Rabenseifner, Hager, Jost Slide 35 / 170

Hybrid Parallel Programming

Does The network support many concurrent

communication links?

• Bandwidth of parallel communication links between SMP nodes

Cray XC30
(Sandybridge @ HLRS)

Xeon+Infiniband
(beacon @ NICS)

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes

(with 16B and 512kB per message; bandwidth: each message is counted

only once, i.e., not twice at sender and receiver); reported:

Latency, accumulated bandwidth of all links per node

 1.6 µs, 5.4 GB/s

 2.1 µs, 5.4 GB/s

 2.1 µs, 5.1 GB/s

 2.4 µs, 5.0 GB/s

12.1 µs, 4.8 GB/s

 4.1 µs, 6.8 GB/s

 4.1 µs, 7.1 GB/s

 4.1 µs, 5.2 GB/s

 4.4 µs, 4.7 GB/s

10.2 µs, 4.2 GB/s

Conclusion:

One communicating core per node (i.e., hybrid programming)

 may be better than many communicating cores (e.g., with pure MPI) June 2014, Author:

Rolf Rabenseifner

GHa14

Rab 2014
“bi-directional

bandwidth” defined

Rabenseifner, Hager, Jost Slide 36 / 170

Hybrid Parallel Programming

To minimize communication?

• Bandwidth of parallel communication links between Intel Xeon Phi

One Phi per node
(beacon @ NICS)

4 Phis on one node
(beacon @ NICS)

15 µs, 0.83 GB/s

 15 µs, 0.83 GB/s

 26 µs, 0.87 GB/s

 25 µs, 0.91 GB/s

 23 µs, 0.91 GB/s

 24 µs, 0.92 GB/s

 21 µs, 0.91 GB/s

 51 µs, 0.90 GB/s

Conclusions:

Intel Xeon Phi is well prepared for one MPI process per Phi.

Communication is no reason for many MPI processes on each Phi.

Links

per Phi

 1x

 2x

 4x

 8x

16x

30x

60x

June 2014, Author:

Rolf Rabenseifner

GHa14

Rabenseifner, Hager, Jost Slide 37 / 170

Hybrid Parallel Programming

MPI communication on Intel Phi

• Communication of MPI processes inside of an Intel Phi:
(bi-directional halo exchange benchmark with all processes in a ring;

 bandwidth: each message is counted only once, i.e., not twice at sender and receiver)

– Number of Latency Bandwidth

MPI processes (16 byte msg) (bi-directional, 512 kB messages, per process)

 4 9 µs 0.80 GB/s

 16 11 µs 0.75 GB/s

 30 15 µs 0.66 GB/s

 60 29 µs 0.50 GB/s

 120 149 µs 0.19 GB/s

 240 745 µs 0.05 GB/s

June 2013, Author:

Rolf Rabenseifner

Conclusion:

MPI on Intel Phi works fine on up to 60 processes,

but the 4 hardware threads per core

require OpenMP parallelization.

DONE:

Ohne grüne Teile:

MPI-3.0 shared memory

Rab

2014

Rab 2014
“bi-directional

bandwidth” defined

Rabenseifner, Hager, Jost Slide 38 / 170

Hybrid Parallel Programming

Levels of communication or data access

• Three levels:

– Between the SMP nodes

– Between the sockets inside of a ccNUMA SMP node

– Between the cores of a socket

• On all levels, the communication should be minimized:

– With 3-dimensional sub-domains:

• They should be as cubic as possible

• Pure MPI on clusters of SMP nodes may result in inefficient SMP-sub-domains:

Green = Shape of data.

Optimal sub-domain within an SMP node

Sub-sub-domain within a core

Outer surface corresponds to the data

communicated to the neighbor nodes

in all 6 directions

Inner surfaces correspond to the data communicated or

accessed between the cores inside of a node

Originally perfectly optimized shape for each MPI process;

but terrible when clustered only in one dimension

 next slide

Optimal surfaces on

SMP and core level

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 39 / 170

Hybrid Parallel Programming

Loss of communication bandwidth if not cubic

• 𝑁3 = 𝑁 × 𝑁 × 𝑁 𝑏𝑤 = 𝟏𝟎𝟎% ∙ 𝑏𝑤𝑜𝑝𝑡𝑖𝑚𝑎𝑙

• 𝑁3 = 2 𝑁

2
3 × 1 𝑁

2
3 × 1 𝑁

2
3 𝑏𝑤 =

3∙(2
3

)2

2∙1+2∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 95% ∙ 𝑏𝑤𝑜𝑝𝑡.

• 𝑁3 = 4 𝑁

4
3 × 1 𝑁

4
3 × 1 𝑁

4
3 𝑏𝑤 =

3∙(4
3

)2

4∙1+4∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 84% ∙ 𝑏𝑤𝑜𝑝𝑡.

• 𝑁3 = 8 𝑁

8
3 × 1 𝑁

8
3 × 1 𝑁

8
3 𝑏𝑤 =

3∙(8
3

)2

8∙1+8∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 71% ∙ 𝑏𝑤𝑜𝑝𝑡.

• 𝑁3 = 16 𝑁

16
3 × 1 𝑁

16
3 × 1 𝑁

16
3 𝑏𝑤 =

3∙(16
3

)2

16∙1+16∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 58% ∙ 𝑏𝑤𝑜𝑝𝑡.

• 𝑁3 = 32 𝑁

32
3 × 1 𝑁

32
3 × 1 𝑁

32
3 𝑏𝑤 =

3∙(32
3

)2

32∙1+32∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 𝟒𝟕% ∙ 𝑏𝑤𝑜𝑝𝑡.

• 𝑁3 = 64 𝑁

64
3 × 1 𝑁

64
3 × 1 𝑁

64
3 𝑏𝑤 =

3∙(64
3

)2

64∙1+64∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 𝟑𝟕% ∙ 𝑏𝑤𝑜𝑝𝑡.

June 2014, Author:

Rolf Rabenseifner

Slow down factors of your application (communication footprint calculated with optimal bandwidth)

• With 20% communication footprint: Slow down by 1.01, 1,04, 1.08, 1.14, 1.23, or 1.34

• With 50% communication footprint: Slow down by 1.03, 1,10, 1.20, 1.36, 1.56, or 1.85!

Rabenseifner, Hager, Jost Slide 40 / 170

Hybrid Parallel Programming

The topology problem: How to fit

application sub-domains to hierarchical hardware

When do we need a multi-level domain decomposition?

• Not needed

– with pure MPI+OpenMP,

i.e., one MPI process per SMP node

– ccNUMA-aware hybrid MPI+OpenMP, i.e.,

with one MPI process per physical ccNUMA domain (e.g., socket)

and the number of ccNUMA domain is small, e.g., only 2.

In these cases, one-level domain-decomposition is enough

• Needed for

– ccNUMA-aware hybrid MPI+OpenMP

with several MPI processes per SMP node,

e.g., one process per socket, and 4 or more sockets

– MPI + MPI-3.0 shared memory

– Pure MPI

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 41 / 170

Hybrid Parallel Programming

Pure MPI – multi-core aware

• Hierarchical domain decomposition

(or distribution of Cartesian arrays)

05/28/10, Author:

Rolf Rabenseifner

Domain decomposition:

1 sub-domain / SMP node

Further

partitioning:

1 sub-domain /

socket

1 / core

Cache

optimization:

Blocking inside

of each core,

block size relates

to cache size.

1-3 cache levels.

Example on 10 nodes, each with 4 sockets, each with 6 cores.

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 42 / 170

Hybrid Parallel Programming

How to achieve such hardware-aware

domain decomposition (DD)?

• Maybe simplest method for structured/Cartesian grids:

– Sequentially numbered MPI_COMM_WORLD
• Ranks 0-7: cores of 1st socket on 1st SMP node

• Ranks 8-15: cores of 2nd socket on 1st SMP node

• …

– Cartesian/structured domain decomposition on finest MPI level
• E.g., sockets (with ccNUMA-aware hybrid MPI+OpenMP)

• E.g., cores (with pure MPU or MPI+MPI-3.0 shared memory)

– Hierachical re-numbering the MPI processes

together with MPI Cartesian virtual coordinates

 next slides

• Unstructured grids  coming later

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 43 / 170

Hybrid Parallel Programming

Hierarchical Cartesian DD

June 2013, Author:

Rolf Rabenseifner

 0
0 1 2 3
0 1 2 3

 1
0 1 2 3
4 5 6 7

 2
0 1 2 3
8 9 10 11

 3
 0 1 2 3
12 13 14 15

11 3
10 2
 9 1
 8 0

 7 3
 6 2
 5 1
 4 0

 3 3
 2 2
 1 1
 0 0

 3 1
 2 0

 1 1
 0 0

0

1

2

0

1

x
Coordinate 0

y
Coordinate 1

z = Coordinate 2

Node coord.
coord. in SMP
Global coord.

Implementation hints on

following (skipped) slide
ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Virtual

location of an

MPI process

within an

SMP node

All MPI

processes

of an SMP

node

Rabenseifner, Hager, Jost Slide 44 / 170

Hybrid Parallel Programming

Hierarchical Cartesian DD

// Input: Original communicator: MPI_Comm comm_orig; (e.g. MPI_COMM_WORLD)

// Number of dimensions: int ndims = 3;

// Global periods: int periods_global[] = /*e.g.*/ {1,0,1};

MPI_Comm_size (comm_orig, &size_global);

MPI_Comm_rank (comm_orig, &myrank_orig);

// Establish a communicator on each SMP node:

MPI_Comm_split_type (comm_orig, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_smp_flat);

MPI_Comm_size (comm_smp_flat, &size_smp);

int dims_smp[] = {0,0,0}; int periods_smp[] = {0,0,0} /*always non-period*/;

MPI_Dims_create (size_smp, ndims, dims_smp);

MPI_Cart_create (comm_smp_flat, ndims, dims_smp, periods_smp, /*reorder=*/ 1, &comm_smp_cart);

MPI_Comm_free (&comm_smp_flat);

MPI_Comm_rank (comm_smp_cart, &myrank_smp);

MPI_Cart_coords (comm_smp_cart, myrank_smp, ndims, mycoords_smp);

// This source code requires that all SMP nodes have the same size. It is tested:

MPI_Allreduce (&size_smp, &size_smp_min, 1, MPI_INT, MPI_MIN, comm_orig);

MPI_Allreduce (&size_smp, &size_smp_max, 1, MPI_INT, MPI_MAX, comm_orig);

if (size_smp_min < size_smp_max) { printf("non-equal SMP sizes\n"); MPI_Abort (comm_orig, 1); }

June 2013, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 45 / 170

Hybrid Parallel Programming

Hierarchical Cartesian DD

// Establish the node rank. It is calculated based on the sequence of ranks in comm_orig

// in the processes with myrank_smp == 0:

MPI_Comm_split (comm_orig, myrank_smp, 0, &comm_nodes_flat);

// Result: comm_nodes_flat combines all processes with a given myrank_smp into a separate communicator.

// Caution: The node numbering within these comm_nodes-flat may be different.

// The following source code expands the numbering from comm_nodes_flat with myrank_smp == 0

// to all node-to-node communicators:

MPI_Comm_size (comm_nodes_flat, &size_nodes);

int dims_nodes[] = {0,0,0}; for (i=0; i<ndims; i++) periods_nodes[i] = periods_global[i];

MPI_Dims_create (size_nodes, ndims, dims_nodes);

if (myrank_smp==0) {

 MPI_Cart_create (comm_nodes_flat, ndims, dims_nodes, periods_nodes, 1, &comm_nodes_cart);

 MPI_Comm_rank (comm_nodes_cart, &myrank_nodes);

 MPI_Comm_free (&comm_nodes_cart); /*was needed only to calculate myrank_nodes*/
}

MPI_Comm_free (&comm_nodes_flat);

MPI_Bcast (&myrank_nodes, 1, MPI_INT, 0, comm_smp_cart);

MPI_Comm_split (comm_orig, myrank_smp, myrank_nodes, &comm_nodes_flat);

MPI_Cart_create (comm_nodes_flat, ndims, dims_nodes, periods_nodes, 0, &comm_nodes_cart);

MPI_Cart_coords (comm_nodes_cart, myrank_nodes, ndims, mycoords_nodes);
MPI_Comm_free (&comm_nodes_flat);

Copying it for the

other processes in

each SMP node

Optimization according to

inter-node network of the first

processes in each SMP node

June 2013, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 46 / 170

Hybrid Parallel Programming

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Hierarchical Cartesian DD

 0
0 1 2 3
0 1 2 3

 1
0 1 2 3
4 5 6 7

 2
0 1 2 3
8 9 10 11

 3
 0 1 2 3
12 13 14 15

11 3
10 2
 9 1
 8 0

 7 3
 6 2
 5 1
 4 0

 3 3
 2 2
 1 1
 0 0

 3 1
 2 0

 1 1
 0 0

0

1

2

0

1 y
Coordinate 1

z = Coordinate 2

mycoords_nodes
mycoords_smp
mycoords_global

comm_smp_cart

for all processes with

coord_nodes== {1,2,0}

comm_nodes_cart

for all processes with

mycoord_smp== {2,3,1}

Coordinate 0
x

June 2013, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 47 / 170

Hybrid Parallel Programming

Hierarchical Cartesian DD

// Establish the global Cartesian communicator:

for (i=0; i<ndims; i++) { dims_global[i] = dims_smp[i] * dims_nodes[i];

 mycoords_global[i] = mycoords_nodes[i] * dims_smp[i] + mycoords_smp[i];

}

myrank_global = mycoords_global[0];

for (i=1; i<ndims; i++) { myrank_global = myrank_global * dims_global[i] + mycoords_global[i]; }

MPI_Comm_split (comm_orig, /*color*/ 0, myrank_global, &comm_global_flat);

MPI_Cart_create (comm_global_flat, ndims, dims_global, periods_global, 0, &comm_global_cart);

MPI_Comm_free (&comm_global_flat);

// Result:

// Input was:

// comm_orig, ndims, periods_global

// Result is:

// comm_smp_cart, size_smp, myrank_smp, dims_smp, periods_smp, my_coords_smp,

// comm_nodes_cart, size_nodes, myrank_nodes, dims_nodes, periods_nodes, my_coords_nodes,

// comm_global_cart, size_global, myrank_global, dims_global, my_coords_global

June 2013, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 48 / 170

Hybrid Parallel Programming

How to achieve a hierarchical DD

for unstructured grids?

• Unstructured grids:

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run

(with only a few iterations)

• Optimized rank mapping to the hardware before production run

• E.g., with CrayPAT + CrayApprentice

– Multi-level DD:

• Top-down: Several levels of (Par)Metis

  unbalanced communication

  demonstrated on next (skipped) slide

• Bottom-up: Low level DD

 + higher level recombination

  based on DD of the grid of subdomains

05/28/10, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 49 / 170

Hybrid Parallel Programming

Top-down – several levels of (Par)Metis

Steps:

– Load-balancing (e.g., with

ParMetis) on outer level,

i.e., between all SMP nodes

– Independent (Par)Metis

inside of each node

– Metis inside of each socket

 Subdivide does not care on

balancing of the outer boundary

 processes can get a lot of

neighbors with inter-node

communication

 unbalanced communication

05/28/10, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 50 / 170

Hybrid Parallel Programming

Bottom-up –

Multi-level DD through recombination

1. Core-level DD: partitioning of application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

05/28/10, Author:

Rolf Rabenseifner

• Problem:

Recombination

must not

calculate patches

that are smaller

or larger than the

average

• In this example

the load-balancer

must combine

always exactly

 6 cores, and

 4 numa-

domains (i.e.,

sockets or

dies)

• Advantage:

Communication

is balanced!

Graph of
all sub-

domains
(core-
sized)

Divided
into sub-
graphs
for each
socket

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 51 / 170

Hybrid Parallel Programming

Profiling solution

• First run with profiling

– Analysis of the communication pattern

• Optimization step

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD

to the hardware grid (physical cores / sockets / SMP nodes)

• Restart of the application with this optimized locating of the ranks on the

hardware grid

• Example: CrayPat and CrayApprentice

05/28/10, Author:

Rolf Rabenseifner

ccNUMA aware hybrid

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 52 / 170

Hybrid Parallel Programming

Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels)

are done:

• Cache-blocking is an additional DD into data blocks

– Blocks fulfill size conditions for optimal spatial/temporal locality

– It is done inside of each MPI process (on each core).

– Outer loops run from block to block

– Inner loops inside of each block

– Cartesian example: 3-dim loop is split into
do i_block=1,ni,stride_i

 do j_block=1,nj,stride_j

 do k_block=1,nk,stride_k

 do i=i_block,min(i_block+stride_i-1, ni)

 do j=j_block,min(j_block+stride_j-1, nj)

 do k=k_block,min(k_block+stride_k-1, nk)

 a(i,j,k) = f(b(i±0,1,2, j±0,1,2, k±0,1,2))

 … … … end do

end do

05/28/10, Author:

Rolf Rabenseifner

Access to 13-point stencil

See SC’14

Tutorial:

Node-Level

Performance

Engineering unrz55 21.06.2014

Blocks müssen i.A.

NICHT in den Cache

passen! Da gelten

andere Regeln (-->

"Layer Conditions").

U.U. auf das NLPE-

Tutorial hinweisen

GHa14

Rabenseifner, Hager, Jost Slide 53 / 170

Hybrid Parallel Programming

The vendors

should deliver

scalable MPI

libraries for their

largest systems!

Scalability of MPI to hundreds of thousands …

Scalability of pure MPI

• As long as the application does not use

– MPI_ALLTOALL

– MPI_<collectives>V (i.e., with length arrays)

 and application

– distributes all data arrays

 one can expect:

– Significant, but still scalable memory overhead for halo cells.

– MPI library is internally scalable:
• E.g., mapping ranks  hardware grid

– Centralized storing in shared memory (OS level)

– In each MPI process, only used neighbor ranks are stored (cached) in

process-local memory.

• Tree based algorithm with O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles!

05/28/10, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

pure MPI

Rabenseifner, Hager, Jost Slide 54 / 170

Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

 Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

 MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

 MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

2010?, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 55 / 170

Hybrid Parallel Programming

Pinning of MPI processes

• Pinning is helpful for all programming models

• Highly system-dependent!

• Intel MPI: env variable I_MPI_PIN

• OpenMPI:

mpirun options –bind-to-core, -bind-to-socket, -bycore, -byslot …

GHa14

Rab 2014

Rabenseifner, Hager, Jost Slide 56 / 170

Hybrid Parallel Programming

Anarchy vs. affinity with a heat equation solver

• Reasons for caring about affinity:

• Eliminating performance variation

• Making use of architectural features

• Avoiding resource contention

June 2014?, Author:

Georg Hager

GHa14

… …

With affinity, physical cores, filling

left socket first:

mpirun -bind-to-core -byslot …

2x 10-core Intel Ivy Bridge, OpenMPI

No affinity settings

Rabenseifner, Hager, Jost Slide 57 / 170

Hybrid Parallel Programming

Pure MPI: Main advantages

• Simplest programming model

• Library calls need not to be thread-safe

• The hardware is typically prepared for many MPI processes per

SMP node

• Only minor problems if pinning is not applied

Rab 2014

Rabenseifner, Hager, Jost Slide 58 / 170

Hybrid Parallel Programming

Pure MPI: Main disadvantages

• Unnecessary communication

• Too much memory consumption for

– Halo data for communication between MPI processes

on same SMP node

– Other replicated data on same SMP node

– MPI buffers due to the higher number of MPI processes

• Additional programming costs for minimizing node-to-node

communication,

– i.e. for optimizing the communication topology

• No efficient use of hardware-threads (hyper-threads)

Rab 2014

Rabenseifner, Hager, Jost Slide 59 / 170

Hybrid Parallel Programming

Pure MPI: Conclusions

• Still a good programming model for small and medium size

applications.

• Major problem may be memory consumption

Rab 2014

Rabenseifner, Hager, Jost Slide 60 / 170

Hybrid Parallel Programming

Programming

models

- MPI + MPI-3.0

 shared memory

Rabenseifner, Hager, Jost Slide 61 / 170

Hybrid Parallel Programming

Hybrid MPI + MPI-3 shared memory

Advantages

– No message passing inside of the SMP nodes

– Using only one parallel programming standard

– No OpenMP problems (e.g., thread-safety isn’t an issue)

Major Problems

– Communicator must be split into shared

memory islands

– To minimize shared memory communication

overhead:

Halos (or the data accessed by the neighbors)

must be stored in

MPI shared memory windows

– Same work-sharing as with pure MPI

– MPI-3.0 shared memory synchronization waits

for clarification  MPI-3.0 errata / MPI-3.1

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI
MPI for inter-node

communication

+ MPI-3.0 shared memory

programming

Rab 2014

Rabenseifner, Hager, Jost Slide 62 / 170

Hybrid Parallel Programming

MPI-3 shared memory

• Split main communicator into shared memory islands

– MPI_Comm_split_type

• Define a shared memory window on each island

– MPI_Win_allocate_shared

– Result (by default):
contiguous array, directly accessible by all processes of the island

• Accesses and sychronization

– Normal assignments and expressions

– No MPI_PUT/GET !

– Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

Rabenseifner, Hager, Jost Slide 63 / 170

Hybrid Parallel Programming

Splitting the communicator &

contiguous shared memory allocation

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

MPI_Comm comm_all, comm_sm; int my_rank_all, my_rank_sm, size_sm, disp_unit;

MPI_Comm_rank (comm_all, &my_rank_all);

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,
 MPI_INFO_NULL, &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm); MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double); /* shared memory should contain doubles */

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,
 comm_sm, &base_ptr, &win_sm);

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

…

MPI process

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

base_ptr

Contiguous shared memory window within each SMP node

Sequence in comm_sm

as in comm_all

comm_all

F

F In Fortran, MPI-3.0, page 341, Examples 8.1 (and 8.2) show how to convert buf_ptr into a usable array a.

This mapping is based on a sequential ranking of the SMP nodes in comm_all.

M

M

Rabenseifner, Hager, Jost Slide 64 / 170

Hybrid Parallel Programming

Within each SMP node – Essentials

• The allocated shared memory is contiguous across process ranks,

• i.e., the first byte of rank i starts right after the last byte of rank i-1.

• Processes can calculate remote addresses’ offsets

with local information only.

• Remote accesses through load/store operations,

• i.e., without MPI RMA operations (MPI_GET/PUT, …)

• Although each process in comm_sm accesses the same physical memory,

the virtual start address of the whole array

may be different in all processes!

 linked lists only with offsets in a shared array,

 but not with binary pointer addresses!

• Following slides show only the shared memory accesses,

i.e., communication between the SMP nodes is not presented.

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

Rabenseifner, Hager, Jost Slide 65 / 170

Hybrid Parallel Programming

Shared memory access example

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;
MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,
 comm_sm, &base_ptr, &win_sm);

MPI_Win_fence (0, win_sm); /*local store epoch can start*/

for (i=0; i<local_window_count; i++) base_ptr[i] = … /* fill values into local portion */

MPI_Win_fence (0, win_sm); /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1]);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",
 base_ptr[local_window_count]);

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

base_ptr

Contiguous shared memory window within each SMP node local_window_count
doubles

Direct load access to

remote window

portion

Direct load access to

remote window

portion

Synchroni-

zation

Synchroni-

zation
Local stores

F

F

F

F

F In Fortran, before and after the synchronization, on must add: CALL MPI_F_SYNC_REG (buffer)
to guarantee that register copies of buffer are written back to memory, respectively read again from memory.

Rabenseifner, Hager, Jost Slide 66 / 170

Hybrid Parallel Programming

Establish comm_sm, comm_nodes, comm_all,

if SMPs are not contiguous within comm_orig

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

 0 1 2 3
 my_rank_sm

…
Sub-communicator
for one SMP node:
comm_sm

MPI_Comm_split_type (comm_orig, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm);

MPI_Comm_size (comm_sm, &size_sm); MPI_Comm_rank (comm_sm, &my_rank_sm);

MPI_Comm_split (comm_orig, my_rank_sm, 0, &comm_nodes);

MPI_Comm_size (comm_nodes, &size_nodes);

if (my_rank_sm==0) {

 MPI_Comm_rank (comm_nodes, &my_rank_nodes);

 MPI_Exscan (&size_sm, &my_rank_all, 1, MPI_INT, MPI_SUM, comm_nodes);

 if (my_rank_nodes == 0) my_rank_all = 0;

}

MPI_Comm_free (&comm_nodes);

MPI_Bcast (&my_rank_nodes, 1, MPI_INT, 0, comm_sm);

MPI_Comm_split (comm_orig, my_rank_sm, my_rank_nodes, &comm_nodes);

MPI_Bcast (&my_rank_all, 1, MPI_INT, 0, comm_sm); my_rank_all = my_rank_all + my_rank_sm;

MPI_Comm_split (comm_orig, /*color*/ 0, my_rank_all, &comm_all);

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

Establish a
communicator

comm_sm
with ranks

my_rank_sm
on each SMP

node

Establish the node rank. It is calculated based
on the sequence of ranks in comm_orig in the
processes with my_rank_sm == 0

Result: comm_nodes combines all processes with a
given my_rank_sm into a separate communicator. Exscan does

not return
value on the

first rank,
therefore

comm_all

comm_nodes
combining all
processes with same
my_rank_sm

On processes with my_rank_sm > 0, this comm_nodes is unused
because node-numbering within these comm_nodes may be different.

Expanding the numbering from
comm_nodes with my_rank_sm
== 0 to all new node-to-node
communicators comm_nodes.

Calculating my_rank_all and
establishing global communicator
comm_all with sequential SMP
subsets.

 0 1 2 3

my_rank_nodes

Input

Rabenseifner, Hager, Jost Slide 67 / 170

Hybrid Parallel Programming

Alternative: Non-contiguous shared memory

• Using info key "alloc_shared_noncontig“

• MPI library can put processes’ window portions

– on page boundaries,
• (internally, e.g., only one OS shared memory segment with some unused

padding zones)

– into the local ccNUMA memory domain + page boundaries
• (internally, e.g., each window portion is one OS shared memory segment)

Pros:

• Faster local data accesses especially on ccNUMA nodes

Cons:

• Higher programming effort for neighbor accesses: MPI_WIN_SHARED_QUERY

2013, Author:

Rolf Rabenseifner

Further reading:

Torsten Hoefler, James Dinan, Darius Buntinas,

Pavan Balaji, Brian Barrett, Ron Brightwell,

William Gropp, Vivek Kale, Rajeev Thakur:

MPI + MPI: a new hybrid approach to parallel

programming with MPI plus shared memory.
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

NUMA effects?
Significant impact of alloc_shared_noncontig

Rabenseifner, Hager, Jost Slide 68 / 170

Hybrid Parallel Programming

Non-contiguous shared memory allocation

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

disp_unit = sizeof(double); /* shared memory should contain doubles */

MPI_Info info_noncontig;

MPI_Info_create (&info_noncontig);

MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true");

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, info_noncontig,
 comm_sm, &base_ptr, &win_sm);

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

 0 1 2 3
 my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

local_window_count
doubles

base_ptr

Non-contiguous shared memory window within each SMP node

Rabenseifner, Hager, Jost Slide 69 / 170

Hybrid Parallel Programming

Non-contiguous shared memory:
Neighbor access through MPI_WIN_SHARED_QUERY

• Each process can retrieve each neighbor’s base_ptr
with calls to MPI_WIN_SHARED_QUERY

• Example: only pointers to the window memory
of the left & right neighbor

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

if (my_rank_sm > 0) MPI_Win_shared_query (win_sm, my_rank_sm – 1,
 &win_size_left, &disp_unit_left, &base_ptr_left);

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1,
 &win_size_right, &disp_unit_right, &base_ptr_right);

…

MPI_Win_fence (0, win_sm); /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n",
 base_ptr_left[win_size_left/disp_unit_left – 1]);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",
 base_ptr_right[0]);

base_ptr_left base_ptr_right

Thanks to Steffen Weise (TU Freiberg) for testing and correcting the example codes.

Rabenseifner, Hager, Jost Slide 70 / 170

Hybrid Parallel Programming

Other technical aspects with

MPI_WIN_ALLOCATE_SHARED
Caution: On some systems

• the number of shared memory windows, and

• the total size of shared memory windows

may be limited.

Some OS systems may provide options, e.g.,

• at job launch, or

• MPI process start,

to enlarge restricting defaults.

If MPI shared memory support is based on POSIX shared memory:

• Shared memory windows are located in memory-mapped /dev/shm

• Default: 25% or 50% of the physical memory, but a maximum of ~2043 windows!

• Root may change size with: mount –o remount,size=6G /dev/shm .

Cray XT/XE/XC (XPMEM): No limits.

On a system without virtual memory (like CNK on BG/Q), you have to reserve a chunk

of address space when the node is booted (default is 64 MB).

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett (SANDIA), and Steffen Weise (TU Freiberg),
for input and discussion.

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

Another restriction in a

low-quality MPI:

MPI_COMM_SPLIT_TYPE

may return always

MPI_COMM_SELF

Due to default limit

of context IDs

in mpich

Rabenseifner, Hager, Jost Slide 71 / 170

Hybrid Parallel Programming

Splitting the communicator without

MPI_COMM_SPLIT_TYPE

Alternatively, if you want to group based on a fixed amount size_sm of shared memory

cores in comm_all:

– Based on sequential ranks in comm_all

– Pro: comm_sm can be restricted to ccNUMA locality domains

– Con: MPI does not guarantee MPI_WIN_ALLOCATE_SHARED() on whole SMP node

(MPI_COMM_SPLIT_TYPE() may return MPI_COMM_SELF or partial SMP node)

2013, Author:

Rolf Rabenseifner

Hybrid MPI+MPI

MPI for inter-node
communication

+ MPI-3.0 shared memory
programming

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … comm_all

 0 1 2 3
 comm_sm

 0 1 2 3
 comm_sm

 0 1 2 3
 comm_sm

 0 1 2 3
 comm_sm

 0 1 2 3
 comm_sm

MPI_Comm_rank (comm_all, &my_rank);

MPI_Comm_split (comm_all, /*color*/ my_rank / size_sm, 0, &comm_sm);

MPI_Win_allocate_shared (…); To guarantee shared memory,

one may add an additional

MPI_Comm_split_type (comm_sm,

MPI_COMM_TYPE_SHARED, 0,

MPI_INFO_NULL,

&comm_sm_really);

Input from outside

Rabenseifner, Hager, Jost Slide 72 / 170

Hybrid Parallel Programming

Pure MPI versus MPI+MPI-3.0 shared memory

June 2014, Author:

Rolf Rabenseifner

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes

(with 16 and 512kB per message; bandwidth: each message is counted only once,

i.e., not twice at sender and receiver) on Cray XC30 with Sandybridge @ HLRS

 2.9 µs, 4.4 GB/s Irecv+send  Pure MPI

 3.0 µs, 4.5 GB/s Irecv+send

 3.3 µs, 4.4 GB/s Irecv+send

 5.2 µs, 4.3 GB/s Irecv+send

10.3 µs, 4.5 GB/s Irecv+send

Internode: Irecv + Send

 3.4 µs, 4.4 GB/s MPI-3.0 store  MPI+MPI-3.0 shared memory

 3.0 µs, 4.6 GB/s MPI-3.0 store

 3.5 µs, 4.4 GB/s MPI-3.0 store

 5.2 µs, 4.4 GB/s MPI-3.0 store

10.1 µs, 4.5 GB/s MPI-3.0 store

Additional

intra-node

communi-

cation with:

Latency Accumulated

inter-node

bandwidth per node

Rab 2014
“bi-directional

bandwidth” defined

Rab 2014
MPI+OpenMP

entfernt

Conclusion:

No win through

MPI-3.0 shared

memory

programming

Rabenseifner, Hager, Jost Slide 73 / 170

Hybrid Parallel Programming

1 MPI process versus several MPI processes

(1 Intel Xeon Phi per node)
1 MPI process per Intel Xeon Phi

Intel Xeon Phi + Infiniband
beacon @ NICS

 19 µs, 0.54 GB/s Irecv+send

Similar Conclusion:

• Several MPI processes inside Phi (in a line) cause slower communication

• No win through MPI-3.0 shared memory programming

4 MPI processes per Intel Phi

 25 µs, 0.52 GB/s MPI-3.0 store
 15 µs, 0.83 GB/s

 26 µs, 0.87 GB/s

 25 µs, 0.91 GB/s

 23 µs, 0.91 GB/s

 24 µs, 0.92 GB/s

 21 µs, 0.91 GB/s

 51 µs, 0.90 GB/s

Links

per Phi

 1x

 2x

 4x

 8x

16x

30x

60x

Latency Accumulated

inter-node

bandwidth per

Latency Accumulated

inter-node

bandwidth per

Additional

intra-node

communi-

cation with:
Internode: Irecv + Send

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 74 / 170

Hybrid Parallel Programming

Hybrid shared/cluster programming models

• MPI on each core (not hybrid)

– Halos between all cores

– MPI uses internally shared memory and

cluster communication protocols

• MPI+OpenMP

– Multi-threaded MPI processes

– Halos communica. only between MPI processes

• MPI cluster communication + MPI shared memory

communication

– Same as “MPI on each core”, but

– within the shared memory nodes,

halo communication through direct copying

with C or Fortran statements

• MPI cluster comm. + MPI shared memory access

– Similar to “MPI+OpenMP”, but

– shared memory programming through

work-sharing between the MPI processes

within each SMP node

MPI inter-node communication
MPI intra-node communication
Intra-node direct Fortran/C copy
Intra-node direct neighbor access

[6A]

Rabenseifner, Hager, Jost Slide 75 / 170

Hybrid Parallel Programming

Halo Copying within SMP nodes

MPI process use halos:

• Communication overhead depends on communication method

– (Nonblocking) message passing (since MPI-1)

– One-sided communication (typically not faster, since MPI-2.0)

– MPI_Neighbor_alltoall (since MPI-3.0)

– Shared memory remote loads ore stores (since MPI-3.0)

• Next slides: benchmarks on halo-copying inside of an SMP node

– On Cray XE6: Fastest is shared memory copy

 + point-to-point synchronization with zero-length msg

• Point-to-point synchronization for shared memory requires MPI_Win_sync

• MPI-3.0 forgot to define the synchronization methods

– See errata coming Dec. 2014 or March 2015

– Current proposal see

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456

June 2013, Author:

Rolf Rabenseifner

Rab 2014

Rabenseifner, Hager, Jost Slide 76 / 170

Hybrid Parallel Programming

MPI Communication inside of the SMP nodes

June 2013, Author:

Rolf Rabenseifner

High latency
MPI_Win_fence

Low latency pt-to-pt
synchronization
 next slide

Low bandwidth
with MPI_Put

Medium bandwidth
point-to-point and
neighbor alltoall

High bandwidth
direct shared
memory store

19 µs

30 µs

 2.9 µs

 1.7 µs

 2.8 µs

 2.9 µs Latency

On Cray XE6 Hermit at HLRS with aprun –n 32 –d 1 –ss, best values out of 6 repetitions, modules PrgEnv-cray/4.1.40 and cray-mpich2/6.2.1

Low bandwidth
with MPI_Put

Rab 2014
unskipped

Rabenseifner, Hager, Jost Slide 77 / 170

Hybrid Parallel Programming

Other synchronization on MPI-3.0 shared memory

• If the shared memory data transfer is done without RMA operation,

then the synchronization can be done by other methods.

• This example demonstrates the rules for the unified memory model if the data

transfer is implemented only with load and store (instead of MPI_PUT or MPI_GET)

and the synchronization between the processes is done with MPI communication

(instead of RMA synchronization routines).

 Process A Process B

MPI_WIN_LOCK_ALL(MPI_WIN_LOCK_ALL(

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)

DO ... DO ...

 X=...

 MPI_F_SYNC_REG(X) 1)

 MPI_WIN_SYNC(win)

 MPI_Send

 MPI_Recv

 MPI_WIN_SYNC(win)

 MPI_F_SYNC_REG(X) 1)

 print X

 MPI_F_SYNC_REG(X) 1)

 MPI_WIN_SYNC(win)

 MPI_Send
 MPI_Recv

 MPI_WIN_SYNC(win)

 MPI_F_SYNC_REG(X) 1) 1) Fortran only.

END DO END DO

MPI_WIN_UNLOCK_ALL(win) MPI_WIN_UNLOCK_ALL(win)

Also needed due to read-write-rule

Data exchange in this direction,

therefore MPI_WIN_SYNC is

needed in both processes:

Write-read-rule

• The used synchronization must be

supplemented with MPI_WIN_SYNC,

which acts only locally as a

processor-memory-barrier.

For MPI_WIN_SYNC, a passive

target epoch is established with

MPI_WIN_LOCK_ALL.

• X is part of a shared memory window

and should be the same memory

location in both processes.

Feb 2014, Author:

Rolf Rabenseifner

Rab 2014
unskipped / modified

Rabenseifner, Hager, Jost Slide 78 / 170

Hybrid Parallel Programming

MPI communication &

MPI-3.0 Shared Memory on Intel Phi

• MPI-3.0 shared memory accesses inside of an Intel Phi:
– They work, but

– MPI communication may be faster than user-written loads and stores.

• Communication of MPI processes inside of an Intel Phi:
(bi-directional halo exchange benchmark with all processes in a ring;

 bandwidth: each message is counted only once, i.e., not twice at sender and receiver)

– Number of Latency Bandwidth Shared mem. bandwidth

MPI processes (16 byte msg) (bi-directional, 512 kB messages, per process)

 4 9 µs 0.80 GB/s 0.25 GB/s

 16 11 µs 0.75 GB/s 0.24 GB/s

 30 15 µs 0.66 GB/s 0.24 GB/s

 60 29 µs 0.50 GB/s 0.22 GB/s

 120 149 µs 0.19 GB/s 0.20 GB/s

 240 745 µs 0.05 GB/s

June 2013, Author:

Rolf Rabenseifner

Conclusion:

MPI on Intel Phi works fine on up to 60 processes,

but the 4 hardware threads per core

require OpenMP parallelization.

MPI pt-to-pt substituted

by MPI-3.0 shared

memory store

Conclusion: Slow

Rab 2014
“bi-directional

bandwidth” defined

Rabenseifner, Hager, Jost Slide 79 / 170

Hybrid Parallel Programming

MPI+MPI-3.0 shared mem: Main advantages

• A new method for replicated data

– To allow only one replication per SMP node

• Interesting method for direct access to neighbor data (without halos!)

• A new method for communicating between MPI processes within each

SMP node

• On some platforms significantly better bandwidth than with send/recv

• Library calls need not be thread-safe

Rab 2014

Sep 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 80 / 170

Hybrid Parallel Programming

MPI+MPI-3.0 shared mem: Main disadvantages

• Synchronization not yet fully defined (MPI-3.0 errata is needed)

• Same problems as with all library based shared memory (e.g., pthreads)

– Should be solved through the rules in future errata

– (See https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456)

• Does not reduce the number of MPI processes

Rab 2014

Sep 2014, Author:

Rolf Rabenseifner

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456

Rabenseifner, Hager, Jost Slide 81 / 170

Hybrid Parallel Programming

MPI+MPI-3.0 shared mem: Conclusions

• Add-on feature for pure MPI

• Opportunity for reducing communication within SMP nodes

• Opportunity for reducing memory consumption (halos & replicated

data)

Rab 2014

Sep 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 82 / 170

Hybrid Parallel Programming

Programming

models

- MPI + OpenMP
• General considerations slide 83

• How to compile, link, and run 90

• Case-study: The Multi-Zone NAS Parallel Benchmarks 95

• Memory placement on ccNUMA systems 104

• Topology and affinity on multicore 110

• Overlapping communication and computation 124

• Main advantages, disadvantages, conclusions 135

Rabenseifner, Hager, Jost Slide 83 / 170

Hybrid Parallel Programming

Hybrid MPI+OpenMP Masteronly Style

Advantages

– No message passing inside of the SMP nodes

– No topology problem

for (iteration ….)

{

 #pragma omp parallel

 numerical code

 /*end omp parallel */

 /* on master thread only */

 MPI_Send (original data

 to halo areas

 in other SMP nodes)

 MPI_Recv (halo data

 from the neighbors)

} /*end for loop

Masteronly
MPI only outside

of parallel regions

2004-2006, Author:

Rolf Rabenseifner

Major Problems

– All other threads are sleeping

while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least

MPI_THREAD_FUNNELED

Rabenseifner, Hager, Jost Slide 84 / 170

Hybrid Parallel Programming

MPI rules with OpenMP /

Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute

– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls

 not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls

– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

 but only one at a time

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

 with no restrictions

• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],

 int thread_level_required,

 int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);

int MPI_Is_main_thread(int * flag);

08/12/06, Author:

Rolf Rabenseifner+

Rainer Keller

Rabenseifner, Hager, Jost Slide 85 / 170

Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,

i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!

 Therefore, “OMP BARRIER” normally necessary to

 guarantee, that data or buffer space from/for other

 threads is available before/after the MPI call!

 !$OMP BARRIER #pragma omp barrier

 !$OMP MASTER #pragma omp master

 call MPI_Xxx(...) MPI_Xxx(...);

 !$OMP END MASTER

 !$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!

• The additional barrier implies also the necessary cache flush!

08/12/06, Author:

Rolf Rabenseifner+

Rainer Keller

Rabenseifner, Hager, Jost Slide 86 / 170

Hybrid Parallel Programming

 … the barrier is necessary –

example with MPI_Recv
!$OMP PARALLEL

!$OMP DO

 do i=1,1000

 a(i) = buf(i)

 end do

!$OMP END DO NOWAIT

!$OMP BARRIER

!$OMP MASTER

 call MPI_RECV(buf,...)

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO

 do i=1,1000

 c(i) = buf(i)

 end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

#pragma omp parallel

{

#pragma omp for nowait

 for (i=0; i<1000; i++)

 a[i] = buf[i];

#pragma omp barrier

#pragma omp master

 MPI_Recv(buf,...);

#pragma omp barrier

#pragma omp for nowait

 for (i=0; i<1000; i++)

 c[i] = buf[i];

}
/* omp end parallel */

08/12/06, Author:

Rolf Rabenseifner+

Rainer Keller

Rabenseifner, Hager, Jost Slide 87 / 170

Hybrid Parallel Programming

MPI + OpenMP versus pure MPI (Cray XC30)

June 2014, Author:

Rolf Rabenseifner

MPI+OpenMP

Cray XC30
Sandybridge @ HLRS

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes

(with 16 and 512kB per message; bandwidth: each message is counted

only once, i.e., not twice at sender and receiver)

 2.9 µs, 4.4 GB/s Irecv+send

 3.0 µs, 4.5 GB/s Irecv+send

 3.3 µs, 4.4 GB/s Irecv+send

 5.2 µs, 4.3 GB/s Irecv+send

10.3 µs, 4.5 GB/s Irecv+send

 4.1 µs, 6.8 GB/s

 4.1 µs, 7.1 GB/s

 4.1 µs, 5.2 GB/s

 4.4 µs, 4.7 GB/s

10.2 µs, 4.2 GB/s

Conclusion:

• MPI+OpenMP is faster (but not much)

• Best bandwidth with only 1 or 2 communication links per node

• No win through MPI-3.0 shared memory programming

Pure MPI

Internode: Irecv + Send

 3.4 µs, 4.4 GB/s MPI-3.0 store

 3.0 µs, 4.6 GB/s MPI-3.0 store

 3.5 µs, 4.4 GB/s MPI-3.0 store

 5.2 µs, 4.4 GB/s MPI-3.0 store

10.1 µs, 4.5 GB/s MPI-3.0 store

Latency Accumulated

inter-node

bandwidth per node

Additional

intra-node

communi-

cation with:
Latency Accumulated

inter-node

bandwidth per node

MPI processes within an SMP node

Rab 2014
“bi-directional

bandwidth” defined

Rabenseifner, Hager, Jost Slide 88 / 170

Hybrid Parallel Programming

Load-Balancing

(on same or different level of parallelism)

• OpenMP enables

– Cheap dynamic and guided load-balancing

– Just a parallelization option (clause on omp for / do directive)

– Without additional software effort

– Without explicit data movement

• On MPI level

– Dynamic load balancing requires

moving of parts of the data structure through the network

– Significant runtime overhead

– Complicated software / therefore not implemented

• MPI & OpenMP

– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

07/11/08, Author:

Rolf Rabenseifner

#pragma omp parallel for schedule(dynamic)

for (i=0; i<n; i++) {

 /* poorly balanced iterations */ …

}

Rabenseifner, Hager, Jost Slide 89 / 170

Hybrid Parallel Programming

Sleeping threads with

Problem:

– Sleeping threads are

wasting CPU time

Solution:

– Overlapping of

computation and

communication

Limited benefit:

– In the best case,

communication overhead

can be reduced from 50%

to 0%  speedup of 2.0

– Usual case of 20% to 0%

 speedup is 1.25

– Achievable with significant

work  next slides

for (iteration ….)

{

 #pragma omp parallel

 numerical code

 /*end omp parallel */

 /* on master thread only */

 MPI_Send (original data

 to halo areas

 in other SMP nodes)

 MPI_Recv (halo data

 from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master

thread

Socket 1

SMP node SMP node

Socket 2

Master

thread

Socket 1

Socket 2

Master

thread

Master

thread

08/28/08, Author:

Rolf Rabenseifner

hybrid

MPI+OpenMP

Rabenseifner, Hager, Jost Slide 90 / 170

Hybrid Parallel Programming

Programming models

- MPI + OpenMP

How to compile, link, and run

Rabenseifner, Hager, Jost Slide 91 / 170

Hybrid Parallel Programming

How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp,

-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library

– Usually wrapped in MPI compiler script

– If required, specify to link against thread-safe MPI library
• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code

– Highly non-portable! Consult system docs! (if available…)

– If you are on your own, consider the following points

– Make sure OMP_NUM_THREADS etc. is available on all MPI

processes
• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

• Use Pete Wyckoff’s mpiexec MPI launcher (see below):

http://www.osc.edu/~djohnson/mpiexec/

– Figure out how to start fewer MPI processes than cores on your

nodes

08/29/08, Author:

Georg Hager

Rab 2014:

http://www.osc.ed

u/~pw/mpiexec

was broken.

Substituted.

Rabenseifner, Hager, Jost Slide 92 / 170

Hybrid Parallel Programming

Examples for compilation and execution

09/26/07, Author:

Gabriele Jost

• Cray XE6 (4 NUMA domains w/ 8 cores each):

• ftn -h omp ...

• export OMP_NUM_THREADS=8

• aprun -n nprocs -N nprocs_per_node \

 -d $OMP_NUM_THREADS a.out

• Intel Sandy Bridge (8-core 2-socket) cluster, Intel MPI/OpenMP

• mpiifort -openmp ...

• OMP_NUM_THREADS=8 mpirun –ppn 2 –np 4 \

 -env I_MPI_PIN_DOMAIN socket \

 -env KMP_AFFINITY scatter ./a.out

Rabenseifner, Hager, Jost Slide 93 / 170

Hybrid Parallel Programming

Interlude: Advantages of mpiexec

or similar mechanisms

• Startup mechanism should use a resource manager interface to

spawn MPI processes on nodes

– As opposed to starting remote processes with ssh/rsh:
• Correct CPU time accounting in batch system

• Faster startup

• Safe process termination

• Allowing password-less user login not required between nodes

– Interfaces directly with batch system to determine number of

procs

• Provisions for starting fewer processes per node than available

cores

– Required for hybrid programming

– E.g., “-pernode” and “-npernode #” options – does not

require messing around with nodefiles

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 94 / 170

Hybrid Parallel Programming

Thread support within OpenMPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:

– Support for full MPI_THREAD_MULTIPLE

– internal checks when run with threads (--enable-debug)

05/09/08, Author:

Rainer Keller

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:

– Progress threads to asynchronously transfer/receive data per

network BTL.

• Additional Feature:

– Compiling with debugging support, but without threads will

check for recursive locking

Courtesy of Rainer Keller, HLRS and ORNL

Rabenseifner, Hager, Jost Slide 95 / 170

Hybrid Parallel Programming

Programming models

- MPI + OpenMP

Case-study:

The Multi-Zone NAS Parallel Benchmarks

Rabenseifner, Hager, Jost Slide 96 / 170

Hybrid Parallel Programming

The Multi-Zone NAS Parallel Benchmarks

2014 updated, Author:

Gabriele Jost

OpenMP

Call MPI

MPI
Processes

sequential

MPI/Open
MP

OpenMP
direct exchange

boundaries

sequential sequential Time step

OpenMP sequential
intra-
zones

OpenMP
direct

access
inter-
zones

Nested
OpenMP

Seq

 Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

 Two hybrid sample implementations

 Load balance heuristics part of sample codes

 www.nas.nasa.gov/Resources/Software/software.html

http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html

Rabenseifner, Hager, Jost Slide 97 / 170

Hybrid Parallel Programming

MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

 call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

 if (iam .eq. pzone_id(zone)) then

 call zsolve(u,rsd,…)

 end if

 end do

end do

 ...

call mpi_send/recv

 subroutine zsolve(u, rsd,…)

 ...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

 do k = 2, nz-1

!$OMP DO

 do j = 2, ny-1

 do i = 2, nx-1

 do m = 1, 5

 u(m,i,j,k)=

 dt*rsd(m,i,j,k-1)

 end do

 end do

 end do

!$OMP END DO NOWAIT

 end do

 ...

!$OMP END PARALLEL

08/02/06, Author:

Gabriele Jost

Rabenseifner, Hager, Jost Slide 98 / 170

Hybrid Parallel Programming

Benchmark Characteristics

• Aggregate sizes:

– Class D: 1632 x 1216 x 34 grid points

– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)

– Alternative Directions Implicit (ADI) method

– #Zones: 1024 (D), 4096 (E)

– Size of the zones varies widely:

• large/small about 20

• requires multi-level parallelism to achieve a good load-balance

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)

– #Zones: 1024 (D), 4096 (E)

– Size of zones identical

• no load-balancing required

08/02/06, Author:

Gabriele Jost

Load-balanced on

MPI level: Pure MPI

should perform best

Pure MPI: Load-

balancing problems!

Good candidate for

MPI+OpenMP

Expectations:

Rab 2014:
Without LU

Rabenseifner, Hager, Jost Slide 99 / 170

Hybrid Parallel Programming

Hybrid code on modern architectures

• OpenMP:

– Support only per MPI process

– Version 3.1 has support for binding of threads via OMP_PROC_BIND
environment variable.

‒ Version 4.0:
o The proc_bind clause (see Section 2.4.2 in Spec OpenMP 4.0)

o OMP_PLACES environment variable (see Section 4.5) were added to
support thread affinity policies

 Under discussion for Version 5.0: OpenMP interoperability support

• MPI:

– Initially not designed for multicore/ccNUMA architectures or mixing of
threads and processes, MPI-2 supports threads in MPI

– API does not provide support for memory/thread placement

• Vendor specific APIs to control thread and memory placement:

– Environment variables

– System commands like numactl,taskset,dplace,omplace etc

 See later for more!

08/02/06, Author:

Gabriele Jost

David Barker 08.06.2014

Update Text with up-to-date information

TODO:

OpenMP

interop.? Mit

OpenMP?

[Rab] Ich habe

den Text „Under

discussion for

Version 5.0:

OpenMP

interoperability

support”

weiß gemacht

Rabenseifner, Hager, Jost Slide 100 / 170

Hybrid Parallel Programming

Dell Linux Cluster Lonestar Topology

09/26/07, Author:

Gabriele Jost

CPU type: Intel Core Westmere processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 6

Threads per core: 1

Socket 0: (1 3 5 7 9 11)

Socket 1: (0 2 4 6 8 10)

Careful!

 Numbering scheme of

cores is system dependent

Rabenseifner, Hager, Jost Slide 101 / 170

Hybrid Parallel Programming

Pitfall (2): Cause remote memory access

09/26/07, Author:

Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs, 6 threads each 2 MPI per node

Pinning A:

if [$localrank == 0]; then

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $*

elif [$localrank == 1]; then

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $*

fi

Running 128 MPI Procs, 6 threads each

Pinning B:

if [$localrank == 0]; then

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $*

elif [$localrank == 1]; then

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $*

fi

Half of the threads

access remote memory

600

Gflops

900

Gflops

900

Gflops

Only local memory

access

Rabenseifner, Hager, Jost Slide 102 / 170

Hybrid Parallel Programming

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
G

F
lo

p
s

MPIxOMP

NPB-MZ Class E Scalability on Lonestar

BT-MZ

SP-MZ

BT-MZ fixed

David Barker 08.06.2014

Added new slide with with BT-MZ fixed results

64
nodes

128
nodes

512
nodes

256
nodes

1024
nodes

June 2014:

Gabriele Jost

Rabenseifner, Hager, Jost Slide 103 / 170

Hybrid Parallel Programming

MPI+OpenMP memory usage of NPB-MZ

09/26/07, Author:

Gabriele Jost

Using more OpenMP threads reduces the memory usage substantially,

up to five times on Hopper Cray XT5 (eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, Alice Koniges, Nicholas J. Wright:

Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray

XT5 Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Always same

number of

cores

Slide, courtesy of

Alice Koniges, NERSC, LBLN

Rabenseifner, Hager, Jost Slide 104 / 170

Hybrid Parallel Programming

Programming models

- MPI + OpenMP

Memory placement on ccNUMA

systems

Rabenseifner, Hager, Jost Slide 105 / 170

Hybrid Parallel Programming

Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

– Except if there is not enough local memory available

– Some OSs allow to influence placement in more direct ways
•  libnuma (Linux)

• Caveat: "touch" means "write", not "allocate"

• Example:

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

• With pure MPI (or process per ccNUMA domain): fully automatic!

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 106 / 170

Hybrid Parallel Programming

Most simple case: explicit initialization

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

June 2013, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 107 / 170

Hybrid Parallel Programming

ccNUMA problems beyond first touch

• OS uses part of main memory for

disk buffer (FS) cache

– If FS cache fills part of memory,

apps will probably allocate from

foreign domains

–  non-local access

– Locality problem even on hybrid

and pure MPI

• Remedies

– Drop FS cache pages after user job has run (admin’s job)
• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)

– Flush buffer cache after I/O if necessary (“sync” is not

sufficient!)

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)

d
a

ta
(1

)

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 108 / 170

Hybrid Parallel Programming

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

installed in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

Cray: aprun -ss

June 2013, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 109 / 170

Hybrid Parallel Programming

How to overcome ccNUMA problems

• Problems when one process spans multiple ccNUMA domains:

– The memory is physically distributed across the ccNUMA domains.

– First touch is needed to “bind” the data to the OpenMP threads of each

socket  otherwise loss of performance

– Dynamic and guided load-balancing automatically access the memory

of all sockets  loss of performance

• Possible way out:

– One MPI process on each socket

 small number (>1) of MPI processes on each SMP node

 e.g., 1-dimensional: 4 sockets in one line:

  simple programming with structured grids

  non-optimal communication shape

 or, 3-dimensional: 2x2x1 socket:

  less node-to-node communication

 due to minimal better shape

  but rank re-numbering is needed

June 2014, Author:

Rolf Rabenseifner
1) Provided that the application has a 20% communication footprint.

GHa14

Rab 2014
surface=18 N2

surface=16 N2

Rabenseifner, Hager, Jost Slide 110 / 170

Hybrid Parallel Programming

Programming models

- MPI + OpenMP

Topology and affinity on multicore

Rabenseifner, Hager, Jost Slide 111 / 170

Hybrid Parallel Programming

The OpenMP-parallel vector triad benchmark

Visualizing OpenMP overhead

• OpenMP work sharing in the benchmark loop

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP END DO

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

June 2013, Author:

Georg Hager

Real work sharing

Implicit barrier

Rabenseifner, Hager, Jost Slide 112 / 170

Hybrid Parallel Programming

OpenMP vector triad on Sandy Bridge socket (3 GHz)

sync overhead grows

with # of threads

 next slide for direct

measurements!

bandwidth

scalability

across memory

interfaces

June 2013, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 113 / 170

Hybrid Parallel Programming

Thread synchronization overhead on SandyBridge-EP
Direct measurement of barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

See also http://blogs.fau.de/hager/archives/6883

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

June 2013, Author:

Georg Hager

Strong topology

dependence!

http://blogs.fau.de/hager/archives/6883
http://blogs.fau.de/hager/archives/6883

Rabenseifner, Hager, Jost Slide 114 / 170

Hybrid Parallel Programming

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

That does not look too bad for 240 threads!

Still the “pain” may be much larger, because more work can be done in one

cycle on Phi compared to a full (16-core) Sandy Bridge node:

• 3.75 x cores (16 vs 60) on Phi

• 2 x more operations per cycle on Phi

  7.5 x more work done on Xeon Phi per cycle

• 2.7 x higher barrier penalty (cycles) on Phi but 3x slower clock speed

 One barrier causes 2.7 x 7.5 / 3 ≈ 7x more pain .

2 threads on

distinct cores: 1936

2014?, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 115 / 170

Hybrid Parallel Programming

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls

– But available on all systems

 Linux: sched_setaffinity(), PLPA  hwloc
Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in all modern compilers

– Intel, GCC, PGI,…

– OpenMP 4.0

– Generic Linux: taskset, numactl, likwid-pin (see below)

• Affinity awareness in MPI libraries

– Cray MPI

– OpenMPI

– Intel MPI

– …

08/29/08, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 116 / 170

Hybrid Parallel Programming

Anarchy vs. affinity with OpenMP STREAM

No pinning

Pinning (physical cores first,

first socket first)

• Reasons for caring about affinity:

• Eliminating performance variation

• Making use of architectural features

• Avoiding resource contention

June 2014?, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 117 / 170

Hybrid Parallel Programming

likwid-pin

• Binds process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify “skip mask” (i.e., supports many different compiler/MPI

combinations)

• Replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted set of

cores

• Supports logical core numbering inside node, socket, core

• Usage examples:

– env OMP_NUM_THREADS=6 likwid-pin -c 0,2,4-6 ./myApp parameters

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

05/25/10, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 118 / 170

Hybrid Parallel Programming

Likwid-pin
Example: Intel OpenMP

• Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

June 2013, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 119 / 170

Hybrid Parallel Programming OpenMP

OMP_PLACES and Thread Affinity (see OpenMP-4.0 page 7 lines 29-32, p. 241-243)

A place consists of one or more processors.

Pinning on the level of places.

Free migration of the threads on a place between the processors of that place.

• setenv OMP_PLACES threads

 Each place corresponds to the single processor of a single hardware thread (hyper-thread)

• setenv OMP_PLACES cores

 Each place corresponds to the processors (one or more hardware threads) of a single core

• setenv OMP_PLACES sockets

 Each place corresponds to the processors of a single socket (consisting of all hardware

threads of one or more cores)

• setenv OMP_PLACES abstact_name(num_places)

 In general, the number of places may be explicitly defined

• Or with explicit numbering, e.g. 8 places, each consisting of 4 processors:

– setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"

– setenv OMP_PLACES "{0:4},{4:4},{8:4}, … {28:4}"

– setenv OMP_PLACES "{0:4}:8:4"

abstract_name

processor is the smallest

unit to run a thread or task

<lower-bound>:<number of entries>[:<stride>]

CAUTION:

The numbers highly depend on hardware

and operating system, e.g.,

{0,1} = hyper-threads of 1st core of 1st socket, or

{0,1} = 1st hyper-thread of 1st core

of 1st and 2nd socket, or … July 2013, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 120 / 170

Hybrid Parallel Programming OpenMP

OpenMP places and proc_bind (see OpenMP-4.0 pages 49f, 239, 241-243)

setenv OMP_PLACES "{0},{1},{2}, … {29},{30},{31}" or

setenv OMP_PLACES threads (example with P=32 places)

• sentenv OMP_NUM_THREADS "8,2,2"

sentenv OMP_PROC_BIND "spread,spread,close"

• Master thread encounters nested parallel regions:
 #pragma omp parallel  uses: num_threads(8) proc_bind(spread)

 #pragma omp parallel  uses: num_threads(2) proc_bind(spread)

 #pragma omp parallel  uses: num_threads(2) proc_bind(close)

spread: Sparse distribution of the 8 threads among the 32 places; partitioned place lists.

close: New threads as close as possible to the parent’s place; same place lists.

master: All new threads at the same place as the parent.

After first #pragma omp parallel:

8 threads in a team, each on a partitioned place list with 32/8=4 places

 outside of first parallel region: master thread has a place list with all 32 places

Only one place is used

July 2013, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 121 / 170

Hybrid Parallel Programming OpenMP

Goals behind OMP_PLACES and proc_bind

Example: 4 sockets x 6 cores x 2 hyper-threads = 48 processors

Vendor’s numbering: round robin over the sockets, over cores, and hyperthreads

 0 4 8 12 16 20 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19 23

 24 28 32 36 40 44 25 29 33 37 41 45 26 30 34 38 42 46 27 31 35 39 43 47

setenv OMP_PLACES threads (= {0},{24},{4},{28},{8},{32},{12},{36},{16},{40},{20},{44},{1},{25}, … , {23},{47})

  OpenMP threads/tasks are pinned to hardware hyper-threads

setenv OMP_PLACES cores (= {0,24}, {4,28}, {8,32}, {12,36}, {16,40}, {20,44}, {1,25}, … , {23,47})

  OpenMP threads/tasks are pinned to hardware cores
 and can migrate between hyper-threads of the core

setenv OMP_PLACES sockets (= {0, 24, 4, 28, 8, 32, 12, 36, 16, 40, 20, 44}, {1,25,…}, {…} , {…,23,47})

  OpenMP threads/tasks are pinned to hardware sockets
 and can migrate between cores & hyper-threads of the socket

Examples should be independent of vendor’s numbering & chosen pinning!

• Without nested parallel regions:
 #pragma omp parallel num_threads(4*6) proc_bind(spread)  one thread per core

• With nested regions:
 #pragma omp parallel num_threads(4) proc_bind(spread)  one thread per socket
 #pragma omp parallel num_threads(6) proc_bind(spread)  one thread per core
 #pragma omp parallel num_threads(2) proc_bind(close)  one thread per hyper-thread

July 2013, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 122 / 170

Hybrid Parallel Programming

Topology (“mapping”) with MPI+OpenMP:
Lots of choices – solutions are highly system specific!

One MPI process per

node

One MPI process per

socket

OpenMP threads

pinned “round robin”

across cores

in node

Two MPI processes

per socket

09/2010, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 123 / 170

Hybrid Parallel Programming

MPI/OpenMP ccNUMA and topology: Take-home messages

• Learn how to take control of hybrid execution!

– Almost all performance features depend on topology and thread

placement!

• Be aware of intranode MPI behavior

• Always observe the topology dependence of

– Intranode MPI

– OpenMP overheads

– Saturation effects / scalability behavior with bandwidth-bound

code

• Enforce proper thread/process to core binding, using appropriate

tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct

page placement: Observe first touch policy!

05/25/10, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 124 / 170

Hybrid Parallel Programming

Programming models

- MPI + OpenMP

Overlapping Communication and

Computation

Rabenseifner, Hager, Jost Slide 125 / 170

Hybrid Parallel Programming

Parallel Programming Models on Hybrid Platforms

No overlap of

Comm. + Comp.
MPI only outside of

parallel regions

of the numerical

application code

Overlapping

Comm. + Comp.
MPI communication by

one or a few threads

while other threads are

computing

pure MPI
one MPI

process

on each core

hybrid MPI+OpenMP
MPI: inter-node

communication

OpenMP: inside of each

SMP node

OpenMP only

distributed virtual

shared memory

2004-2006, Author:

Rolf Rabenseifner

Masteronly
MPI only outside

of parallel regions

Hybrid MPI+MPI
MPI for inter-node

communication

+ MPI-3.0 shared memory

programming

Within shared

memory nodes:

Halo updates

through direct

data copy

Within shared

memory nodes:

No halo updates,

direct access to

neighbor data

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &

Reserved
reserved thread

for communication

Funneled
with

Full Load

Balancing

Rabenseifner, Hager, Jost Slide 126 / 170

Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….

 i.e., communicate all halo data

} else {

Execute those parts of the application

 that do not need halo data

 (on non-communicating threads)

}

Execute those parts of the application

 that need halo data

 (on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

08/09/06, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 127 / 170

Hybrid Parallel Programming

Overlapping communication and computation

Three problems:

• the application problem:

– one must separate application into:

• code that can run before the halo data is received

• code that needs halo data

very hard to do !!!

• the thread-rank problem:

– comm. / comp. via
thread-rank

– cannot use
work-sharing directives

loss of major
OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

 ….

}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

2004-2006, Author:

Rolf Rabenseifner

unrz55 21.06.2014

muss das bei der

Berechnung von

my_low nicht "-1"

heissen?

JA, Du hast recht.

Bei low und high!

Rabenseifner, Hager, Jost Slide 128 / 170

Hybrid Parallel Programming

Overlapping communication and computation

Subteams

• Proposal

for OpenMP 3.x

or OpenMP 4.x

or OpenMP 5.x

#pragma omp parallel

{

#pragma omp single onthreads(0)

 {

 MPI_Send/Recv….

 }

#pragma omp for onthreads(1 : omp_get_numthreads()-1)

 for (……..)

 { /* work without halo information */

 } /* barrier at the end is only inside of the subteam */

 …

#pragma omp barrier

#pragma omp for

 for (……..)

 { /* work based on halo information */

 }

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

09/06/2006, Author:

Rolf Rabenseifner

Barbara Chapman et al.:

Toward Enhancing OpenMP’s

Work-Sharing Directives.

In proceedings, W.E. Nagel et

al. (Eds.): Euro-Par 2006,

LNCS 4128, pp. 645-654,

2006.

Not yet part of
the OpenMP

standard

Workarounds today:

• nested parallelism: one thread MPI + one for computation  nested (n-1) threads

• Loop with guided/dynamic schedule and first iteration invokes communication

GHa14

Rabenseifner, Hager, Jost Slide 129 / 170

Hybrid Parallel Programming

Example: sparse matrix-vector multiply (spMVM)

• spMVM on Intel

Westmere cluster

(6 cores/socket)

• “task mode” == explicit

communication overlap

using ded. thread

• “vector mode” ==

MASTERONLY

• “naïve overlap” ==

non-blocking MPI

• Memory bandwidth

is already saturated

by 5 cores

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with explicit

communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-358

(2011). DOI: 10.1142/S0129626411000254

50% efficiency

w/ respect to

best 1-node

performance

2011, Author:

Georg Hager

G
fl
o
p

/s

http://dx.doi.org/10.1142/S0129626411000254

Rabenseifner, Hager, Jost Slide 130 / 170

Hybrid Parallel Programming

Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism

form hybrid computation.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:

Application Acceleration on Current and Future Cray Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Rabenseifner, Hager, Jost Slide 131 / 170

Hybrid Parallel Programming

Case study: Communication and Computation in

Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after

sending) can be overlapped with data independent MPI

communication using OpenMP tasks.

IN
D

E
P

E
N

D
E

N
T

IN
D

E
P

E
N

D
E

N
T

S
E

M
I-IN

D
E

P
E

N
D

E
N

T

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL

Rabenseifner, Hager, Jost Slide 132 / 170

Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates

work for the thread team for deferred execution. MPI Allreduce call is immediately

executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED

• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL

Rabenseifner, Hager, Jost Slide 133 / 170

Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining

particles (above) and adding sent

particles into array (right) & sending

or receiving of shifted particles can

be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Rabenseifner, Hager, Jost Slide 134 / 170

Hybrid Parallel Programming

OpenMP tasking version outperforms original shifter,

especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-

cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator

(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands

CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of

Alice Koniges, NERSC, LBNL

Rabenseifner, Hager, Jost Slide 135 / 170

Hybrid Parallel Programming

MPI+OpenMP: Main advantages

Masteronly style (i.e., MPI outside of parallel regions)

• Increase parallelism

– Scaling to higher number of cores

– Adding OpenMP with incremental additional parallelization

• Lower memory requirements due to smaller number of MPI processes

– Reduced amount of application halos & replicated data

– Reduced size of MPI internal buffer space

– Very important on systems with many cores per node

• Lower communication overhead (possibly)

– Few multithreaded MPI processes vs many single-threaded processes

– Fewer number of calls and smaller amount of data communicated

– Topology problems from pure MPI are solved

(was application topology versus multilevel hardware topology)

• Provide for flexible load-balancing on coarse and fine levels

– Smaller #of MPI processes leave room for assigning workload more evenly

– MPI processes with higher workload could employ more threads

Additional advantages when overlapping communication and computation:

– No sleeping threads

Rab 2014

With text from

Gabriele Jost

Rabenseifner, Hager, Jost Slide 136 / 170

Hybrid Parallel Programming

MPI+OpenMP: Main disadvantages & challenges

Masteronly style (i.e., MPI outside of parallel regions)

• Non-Uniform Memory Access:

– Not all memory access is equal: ccNUMA locality effects

– Penalties for access across NUMA domain boundaries

– First touch is needed for more than one ccNUMA node per MPI process

– Alternative solution:

One MPI process on each ccNUMA domain (i.e., chip)

• Multicore / multisocket anisotropy effects

– Bandwidth bottlenecks, shared caches

– Intra-node MPI performance

• Core ↔ core vs. socket ↔ socket

• OpenMP loop overhead

• Amdahl’s law on both, MPI and OpenMP level

• Thread and process pinning

• Other disadvantages through OpenMP

Additional disadvantages when overlapping communication and computation:

• High programming overhead

• OpenMP is not prepared for this programming style

Rab 2014

With text from

Gabriele Jost

Rabenseifner, Hager, Jost Slide 137 / 170

Hybrid Parallel Programming

MPI+OpenMP: Conclusions

Work-horse on large systems:

• Increase parallelism with MPI+OpenMP

• Lower memory requirements due to smaller number of MPI processes

• Lower communication overhead

• More flexible load balancing

• Challenges due to ccNUMA

– May be solved by using multi-threading

only within ccNUMA domains

– Pinning

• Overlapping communication & computation

– Benefit calculation: compute time versus programming time

Rab 2014

Rabenseifner, Hager, Jost Slide 138 / 170

Hybrid Parallel Programming

Programming

models

- MPI + Accelerator
Courtesy of Gabriele Jost

Rabenseifner, Hager, Jost Slide 139 / 170

Hybrid Parallel Programming

OpenMP 4.0 Support for Co-Processors

09/2011, Author:

Gabriele Jost

• New concepts:

- Device: An implementation defined logical execution engine; local storage
which could be shared with other devices; device could have one or more
processors

• Extension to the previous Memory Model:

- Previous: Relaxed-Consistency Shared-Memory

- Added in 4.0 :

• Device with local storage

• Data movement can be explicitly indicated by compiler directives

• League: Set of thread teams created by a “teams” construct

• Contention group: threads within a team; OpenMP synchronization
restricted to contention groups.

• Extension to the previous Execution Model

- Previous: Fork-join of OpenMP threads

- Added in 4.0:

• Host device offloads a region for execution on a target device

• Host device waits for completion of execution on the target device

Rabenseifner, Hager, Jost Slide 140 / 170

Hybrid Parallel Programming

OpenMP Accelerator Additions

09/2011, Author:

Gabriele Jost

09/26/07, Author:

Gabriele Jost

Target data

Place objects on the device

Target

Move execution to a device

Target update

Update objects on the device or host

Declare target

Place objects on the device, eg common

blocks

Place subroutines/functions on the

device

Teams

Start multiple contention groups

Distribute

Similar to the OpenACC loop construct,

binds to teams construct

OpenMP 4.0 Specification:

http://openmp.org/wp/openmp-specifications/

• The “target data” construct:

₋ When a target data construct is encountered, a
new device data environment is created, and the
encountering task executes the target data
region

pragma omp target data [device, map, if]

• The “target” construct:

₋ Creates device data environment and specifies
that the region is executed by a device. The
encountering task waits for the device to
complete the target region at the end of the
construct

 pragma omp target [device, map, if]

₋ The “teams” construct:

₋ Creates a league of thread teams. The master
thread of each team executes the teams region

pragma omp teams [num_teams, num_threads,
…]

₋ The ”distribute” construct:

₋ Specifies that the iterations of one or more loops
will be executed by the thread teams. The
iterations of the loop are distributed across the
master threads of all teams

pragma omp distribute [collapse, dist_schedule,
….]

Rabenseifner, Hager, Jost Slide 141 / 170

Hybrid Parallel Programming

OpenMP 4.0 Simple Example

09/2011, Author:

Gabriele Jost

 void smooth(float* restrict a, float* restrict b,
 float w0, float w1, float w2, int n, int m, int niters)

{

 int i, j, iter;

 float* tmp;

 #pragma omp target mapto(b[0:n*m]) map(a[0:n*m])

 #pragma omp team num_teams(8) num_maxthreads(5)

 for(iter = 1; iter < niters; ++iter){

 #pragma omp distribute dist_schedule(static) // chunk across teams

 for(i = 1; i < n-1; ++i)

 #pragma omp parallel for // chunk across threads

 for(j = 1; j < m-1; ++j)

 a[i*m+j] = w0 * b[i*m+j] +

 w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +

 b[i*m+j+1]) +

 w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +

 b[(i+1)*m+j+1]);

 tmp = a; a = b; b = tmp;

 } }

In main:

#pragma omp target data map(b[0:n*m],a[0:n*m])

{

smooth(a, b, w0, w1, w2, n, m, iters);

}

Rabenseifner, Hager, Jost Slide 142 / 170

Hybrid Parallel Programming

OpenMP 4.0 Team and Distribute Construct

09/2011, Author:

Gabriele Jost

#pragma omp target device(acc)

#pragma omp team num_teams(8) num_maxthreads(5)

{

Stmt1;

#pragma omp distribute // chunk across thread blocks

for (i=0; i<N; i++)

#pragma omp parallel for // chunk across threads

for (j=0; j<M; j++)

{

Threads cannot

synchronize
Threads can

synchronize

only executed by master thread of each team

Rabenseifner, Hager, Jost Slide 143 / 170

Hybrid Parallel Programming

NAS Parallel Benchmark SP

09/2011, Author:

Gabriele Jost

subroutine z_solve

….

 include 'header.h’ <--- !$omp declare target (/fields/)

!$omp declare target (lhsinit)

 …

!$omp target update to (rhs)

…..

!$omp target

!$omp parallel do default(shared) private(i,j,k,k1,k2,m,…)

 do j = 1, ny2

 call lhsinit(lhs, ….)

 do i = 1, nx

 …

 do k = 0, nz2 + 1

 rtmp(1,k) = rhs(1,i,j,k)

 …. ….

 do k = 0, nz2 + 1rhs(1,i,j,k) = rtmp(1,k)+ ….

 ….

!$omp end target

!$omp target update from (rhs)

David Barker 08.06.2014

New slide: sample code from NPB SP

Rabenseifner, Hager, Jost Slide 144 / 170

Hybrid Parallel Programming

What is OpenACC?

09/2011, Author:

Gabriele Jost

• API that supports off-loading of loops and regions of code (e.g. loops) from a

host CPU to an attached accelerator in C, C++, and Fortran

• Managed by a nonprofit corporation formed by a group of companies:

– CAPS Enterprise, Cray Inc., PGI and NVIDIA

• Set of compiler directives, runtime routines and environment variables

• Simple programming model for using accelerators (focus on GPGPUs)

• Memory model:

– Host CPU + Device may have completely separate memory; Data

movement between host and device performed by host via runtime calls;

Memory on device may not support memory coherence between

execution units or need to be supported by explicit barrier

• Execution model:

― Compute intensive code regions offloaded to the device, executed as

kernels ; Host orchestrates data movement, initiates computation, waits

for completion; Support for multiple levels of parallelism, including SIMD

(gangs, workers, vector)

― Example constructs: acc parallel loop, acc data

Rabenseifner, Hager, Jost Slide 145 / 170

Hybrid Parallel Programming

OpenACC Simple Example

09/2011, Author:

Gabriele Jost

 void smooth(float* restrict a, float* restrict b,
 float w0, float w1, float w2, int n, int m, int niters)

{

 int i, j, iter;

 float* tmp;

 for(iter = 1; iter < niters; ++iter){

 #pragma acc parallel loop gang(16) worker(8)// chunk across gangs and workers

 for(i = 1; i < n-1; ++i)

 #pragma acc vector (32) // execute in SIMD mode

 for(j = 1; j < m-1; ++j)

 a[i*m+j] = w0 * b[i*m+j] +

 w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +

 b[i*m+j+1]) +

 w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +

 b[(i+1)*m+j+1]);

 tmp = a; a = b; b = tmp;

 } }

In main:

#pragma acc data copy (b[0:n*m],a[0:n*m])

{

smooth(a, b, w0, w1, w2, n, m, iters);

}

CAPS HMPPWorkbench compiler:

 acc_test.c:11: Loop 'j' was vectorized(32)

acc_test.c:9: Loop 'i' was shared among

gangs(16) and workers(8)

Rabenseifner, Hager, Jost Slide 146 / 170

Hybrid Parallel Programming

 Mantevo miniGhost on Cray XK7

09/2011, Author:

Gabriele Jost

!$acc data present (GRID)

! Back boundary

IF (NEIGHBORS(BACK) /= -1) THEN

 TIME_START_DIR = MG_TIMER ()

!$acc data present (SEND_BUFFER_BACK)

!$acc parallel loop

 DO J = 0, NY+1

 DO I = 0, NX+1

 SEND_BUFFER_BACK(COUNT_SEND_BACK + J*(NX+2) + I + 1) = &

 GRID (I, J, 1)

 END DO

 END DO

!$acc end data

#endif

...

• Mantevo 1.0.1 miniGhost 1.0

-Finite-Difference Proxy

Application

-27 PT Stencil + Boundary

Exchange of Ghost Cells

-Implemented in Fortran;

-MPI+OenMP and

MPI+OpenACC

-http://www.mantevo.org

• Test System:

-Located at HLRS Stuttgart,

• Test Case:Problem size

384x796x384, 10 variables, 20

time steps

• Compilation:

•pgf90 13.4-0 -O3 -fast –fastsse

–m -acc

CALL MPI_WAITANY (MAX_NUM_SENDS + MAX_NUM_RECVS, MSG_REQS, ...)

....

!$acc data present (RECV_BUFFER_BACK)

!$acc update device (RECV_BUFFER_BACK)

!$acc end data$acc data present (GRID)

Packing of boundary data

Unpacking of boundary data

http://www.mantevo.org

Rabenseifner, Hager, Jost Slide 147 / 170

Hybrid Parallel Programming

Mantevo miniGhost: 27-PT Stencil

09/2011, Author:

Gabriele Jost

#if defined _MOG_OMP
!$OMP PARALLEL DO PRIVATE(SLICE_BACK, SLICE_MINE, SLICE_FRONT)

#else

!$acc data present (WORK)

!$acc parallel

!$acc loop

#endif

 DO K = 1, NZ

 DO J = 1, NY

 DO I = 1, NX

 SLICE_BACK = GRID(I-1,J-1,K-1) + GRID(I-1,J,K-1) + GRID(I-1,J+1,K-1) + &

 GRID(I ,J-1,K-1) + GRID(I ,J,K-1) + GRID(I ,J+1,K-1) + &

 GRID(I+1,J-1,K-1) + GRID(I+1,J,K-1) + GRID(I+1,J+1,K-1)

 SLICE_MINE = GRID(I-1,J-1,K) + GRID(I-1,J,K) + GRID(I-1,J+1,K) + &

 GRID(I ,J-1,K) + GRID(I ,J,K) + GRID(I ,J+1,K) + &

 GRID(I+1,J-1,K) + GRID(I+1,J,K) + GRID(I+1,J+1,K)

 SLICE_FRONT = GRID(I-1,J-1,K+1) + GRID(I-1,J,K+1) + GRID(I-1,J+1,K+1) + &

 GRID(I ,J-1,K+1) + GRID(I ,J,K+1) + GRID(I ,J+1,K+1) + &

 GRID(I+1,J-1,K+1) + GRID(I+1,J,K+1) + GRID(I+1,J+1,K+1)

 WORK(I,J,K) = (SLICE_BACK + SLICE_MINE + SLICE_FRONT) / 27.0

 END DO

 END DO

 END DO

David Barker 08.06.2014

Inserted code for Stencil

Rabenseifner, Hager, Jost Slide 148 / 170

Hybrid Parallel Programming

Cray XK7 Hermit

09/26/07, Author:

Gabriele Jost

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 1

Cores per socket: 16

Threads per core: 1

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores

• Two AMD 6276 Interlagos processors with 16 cores each, running at 2.3 GHz (TurboCore
3.3GHz) per node

• Around 1 Pflop theoretical peak performance

• 32 GB of main memory available per node

• 32-way shared memory system

• High-bandwidth interconnect using Cray Gemini communication chips

https://wickie.hlrs.de/platforms/index.php/Cray_XE6

Rabenseifner, Hager, Jost Slide 149 / 170

Hybrid Parallel Programming

Scalability of miniGhost on Cray XK7

09/2011, Author:

Gabriele Jost

Total Time(sec) Comm. Time (sec)

OpenMP (16x1t) 12.1 0.4

OpenMP (16x16t) 1.9 0.16

OpenACC (16x16t) 1.17 0.34

Pure MPI (256 Ranks) 1.5 0.28

Elapsed time as reported

by the application

Communication includes

packing/unpacking

0

1000

2000

3000

4000

5000

6000

16 32 64 128 256 (2x4x2)256 (1x8x2)

T
o

ta
l
G

F
L

O
P

S

Cores

OpenMP (1 MPI per node, 1 thread)

OpenMP (1 MPI per node, 16 threads)

OpenACC (1 MPI per node, 1 thread)

pure MPI (16 MPI per node)

Rabenseifner, Hager, Jost Slide 150 / 170

Hybrid Parallel Programming

Profiling Information: export PGI_ACC_TIME=1

09/2011, Author:

Gabriele Jost

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_UNPACK_BSPMA.F

 mg_unpack_bspma NVIDIA devicenum=0

 time(us): 36,951

 124: data copyin reached 20 times

 device time(us): total=8,603 max=431 min=429 avg=430

 ….

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

 mg_stencil_3d27pt NVIDIA devicenum=0

 time(us): 1,063,875

 330: kernel launched 200 times

 grid: [160] block: [256]

 device time(us): total=1,063,875 max=5,337 min=5,302 avg=5,319

 elapsed time(us): total=1,073,817 max=5,444 min=5,349 avg=5,369

 …

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_SEND_BSPMA.F

 mg_send_bspma NVIDIA devicenum=0

 time(us): 33,150

 94: data copyout reached 20 times

 device time(us): total=7,800 max=392 min=389 avg=390

 …

device time(us): total=12,618 max=633 min=630 avg=630

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

 mg_pack NVIDIA devicenum=0

 time(us): 9,615

 91: kernel launched 200 times

 grid: [98] block: [256]

 device time(us): total=2,957 max=68 min=13 avg=14

 elapsed time(us): total=11,634 max=107 min=51 avg=58

TODO:

Diese Folie 151

hat ein „Skipped“

aber war nicht

ausgeblendet.

[rab] Was

möchtest Du?

Ich habe sie

vorläufig

audgeblendet.

Rabenseifner, Hager, Jost Slide 151 / 170

Hybrid Parallel Programming

Profiling Information: export PGI_ACC_TIME=1

09/2011, Author:

Gabriele Jost

Accelerator Kernel Timing data

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

 mg_stencil_3d27pt NVIDIA devicenum=0

 time(us): 1,064,197

 330: kernel launched 200 times

 grid: [160] block: [256]

 device time(us): total=1,064,197 max=5,351 min=5,299 avg=5,320

 elapsed time(us): total=1,074,081 max=5,442 min=5,348 avg=5,370

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

 mg_pack NVIDIA devicenum=0

 time(us): 9,568

 91: kernel launched 200 times

 grid: [98] block: [256]

 device time(us): total=2,924 max=70 min=12 avg=14

 elapsed time(us): total=11,624 max=110 min=51 avg=58

 195: kernel launched 200 times

 grid: [162] block: [256]

 device time(us): total=3,432 max=120 min=15 avg=17

 elapsed time(us): total=11,385 max=160 min=53 avg=56

 221: kernel launched 200 times

 grid: [162] block: [256]

 device time(us): total=3,212 max=19 min=15 avg=16

 elapsed time(us): total

TODO:

Diese Folie 151

hat ein „Skipped“

aber war nicht

ausgeblendet.

[rab] Was

möchtest Du?

Ich habe sie

vorläufig

audgeblendet.

Rabenseifner, Hager, Jost Slide 152 / 170

Hybrid Parallel Programming

MPI+Accelerators: Main advantages

• Hybrid MPI/OpenMP and MPI/OpenACC can leverage
accelerators and yield performance increase over pure MPI
on multicore

• Compiler pragma based API provides relatively easy way to
use coprocessors

• OpenACC targeted toward GPU type coprocessors

• OpenMP 4.0 extensions provide flexibility to use a wide range
of heterogeneous coprocessors (GPU, APU, heterogeneous
many-core types)

Sep 2014, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 153 / 170

Hybrid Parallel Programming

MPI+Accelerators: Main challenges

• Considerable implementation effort for basic usage,
depending on complexity of the application

• Efficient usage of pragmas may require high
implementation effort and good understanding of
performance issues

• Not many compilers support accelerator pragmas (yet)

Sep 2014, Author:

Georg Hager

Rabenseifner, Hager, Jost Slide 154 / 170

Hybrid Parallel Programming

Tools
• Topology & Affinity

• Tools for debugging and profiling

MPI+OpenMP

Rabenseifner, Hager, Jost Slide 155 / 170

Hybrid Parallel Programming

Tools for Thread/Process Affinity (“Pinning”)

• Likwid tools  slides in section MPI+OpenMP

– likwid-topology prints SMP topology

– likwid-pin binds threads to cores / HW threads

• numactl

– Standard in Linux numatools, enables restricting movement of

thread team bot no individual thread pinning

• OpenMP 4.0 thread/core/socket binding

Rab

2014

Rabenseifner, Hager, Jost Slide 156 / 170

Hybrid Parallel Programming

Tools
• Topology & Affinity

• Tools for debugging and profiling

MPI+OpenMP

Rabenseifner, Hager, Jost Slide 157 / 170

Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 1/3

• Intel ThreadChecker operates in a similar fashion to helgrind,

• Compile with –tcheck, then run program using tcheck_cl:

Application finished

|ID|Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|

| |scriptio|ity |o|t[Best| |ess[Bes|ess[Bes|

| |n |Name |u|] | |t] |t] |

| | | |n| | | | |

| | | |t| | | | |

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

| |Write da| | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.|

| |ta-race | | |e.c":2|a prior memory write of |c":31 |c":31 |

| | | | |5 |global_variable at | | |

| | | | | |"pthread_race.c":31 (output | | |

| | | | | |dependence) | | |

08/31/08, Author:

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT

With new Intel Inspector XE 2011:

Command line interface must be

used within mpirun / mpiexec

Rabenseifner, Hager, Jost Slide 158 / 170

Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 2/3

• One may output to HTML:

 tcheck_cl --format HTML --report pthread_race.html pthread_race

08/31/08, Author:

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT

Rabenseifner, Hager, Jost Slide 159 / 170

Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 3/3

• Then run with:

 mpirun --mca tcp,sm,self -np 2 tcheck_cl \

 --reinstrument -u full --format html \

 --cache_dir '/tmp/my_username_$$__tc_cl_cache' \

 --report 'tc_mpi_test_suite_$$' \

 --options 'file=tc_my_executable_%H_%I, \

 pad=128, delay=2, stall=2' -- \

 ./my_executable my_arg1 my_arg2 …

08/31/08, Author:

Rainer Keller

configure --enable-mpi-threads

 --enable-debug

 --enable-mca-no-build=memory-ptmalloc2

 CC=icc F77=ifort FC=ifort

 CFLAGS=‘-debug all –inline-debug-info tcheck’

 CXXFLAGS=‘-debug all –inline-debug-info tcheck’

 FFLAGS=‘-debug all –tcheck’ LDFLAGS=‘tcheck’

• If one wants to compile with threaded Open MPI (option for IB):

Courtesy of Rainer Keller, HLRS, ORNL and FhT

Rabenseifner, Hager, Jost Slide 160 / 170

Hybrid Parallel Programming

Performance Tools Support for Hybrid Code

• Paraver examples have already

been shown, tracing is done with

linking against (closed-source)
omptrace or ompitrace

• For Vampir/Vampirtrace performance analysis:
./configure –enable-omp

 –enable-hyb

 –with-mpi-dir=/opt/OpenMPI/1.3-icc

CC=icc F77=ifort FC=ifort

(Attention: does not wrap MPI_Init_thread!)

08/31/08, Author:

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT

Rabenseifner, Hager, Jost Slide 161 / 170

Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”

Indication of

non-optimal load

balance

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Rabenseifner, Hager, Jost Slide 162 / 170

Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”, Solution

Better load balancing
with dynamic

loop schedule

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Rabenseifner, Hager, Jost Slide 163 / 170

Hybrid Parallel Programming

Conclusions

Rabenseifner, Hager, Jost Slide 164 / 170

Hybrid Parallel Programming

Major advantages of hybrid MPI+OpenMP

In principle, none of the programming models perfectly fits to

clusters of SMP nodes

Major advantages of MPI+OpenMP:

• Only one level of sub-domain “surface-optimization”:

– SMP nodes, or

– Sockets

• Second level of parallelization

– Application may scale to more cores

• Smaller number of MPI processes implies:

– Reduced size of MPI internal buffer space

– Reduced space for replicated user-data

Most

important

arguments on

many-core

systems,

e.g., Intel Phi

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 165 / 170

Hybrid Parallel Programming

Major advantages of hybrid MPI+OpenMP, continued

• Reduced communication overhead

– No intra-node communication

– Longer messages between nodes and fewer parallel links may

imply better bandwidth

• “Cheap” load-balancing methods on OpenMP level

– Application developer can split the load-balancing issues between

course-grained MPI and fine-grained OpenMP

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 166 / 170

Hybrid Parallel Programming

Disadvantages of MPI+OpenMP

• Using OpenMP

 may prohibit compiler optimization

 may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g., with the MASTERONLY scheme:

• One thread produces data

• Master thread sends the data with MPI

 data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries?  Are they prepared for hybrid?

• Using thread-local application libraries?  Are they thread-safe?

See, e.g., the necessary –O4 flag with

mpxlf_r on IBM Power6 systems

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 167 / 170

Hybrid Parallel Programming

MPI+OpenMP versus MPI+MPI-3.0 shared mem.

MPI+3.0 shared memory

• Pro: Thread-safety is not needed for libraries.

• Con: No work-sharing support as with OpenMP directives.

• Pro: Replicated data can be reduced to one copy per node:

 May be helpful to save memory,

 if pure MPI scales in time, but not in memory.

• Substituting intra-node communication by shared memory loads or stores

has only limited benefit (and only on some systems),

especially if the communication time is dominated by inter-node

communication

• Con: No reduction of MPI ranks

  no reduction of MPI internal buffer space

• Con: Virtual addresses of a shared memory window

 may be different in each MPI process

  no binary pointers

  i.e., linked lists must be stored with offsets rather than pointers

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 168 / 170

Hybrid Parallel Programming

Lessons for pure MPI

and ccNUMA-aware hybrid MPI+OpenMP

• MPI processes on an SMP node should form a cube

and not a long chain

– Reduces inter-node communication volume

• For structured or Cartesian grids:

– Adequate renumbering of MPI ranks and process coordinates

• For unstructured grids:

– Two levels of domain decomposition
• First fine-grained on the core-level

• Recombining cores to SMP-nodes

June 2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 169 / 170

Hybrid Parallel Programming

Acknowledgements

• We want to thank

– Gabriele Jost, Supersmith, Maximum Performance Software, USA
• Co-author of several slides and previous tutorials

– Gerhard Wellein, RRZE

– Alice Koniges, NERSC, LBNL

– Rainer Keller, HLRS and ORNL

– Jim Cownie, Intel

– SCALASCA/KOJAK project at JSC, Research Center Jülich

– HPCMO Program and the Engineer Research and Development

Center Major Shared Resource Center, Vicksburg, MS

– Steffen Weise, TU Freiberg

– Vincent C. Betro et al., NICS – access to beacon with Intel Xeon Phi

2004-2014, Author:

Rolf Rabenseifner

Rab 2014:

HPCMO Link

(http://www.erdc.h

pc.mil/index)

was broken.

Removed.

http://www.erdc.hpc.mil/index
http://www.erdc.hpc.mil/index
http://www.erdc.hpc.mil/index

Rabenseifner, Hager, Jost Slide 170 / 170

Hybrid Parallel Programming

Conclusions

• Future hardware will be more complicated
– Heterogeneous  GPU, FPGA, …

– ccNUMA quality may be lost on cluster nodes

– ….

• High-end programming  more complex  many pitfalls

• Medium number of cores  more simple

(if #cores / SMP-node will not shrink)

• MPI + OpenMP  work horse on large systems

– Major pros: reduced memory needs and second level of parallelism

• MPI + MPI-3  only for special cases and medium rank number

• Pure MPI  still on smaller cluster

• OpenMP only  on large ccNUMA nodes

Thank you for your interest

Q & A
Please fill out the feedback sheet – Thank you

20xx-2014, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 171 / 170

Hybrid Parallel Programming

Appendix

• Abstract

• Authors

• References (with direct relation to the content of this tutorial)

• Further references

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 172 / 170

Hybrid Parallel Programming

Abstract

Half-Day Tutorial (Level: 25% Introductory, 50% Intermediate, 25% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

 Georg Hager, University of Erlangen-Nuremberg, Germany

Abstract. Most HPC systems are clusters of shared memory nodes. Such SMP nodes can be small

multi-core CPUs up to large many-core CPUs. Parallel programming may combine the distributed

memory parallelization on the node interconnect (e.g., with MPI) with the shared memory

parallelization inside of each node (e.g., with OpenMP or MPI-3.0 shared memory).

This tutorial analyzes the strengths and weaknesses of several parallel programming models on

clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given

special consideration. MPI-3.0 introduced a new shared memory programming interface, which can

be combined with inter-node MPI communication. It can be used for direct neighbor accesses similar

to OpenMP or for direct halo copies, and enables new hybrid programming models. These models

are compared with various hybrid MPI+OpenMP approaches and pure MPI. This tutorial also

includes a discussion on OpenMP support for accelerators. Benchmark results are presented for

modern platforms such as Intel Xeon Phi and Cray XC30. Numerous case studies and micro-

benchmarks demonstrate the performance-related aspects of hybrid programming. The various

programming schemes and their technical and performance implications are compared. Tools for

hybrid programming such as thread/process placement support and performance analysis are

presented in a "how-to" section.

Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2014-hybrid.html

08/11/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 173 / 170

Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of

Stuttgart. Since 1984, he has worked at the High-Performance Computing-

Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure

call tool, and MPI-GLUE, the first metacomputing MPI combining different

vendor's MPIs without loosing the full MPI interface. In his dissertation, he

developed a controlled logical clock as global time for trace-based profiling of

parallel and distributed applications. Since 1996, he has been a member of

the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the

MPI-3 Forum. From January to April 1999, he was an invited researcher at the

Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application Services

at HLRS. He is involved in MPI profiling and benchmarking, e.g., in the HPC

Challenge Benchmark Suite. In recent projects, he studied parallel I/O,

parallel programming models for clusters of SMP nodes, and optimization of

MPI collective routines. In workshops and summer schools, he teaches

parallel programming models in many universities and labs in Germany, and

in Jan. 2012, he was appointed as GCS' PATC director.

08/11/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 174 / 170

Hybrid Parallel Programming

Georg Hager

Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance

systems since 1995, and is now a senior research scientist in the HPC

group at Erlangen Regional Computing Center (RRZE). His daily work

encompasses all aspects of HPC user support and training, assessment

of novel system and processor architectures, and supervision of student

projects and theses. Recent research includes architecture-specific

optimization for current microprocessors, performance modeling on

processor and system levels, and the efficient use of hybrid parallel

systems. His textbook “Introduction to High Performance Computing for

Scientists and Engineers” is recommended reading for many HPC-related

courses and lectures worldwide. A full list of publications, talks, and other

things he is interested in can be found in his blog:

http://blogs.fau.de/hager.

08/11/06, Author:

Georg Hager

http://blogs.fau.de/hager

Rabenseifner, Hager, Jost Slide 175 / 170

Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:

http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,

NAS Parallel Benchmarks, Multi-Zone Versions,

NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,

Performance Characteristics of the multi-zone NAS Parallel Benchmarks,

Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,

Comparing OpenMP, MPI, and Hybrid Programming,

Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,

Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,

Proc. Of IPDPS 2004

08/02/06, Author:

Gabriele Jost

Rabenseifner, Hager, Jost Slide 176 / 170

Hybrid Parallel Programming

References

• Rolf Rabenseifner,

Hybrid Parallel Programming on HPC Platforms.

In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,

Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,

Comparison of Parallel Programming Models on Clusters of SMP Nodes.

In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,

May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,

Comparison of Parallel Programming Models on Clusters of SMP Nodes.

In Modelling, Simulation and Optimization of Complex Processes (Proceedings of

the International Conference on High Performance Scientific Computing,

March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;

Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,

Communication and Optimization Aspects of Parallel Programming Models

on Hybrid Architectures.

In the International Journal of High Performance Computing Applications,

Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

08/10/2006, Author:

Rolf Rabenseifner

http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-10045-22-34353197-0,00.html

Rabenseifner, Hager, Jost Slide 177 / 170

Hybrid Parallel Programming

References

• Rolf Rabenseifner,

Communication and Optimization Aspects on Hybrid Architectures.

In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.

Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI

Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,

2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,

Communication and Optimization Aspects of Parallel Programming Models on

Hybrid Architectures.

In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),

Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,

Communication Bandwidth of Parallel Programming Models on Hybrid

Architectures.

Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences

and Implementations, part of ISHPC-IV, International Symposium on High

Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS 2327,

pp 401-412.

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 178 / 170

Hybrid Parallel Programming

References

• Georg Hager and Gerhard Wellein:

Introduction to High Performance Computing for Scientists and Engineers.

CRC Press, ISBN 978-1439811924.

• Barbara Chapman et al.:

Toward Enhancing OpenMP’s Work-Sharing Directives.

In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:

Using OpenMP.

The MIT Press, 2008.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing

Lusk, Rajeev Thakur and Jesper Larsson Traeff:

MPI on a Million Processors.

EuroPVM/MPI 2009, Springer.

• Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

• H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of

Different Programming Models Upon Performance and Memory Usage on Cray XT5

Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 179 / 170

Hybrid Parallel Programming

References

• J. Treibig, G. Hager and G. Wellein:

LIKWID: A lightweight performance-oriented tool suite for x86 multicore

environments.

Proc. of PSTI2010, the First International Workshop on Parallel Software Tools and Tool

Infrastructures, San Diego CA, September 13, 2010.

Preprint: http://arxiv.org/abs/1004.4431

• H. Stengel:

Parallel programming on hybrid hardware: Models and applications.

Master’s thesis, Ohm University of Applied Sciences/RRZE, Nuremberg, 2010.

http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

• Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett,

Ron Brightwell, William Gropp, Vivek Kale, Rajeev Thakur:

MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared

memory.

http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 180 / 170

Hybrid Parallel Programming

Further references

• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,

Hierarchical MPI+OpenMP implementation of parallel PIC applications on

clusters of Symmetric MultiProcessors,

10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,

29 Sep - 2 Oct, 2003

• Barbara Chapman,

Parallel Application Development with the Hybrid MPI+OpenMP Programming

Model,

Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University

Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,

Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,

11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,

Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,

Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop

Algorithms onto Clusters of SMPs,

10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,

29 Sep - 2 Oct, 2003

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 181 / 170

Hybrid Parallel Programming

Further references

• Holger Brunst and Bernd Mohr,

Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP

Applications with VampirNG

Proceedings for IWOMP 2005, Eugene, OR, June 2005.

• Felix Wolf and Bernd Mohr,

Automatic performance analysis of hybrid MPI/OpenMP applications

Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed

and network-based processing", Volume 49, Issues 10-11, Pages 421-439,

November 2003.

• Felix Wolf and Bernd Mohr,

Automatic Performance Analysis of Hybrid MPI/OpenMP Applications

short version: Proceedings of the 11-th Euromicro Conference on Parallel,

Distributed and Network based Processing (PDP 2003), Genoa, Italy, February

2003.

long version: Technical Report FZJ-ZAM-IB-2001-05.

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 182 / 170

Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,

MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,

in Proc. Supercomputing'00, Dallas, TX, 2000.

http://www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,

Extending OpenMP for NUMA Architectures,

in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.

• D. S. Henty,

Performance of hybrid message-passing and shared-memory parallelism for

discrete element modeling,

in Proc. Supercomputing'00, Dallas, TX, 2000.

http://www.sc2000.org/techpapr/papers/pap.pap154.pdf

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 183 / 170

Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,

Experiences using OpenMP based on Compiler Directed Software DSM on a PC

Cluster,

in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region

Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.

• John Merlin,

Distributed OpenMP: Extensions to OpenMP for SMP Clusters,

in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,

Design of OpenMP Compiler for an SMP Cluster,

in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,

Sweden, Sep. 1999, pp 32-39.

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,

Transparent Adaptive Parallelism on NOWs using OpenMP,

in proceedings of the Seventh Conference on Principles and Practice of Parallel

Programming (PPoPP '99), May 1999, pp 96-106.

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 184 / 170

Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,

Shared Virtual Memory: A Survey,

Technical report No. 980005, Center for High Performance Computing,

Institute of Computing Technology, Chinese Academy of Sciences, 1998,

www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,

Development of Mixed Mode MPI / OpenMP Applications,

in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),

San Diego, July 2000.

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,

Fast sparse matrix-vector multiplication for TeraFlop/s computers,

in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing

and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.

http://vecpar.fe.up.pt/

08/10/2006, Author:

Rolf Rabenseifner

Rabenseifner, Hager, Jost Slide 185 / 170

Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,

Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.

In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,

Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,

Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,

Nesting OpenMP in MPI to Implement a Hybrid Communication Method of

Parallel Simulated Annealing on a Cluster of SMP Nodes.

In Recent Advances in Parallel Virtual Machine and Message Passing Interface,

Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings

of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,

Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

08/10/2006, Author:

Rolf Rabenseifner

http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-10045-22-34353197-0,00.html

