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Hybrid Parallel Programming 
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Hybrid Parallel Programming 

Motivation 
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Hybrid Parallel Programming 

Hardware and Programming Models 

Hardware 

• Cluster of 

– ccNUMA node 

with several multi-core CPUs 

– nodes with  

multi-core CPU + GPU 

– nodes with 

multi-core CPU + Intel PHI 

– … 

Programming models 

• MPI + Threading 

– OpenMP 

– Cilk 

– TBB (Threading Building Blocks) 

• MPI + MPI shared memory 

• MPI + Accelerator 

– OpenACC 

– OpenMP 4.0 

accelerator support 

– CUDA 

– OpenCL 

– … 

• Pure MPI 
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Hybrid Parallel Programming 

Background 

Node Interconnect 

Socket 1 

Quad-core 

CPU 

SMP node SMP node 

Socket 2 

Quad-core 

CPU 

Socket 1 

Quad-core 

CPU 

Socket 2 

Quad-core 

CPU 

3) Mixed model 

MPI  

process 

4 x multi- 

threaded 

MPI  

process 

4 x multi- 

threaded 

MPI  

process 

4 x multi- 

threaded 

MPI  

process 

4 x multi- 

threaded 

2) Fully hybrid 

MPI process 

8 x multi- 

threaded 

MPI process 

8 x multi- 

threaded 

1) MPI everywhere 

MPI MPI 

MPI MPI 

MPI MPI 

MPI MPI 

MPI MPI 

MPI MPI 

MPI MPI 

MPI MPI 

Motivation 

• Which programming model 

is fastest? 

08/28/08, Author: 

Rolf Rabenseifner 

• MPI everywhere? 

• Fully hybrid  

MPI & OpenMP? 

• Something between? 

(Mixed model) 

? 
• Often hybrid programming  

slower than pure MPI 

– Examples, Reasons, … 

Node Interconnect 

Socket 1 

Quad-core 

CPU 

SMP node SMP node 

Socket 2 

Quad-core 

CPU 

Socket 1 

Quad-core 

CPU 

Socket 2 

Quad-core 

CPU 

Foreground 
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Hybrid Parallel Programming 

More Options 

GHa14 

Node Interconnect 

Socket 1 

Quad-core 

CPU 

Socket 2 

Quad-core 

CPU 

Socket 1 

Quad-core 

CPU 

Socket 2 

Quad-core 

CPU 

PCIe PCIe 

Number of options multiply if 

accelerators are added 

• One MPI process per 

accelerator? 

• One thread per accelerator? 

• Which programing model on 

the accelerator? 

– OpenMP shared memory 

– MPI 

– OpenACC 

– OpenMP-4.0 accelerator  

– CUDA 

– … 

GPGPU/Phi 

Rab 2014 

Rab 2014 
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Hybrid Parallel Programming 

Splitting the Hardware Hierarchy 

Hierarchical hardware 

 

 Cluster of 

 

 ccNUMA nodes with 

 

 CPUs with 

 

 N x 

 M cores with 

 

 Hyperthreads 

Hierarchical parallel programming 

 

 

o MPI (outer level) + 

 

o X (e.g. OpenMP) 

Where is the main bottleneck? 

Ideal choice may be extremely problem-dependent. 

No ideal choice for all problems. 

Many possibilities for splitting the 

hardware hierarchy into MPI + X: 

 1 MPI process per ccNUMA node 
 …  …  … 
 OpenMP only for hyperthreading   

Rab 

2014 
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Hybrid Parallel Programming 

Outline 
Motivation 

Introduction 

Pure MPI 

MPI + MPI-3.0 shared memory 

MPI + OpenMP on multi/many-core 

MPI + Accelerators 
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Hybrid Parallel Programming 

Introduction 
Typical hardware bottlenecks and challenges 

GHa14 
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Hybrid Parallel Programming 

Hardware Bottlenecks 

• Multicore cluster 

– Computation 

– Memory bandwidth 

– Inter-node communication 

– Intra-node communication (i.e., CPU-to-CPU) 

– Intra-CPU communication (i.e., core-to-core) 

• Cluster with CPU+Accelerators 

– Within the accelerator 
• Computation 

• Memory bandwidth 

• Core-to-Core communication 

– Within the CPU and between the CPUs 
• See above 

– Link between CPU and accelerator 
 

GHa14 
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Hybrid Parallel Programming 

Hardware Bottlenecks 

Example: 

 

• Sparse matrix-vector-multiply with stored matrix entries 

 

 Bottleneck: memory bandwidth of each CPU 

 

• Sparse matrix-vector-multiply with calculated matrix entries 

(many complex operations per entry) 

 

 Bottleneck: computational speed of each core 

 

• Sparse matrix-vector multiply with highly scattered matrix entries 

 

 Bottleneck: Inter-node communication  

 

 

GHa14 



Rabenseifner, Hager, Jost Slide 12 / 170 

Hybrid Parallel Programming 

Running the code efficiently? 

• Symmetric, UMA-type compute nodes have become rare animals 

– NEC SX 

– Intel 1-socket (Xeon 12XX) – rare in cluster environments 

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon… 

(all dead) 

• Instead, systems have become “non-isotropic” on the node level, 

with rich topology: 

– ccNUMA (AMD Opteron, SGI UV, IBM Power,  

Intel Nehalem/SandyBridge/…) 
• Inter-domain access, contention 

• Consequences of file I/O for page placement 

• Placement of MPI buffers 

– Multi-core, multi-socket 
• Intra-node vs. inter-node MPI performance 

• Shared caches, bandwidth bottlenecks 

• Topology-dependent OpenMP overhead 

 

08/29/08, Author: 

Georg Hager 
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Hybrid Parallel Programming 

Interlude: ccNUMA 
 

GHa14 
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Hybrid Parallel Programming 

A short introduction to ccNUMA 

• ccNUMA: 

– whole memory is transparently accessible by all processors 

– but physically distributed 

– with varying bandwidth and latency 

– and potential contention (shared memory paths) 

– Memory placement occurs with OS page granularity (often 4 KiB) 

 

C C C C 

M M 

C C C C 

M M 

08/29/08, Author: 

Georg Hager 
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Hybrid Parallel Programming 

How much bandwidth does non-local access cost? 

• Example: AMD Magny Cours 4-socket system (8 chips, 4 sockets) 
STREAM Triad bandwidth measurements 

09/2011, Author: 

Georg Hager 
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Hybrid Parallel Programming 

How much bandwidth does non-local access cost? 

• Example: Intel Sandy Bridge 2-socket system (2 chips, 2 sockets) 
STREAM Triad bandwidth measurements 

09/2011, Author: 

Georg Hager 

0 1 

General rule: 

 

The more ccNUMA domains, the 

larger the non-local access penalty 

GHa14 

TODO: 

Diese Folie 16 is 

ausgeblendet 

aber hatte kein 

„Skipped“. 

[rab] ich habe es 

hinzugefügt. 
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Hybrid Parallel Programming 

ccNUMA Memory Locality Problems 

• Locality of reference is key to scalable performance on ccNUMA 

– Less of a problem with pure MPI, but see below 

• What factors can destroy locality? 

– MPI programming: 
• processes lose their association with the CPU the mapping took place on 

originally 

• OS kernel tries to maintain strong affinity, but sometimes fails 

 

– Shared Memory Programming (OpenMP, hybrid): 
• threads losing association with the CPU the mapping took place on originally 

• improper initialization of distributed data 

• Lots of extra threads are running on a node, especially for hybrid 

 

– All cases:  
• Other agents (e.g., OS kernel) may fill memory with data that prevents optimal 

placement of user data 

08/29/08, Author: 

Georg Hager 
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Hybrid Parallel Programming 

Avoiding locality problems 

• How can we make sure that memory ends up where it is close to 

the CPU that uses it? 

– See next slide 

 

• How can we make sure that it stays that way throughout program 

execution? 

– See later in the tutorial 

 

 

• Taking control is the key strategy! 

08/29/08, Author: 

Georg Hager 

GHa14 
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Hybrid Parallel Programming 

Solving Memory Locality Problems: First Touch 

• "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

• Consequences 

– Process/thread-core affinity is decisive! 

– Data initialization code becomes important even if it takes little 

time to execute (“parallel first touch”) 

– Parallel first touch is automatic for pure MPI 

– If thread team does not span across ccNUMA domains, 

placement is not a problem 

 

• See later for more details and examples 

 

08/29/08, Author: 

Georg Hager 

GHa14 
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Hybrid Parallel Programming 

Interlude: Influence of 

topology on low-level 

operations 

GHa14 
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Hybrid Parallel Programming 

What is “topology”? 

Where in the machine does core (or hardware thread) #n reside? 

Core #3 

Core #17 

Why is this important? 

 

• Resource sharing 

(cache, data paths) 

 

• Communication 

efficiency (shared vs. 

separate caches, buffer 

locality) 

 

• Memory access locality 

(ccNUMA!) 

GHa14 
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Hybrid Parallel Programming 

Output of likwid-topology 

CPU name:       Intel Core i7 processor 

CPU clock:      2666683826 Hz 

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2 

Cores per socket:       4 

Threads per core:       2 

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               1               0               0 

2               0               1               0 

3               1               1               0 

4               0               2               0 

5               1               2               0 

6               0               3               0 

7               1               3               0 

8               0               0               1 

9               1               0               1 

10              0               1               1 

11              1               1               1 

12              0               2               1 

13              1               2               1 

14              0               3               1 

15              1               3               1 

------------------------------------------------------------- 

05/25/10, Author: 

Georg Hager 

GHa14 
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Hybrid Parallel Programming 

likwid-topology continued 

 

 

 

 

 

 

 

 

 

 

 

• … and also try the ultra-cool -g option! 

Socket 0: ( 0 1 2 3 4 5 6 7 ) 

Socket 1: ( 8 9 10 11 12 13 14 15 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:   1 

Size:    32 kB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) 

------------------------------------------------------------- 

Level:   2 

Size:    256 kB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) 

------------------------------------------------------------- 

Level:   3 

Size:    8 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) 

------------------------------------------------------------- 

05/25/10, Author: 

Georg Hager 
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Hybrid Parallel Programming 

Intra-node MPI characteristics: IMB Ping-Pong benchmark 

• Code (to be run on 2 cores): 

 

 

 

 

 

 

 

 

 

 

 

• Intranode (1S):   aprun -n 2 -cc 0,1 ./a.out 

• Intranode (2S):   aprun –n 2 -cc 0,16 ./a.out 

• Internode:   aprun –n 2 –N 1 ./a.out 

wc = MPI_WTIME() 

do i=1,NREPEAT 

  if(rank.eq.0) then 

   MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr) 

   MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, & 

  status,ierr) 

  else 

   MPI_RECV(…) 

   MPI_SEND(…) 

  endif 

enddo 

wc = MPI_WTIME() - wc 

08/29/08, Author: 

Georg Hager 
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Hybrid Parallel Programming 

IMB Ping-Pong: Latency 
Intra-node vs. Inter-node on Cray XE6 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

internode intranode 2S intranode 1S

1.8 

0.56 

0.3 

L
a
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n
c
y
 [

µ
s
] 

Affinity matters! 

08/29/08, Author: 

Georg Hager 

TODO: 

Diese Folie 25 

hat ein „Skipped“ 

aber war nicht 

ausgeblendet. 

[rab] Was 

möchtest Du? 

Ich habe sie 

vorläufig 

audgeblendet. 
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Hybrid Parallel Programming 

IMB Ping-Pong: Bandwidth Characteristics  
Intra-node vs. Inter-node on Cray XE6 

08/29/08, Author: 

Georg Hager 

Between two cores of 

one socket 

Between two nodes 

via InfiniBand 

Between two sockets 

of one node 

Bandwidth: 

Surprisingly 

similar! 

Latency: Very 

different! 



Rabenseifner, Hager, Jost Slide 27 / 170 

Hybrid Parallel Programming 

The throughput-parallel vector triad benchmark 

Microbenchmarking for architectural exploration 

• Every core runs its own, independent bandwidth benchmark 

 

 

 

 

 

 

 

 

 

 

 

 
 

•  pure hardware probing, no impact from OpenMP overhead 

double precision, dimension(:), allocatable :: A,B,C,D 

 

!$OMP PARALLEL private(i,j,A,B,C,D) 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 

June 2013, Author: 

Georg Hager 

Repeat many times 

Actual benchmark 

loop 

Prevent smart-ass 

compilers from 

optimizing away the 

outer loop 
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Hybrid Parallel Programming 

Throughput vector triad on Sandy Bridge socket (3 GHz) 

Saturation effect 

in memory 

Scalable BW in 

L1, L2, L3 cache 

June 2013, Author: 

Georg Hager 
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Hybrid Parallel Programming 

Conclusions from the observed topology effects 

• Know your hardware characteristics: 

– Hardware topology (use tools such as likwid-topology) 

– Typical hardware bottlenecks 
• These are independent of the programming model! 

– Hardware bandwidths, latencies, peak performance numbers 

 

• Learn how to take control 

– Affinity control is key! (What is running where?) 

– Affinity is usually controlled at program startup 

 know your system environment 

 

• See later in the “How-To” section for more on affinity control 

GHa14 
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Hybrid Parallel Programming 

Remarks on  

Cost-Benefit Calculation 

Rab 

2014 
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Hybrid Parallel Programming 

Remarks on Cost-Benefit Calculation 

Costs 

• for optimization effort 

– e.g., additional OpenMP parallelization 

– e.g., 3 person month x 5,000 € = 15,000 €  (full costs) 

Benefit 

• from reduced CPU utilization  

– e.g., Example 1: 

100,000 € hardware costs of the cluster 

x  20% used by this application over whole lifetime of the cluster 

x  7% performance win through the optimization 

= 1,400 €   total loss = 13,600 € 

– e.g., Example 2: 

10 Mio € system  x  5% used  x  8% performance win 

= 40,000 €   total win = 25,000 € 

Question: Do you want to spend work hours without a final benefit? 

 

05/28/10, Author: 

Rolf Rabenseifner 
June 2014, Author: 

Rolf Rabenseifner 

GHa14 

Rab 

2014 



Rabenseifner, Hager, Jost Slide 32 / 170 

Hybrid Parallel Programming 

Programming 

models 
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Hybrid Parallel Programming 

Programming 

models 

- pure MPI 
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Hybrid Parallel Programming 

Pure MPI 

Advantages 

– No modifications on existing MPI codes 

– MPI library need not to support multiple threads 

Major problems 

– Does MPI library use different protocols internally? 
• Shared memory inside of the SMP nodes 

• Network communication between the nodes 

– Is the network prepared for many communication links? 

– Does application topology fit on hardware topology? 
• Minimal communication  

between MPI processes AND between hardware SMP nodes  

– Unnecessary MPI-communication inside of SMP nodes! 

– Generally “a lot of” communicating processes per node 

– Memory consumption:  Halos & replicated data 

pure MPI 
one MPI process 

on each core 

2004-2006, Author: 

Rolf Rabenseifner 

GHa14 

Rab 2014 
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Hybrid Parallel Programming 

Does The network support many concurrent 

communication links? 

• Bandwidth of parallel communication links between SMP nodes 

Cray XC30 
(Sandybridge @ HLRS) 

Xeon+Infiniband 
(beacon @ NICS) 

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes 

(with 16B and  512kB per message; bandwidth: each message is counted 

only once, i.e., not twice at sender and receiver); reported: 

Latency, accumulated bandwidth of all links per node 

  1.6 µs,  5.4 GB/s 

 

  2.1 µs,  5.4 GB/s 

 

  2.1 µs,  5.1 GB/s 

 

  2.4 µs,  5.0 GB/s 

 

12.1 µs,  4.8 GB/s 

  4.1 µs,  6.8 GB/s 

 

  4.1 µs,  7.1 GB/s 

 

  4.1 µs,  5.2 GB/s 

 

  4.4 µs,  4.7 GB/s 

 

10.2 µs,  4.2 GB/s 

Conclusion: 

One communicating core per node (i.e., hybrid programming) 

 may be better than many communicating cores (e.g., with pure MPI) June 2014, Author: 

Rolf Rabenseifner 

GHa14 

Rab 2014 
“bi-directional 

bandwidth” defined 
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Hybrid Parallel Programming 

To minimize communication? 

• Bandwidth of parallel communication links between Intel Xeon Phi 

One Phi per node 
(beacon @ NICS) 

4 Phis on one node 
(beacon @ NICS) 

15 µs,  0.83 GB/s 

 

  15 µs,  0.83 GB/s 

 

  26 µs,  0.87 GB/s 

 

  25 µs,  0.91 GB/s 

 

  23 µs,  0.91 GB/s 

 

  24 µs,  0.92 GB/s 

 

  21 µs,  0.91 GB/s 

 

  51 µs,  0.90 GB/s 

 

Conclusions: 

Intel Xeon Phi is well prepared for one MPI process per Phi. 

Communication is no reason for many MPI processes on each Phi. 

Links  

per Phi 

  1x 

 

  2x 

 

  4x 

 

  8x 

 

16x 

 

30x 

 

60x 

June 2014, Author: 

Rolf Rabenseifner 

GHa14 
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Hybrid Parallel Programming 

MPI communication on Intel Phi 

• Communication of MPI processes inside of an Intel Phi: 
(bi-directional halo exchange benchmark with all processes in a ring;  

 bandwidth: each message is counted only once, i.e., not twice at sender and receiver)  

– Number of  Latency Bandwidth  

MPI processes (16 byte msg) (bi-directional, 512 kB messages, per process) 

      4     9 µs 0.80 GB/s 

    16   11 µs 0.75 GB/s 

    30   15 µs 0.66 GB/s  

     60   29 µs 0.50 GB/s 

  120 149 µs 0.19 GB/s 

  240 745 µs 0.05 GB/s 

 

 

June 2013, Author: 

Rolf Rabenseifner 

Conclusion: 

MPI on Intel Phi works fine on up to 60 processes,  

but the 4 hardware threads per core 

require OpenMP parallelization. 

DONE: 

Ohne grüne Teile:  

MPI-3.0 shared memory 

Rab 

2014 

Rab 2014 
“bi-directional 

bandwidth” defined 
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Hybrid Parallel Programming 

Levels of communication or data access 

• Three levels: 

– Between the SMP nodes 

– Between the sockets inside of a ccNUMA SMP node 

– Between the cores of a socket 

• On all levels, the communication should be minimized: 

– With 3-dimensional sub-domains: 

• They should be as cubic as possible 

 

 

 

 

 

• Pure MPI on clusters of SMP nodes may result in inefficient SMP-sub-domains:  

 

Green = Shape of data. 

Optimal sub-domain within an SMP node 

Sub-sub-domain within a core 

Outer surface corresponds to the data 

communicated to the neighbor nodes 

in all 6 directions  

Inner surfaces correspond to the data communicated or 

accessed between the cores inside of a node 

Originally perfectly optimized shape for each MPI process; 

but terrible when clustered only in one dimension 

 next slide 

Optimal surfaces on 

SMP and core level 

June 2014, Author: 

Rolf Rabenseifner 
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Hybrid Parallel Programming 

Loss of communication bandwidth if not cubic 

• 𝑁3 =  𝑁 × 𝑁 × 𝑁 𝑏𝑤 =                               𝟏𝟎𝟎% ∙ 𝑏𝑤𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

• 𝑁3 = 2 𝑁

2
3  × 1 𝑁

2
3 × 1 𝑁

2
3  𝑏𝑤 =

3∙( 2
3

)2

2∙1+2∙1+1∙1
𝑏𝑤𝑜𝑝𝑡.     = 95% ∙ 𝑏𝑤𝑜𝑝𝑡. 

• 𝑁3 = 4 𝑁

4
3  × 1 𝑁

4
3 × 1 𝑁

4
3  𝑏𝑤 =

3∙( 4
3

)2

4∙1+4∙1+1∙1
𝑏𝑤𝑜𝑝𝑡.     = 84% ∙ 𝑏𝑤𝑜𝑝𝑡. 

• 𝑁3 = 8 𝑁

8
3  × 1 𝑁

8
3 × 1 𝑁

8
3  𝑏𝑤 =

3∙( 8
3

)2

8∙1+8∙1+1∙1
𝑏𝑤𝑜𝑝𝑡.     = 71% ∙ 𝑏𝑤𝑜𝑝𝑡. 

• 𝑁3 = 16 𝑁

16
3  × 1 𝑁

16
3 × 1 𝑁

16
3  𝑏𝑤 =

3∙( 16
3

)2

16∙1+16∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 58% ∙ 𝑏𝑤𝑜𝑝𝑡. 

• 𝑁3 = 32 𝑁

32
3  × 1 𝑁

32
3 × 1 𝑁

32
3  𝑏𝑤 =

3∙( 32
3

)2

32∙1+32∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 𝟒𝟕% ∙ 𝑏𝑤𝑜𝑝𝑡. 

• 𝑁3 = 64 𝑁

64
3  × 1 𝑁

64
3 × 1 𝑁

64
3  𝑏𝑤 =

3∙( 64
3

)2

64∙1+64∙1+1∙1
𝑏𝑤𝑜𝑝𝑡. = 𝟑𝟕% ∙ 𝑏𝑤𝑜𝑝𝑡. 

June 2014, Author: 

Rolf Rabenseifner 

Slow down factors of your application  (communication footprint calculated with optimal bandwidth)  

• With 20% communication footprint: Slow down by 1.01, 1,04, 1.08, 1.14, 1.23, or 1.34 

• With 50% communication footprint: Slow down by 1.03, 1,10, 1.20, 1.36, 1.56, or 1.85! 
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Hybrid Parallel Programming 

The topology problem:  How to fit  

application sub-domains to hierarchical hardware   

When do we need a multi-level domain decomposition? 

• Not needed  

– with pure MPI+OpenMP,  

i.e., one MPI process per SMP node 

– ccNUMA-aware hybrid MPI+OpenMP, i.e.,  

with one MPI process per physical ccNUMA domain (e.g., socket) 

and the number of ccNUMA domain is small, e.g., only 2. 

In these cases, one-level domain-decomposition is enough 

• Needed for 

– ccNUMA-aware hybrid MPI+OpenMP  

with several MPI processes per SMP node, 

e.g., one process per socket, and 4 or more sockets 

– MPI + MPI-3.0 shared memory 

– Pure MPI 

June 2014, Author: 

Rolf Rabenseifner 
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Hybrid Parallel Programming 

Pure MPI  –  multi-core aware 

• Hierarchical domain decomposition 

(or distribution of Cartesian arrays) 

05/28/10, Author: 

Rolf Rabenseifner 

Domain decomposition: 

1 sub-domain / SMP node 

Further 

partitioning: 

1 sub-domain / 

socket 

1 / core 

Cache 

optimization: 

Blocking inside 

of each core, 

block size relates 

to cache size. 

1-3 cache levels. 

Example on 10 nodes, each with 4 sockets, each with 6 cores. 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

How to achieve such hardware-aware  

domain decomposition (DD)? 

• Maybe simplest method for structured/Cartesian grids: 

– Sequentially numbered MPI_COMM_WORLD 
• Ranks 0-7:   cores of 1st socket on 1st SMP node 

• Ranks 8-15: cores of 2nd socket on 1st SMP node 

• … 

– Cartesian/structured domain decomposition on finest MPI level 
• E.g., sockets (with ccNUMA-aware hybrid MPI+OpenMP) 

• E.g., cores     (with pure MPU or MPI+MPI-3.0 shared memory) 

– Hierachical re-numbering the MPI processes  

together with MPI Cartesian virtual coordinates 

 next slides 

 

• Unstructured grids  coming later  

 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 

June 2014, Author: 

Rolf Rabenseifner 
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Hybrid Parallel Programming 

Hierarchical Cartesian DD 

June 2013, Author: 

Rolf Rabenseifner 
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x 
Coordinate 0 

y 
Coordinate 1 

z = Coordinate 2 

Node coord. 
coord. in SMP 
Global coord. 

Implementation hints on 

following (skipped) slide  
ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 

Virtual  

location of an  

MPI process  

within an  

SMP node 

All MPI  

processes 

of an SMP 

node 
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Hybrid Parallel Programming 

Hierarchical Cartesian DD 

// Input: Original communicator: MPI_Comm comm_orig;  (e.g. MPI_COMM_WORLD) 

// Number of dimensions: int ndims = 3; 

// Global periods: int periods_global[] = /*e.g.*/ {1,0,1}; 

MPI_Comm_size (comm_orig,  &size_global); 

MPI_Comm_rank (comm_orig,  &myrank_orig); 

// Establish a communicator on each SMP node: 

MPI_Comm_split_type (comm_orig,  MPI_COMM_TYPE_SHARED,  0,  MPI_INFO_NULL,  &comm_smp_flat); 

MPI_Comm_size (comm_smp_flat,  &size_smp); 

int  dims_smp[] = {0,0,0};   int  periods_smp[] = {0,0,0} /*always non-period*/; 

MPI_Dims_create (size_smp,  ndims,  dims_smp); 

MPI_Cart_create (comm_smp_flat,  ndims,  dims_smp,  periods_smp, /*reorder=*/ 1,  &comm_smp_cart); 

MPI_Comm_free  (&comm_smp_flat); 

MPI_Comm_rank (comm_smp_cart,  &myrank_smp); 

MPI_Cart_coords (comm_smp_cart,  myrank_smp,  ndims,  mycoords_smp); 

// This source code requires that all SMP nodes have the same size. It is tested:  

MPI_Allreduce (&size_smp,  &size_smp_min,   1,  MPI_INT,  MPI_MIN,  comm_orig); 

MPI_Allreduce (&size_smp,  &size_smp_max,  1,  MPI_INT,  MPI_MAX,  comm_orig); 

if (size_smp_min < size_smp_max)  { printf("non-equal SMP sizes\n");  MPI_Abort (comm_orig, 1); } 

 

 

 

  

 

 

June 2013, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

Hierarchical Cartesian DD 

// Establish the node rank. It is calculated based on the sequence of ranks in comm_orig  

// in the processes with myrank_smp == 0: 

MPI_Comm_split (comm_orig, myrank_smp, 0, &comm_nodes_flat); 

// Result: comm_nodes_flat combines all processes with a given myrank_smp into a separate communicator. 

// Caution: The node numbering within these comm_nodes-flat may be different. 

// The following source code expands the numbering from comm_nodes_flat with myrank_smp == 0 

// to all node-to-node communicators: 

MPI_Comm_size (comm_nodes_flat,  &size_nodes); 

int dims_nodes[] =  {0,0,0};   for (i=0; i<ndims; i++) periods_nodes[i] = periods_global[i]; 

MPI_Dims_create (size_nodes,  ndims,  dims_nodes); 

if (myrank_smp==0) { 

 MPI_Cart_create (comm_nodes_flat,  ndims,  dims_nodes,  periods_nodes, 1,  &comm_nodes_cart); 

 MPI_Comm_rank (comm_nodes_cart,  &myrank_nodes);  

 MPI_Comm_free  (&comm_nodes_cart); /*was needed only to calculate myrank_nodes*/ 
} 

MPI_Comm_free (&comm_nodes_flat); 

MPI_Bcast (&myrank_nodes, 1, MPI_INT, 0, comm_smp_cart); 

MPI_Comm_split (comm_orig, myrank_smp, myrank_nodes, &comm_nodes_flat); 

MPI_Cart_create (comm_nodes_flat,  ndims,  dims_nodes,  periods_nodes, 0,  &comm_nodes_cart); 

MPI_Cart_coords (comm_nodes_cart,  myrank_nodes,  ndims,  mycoords_nodes);  
MPI_Comm_free (&comm_nodes_flat); 

 

 

 

Copying it for the 

other processes in 

each SMP node  

Optimization according to 

inter-node network of the first 

processes in each SMP node  

June 2013, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 

Hierarchical Cartesian DD 
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for all processes with 

mycoord_smp== {2,3,1} 

Coordinate 0 
x 

June 2013, Author: 

Rolf Rabenseifner 
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Hybrid Parallel Programming 

Hierarchical Cartesian DD 

// Establish the global Cartesian communicator: 

for (i=0; i<ndims; i++) { dims_global[i] = dims_smp[i] * dims_nodes[i]; 

 mycoords_global[i] = mycoords_nodes[i] * dims_smp[i] + mycoords_smp[i]; 

} 

myrank_global = mycoords_global[0]; 

for (i=1; i<ndims; i++)  { myrank_global = myrank_global * dims_global[i] + mycoords_global[i]; } 

MPI_Comm_split (comm_orig,  /*color*/ 0,  myrank_global,  &comm_global_flat); 

MPI_Cart_create (comm_global_flat,  ndims,  dims_global,  periods_global,  0,  &comm_global_cart);  

MPI_Comm_free (&comm_global_flat); 

 

// Result: 

//   Input was:  

// comm_orig,  ndims,  periods_global 

//   Result is: 

// comm_smp_cart, size_smp, myrank_smp,  dims_smp, periods_smp, my_coords_smp, 

// comm_nodes_cart, size_nodes, myrank_nodes,  dims_nodes, periods_nodes, my_coords_nodes, 

// comm_global_cart, size_global, myrank_global, dims_global,  my_coords_global 

 

 

  

 

 

June 2013, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

How to achieve a hierarchical DD 

for unstructured grids? 

• Unstructured grids: 

– Single-level DD (finest level) 

• Analysis of the communication pattern in a first run  

(with only a few iterations) 

• Optimized rank mapping to the hardware before production run 

• E.g., with CrayPAT + CrayApprentice  

– Multi-level DD: 

• Top-down:  Several levels of (Par)Metis 

      unbalanced communication 

          demonstrated on next (skipped) slide 

• Bottom-up: Low level DD  

  +  higher level recombination 

       based on DD of the grid of subdomains 

05/28/10, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

Top-down – several levels of (Par)Metis 

Steps: 

– Load-balancing (e.g., with 

ParMetis) on outer level, 

i.e., between all SMP nodes 

– Independent (Par)Metis 

inside of each node 

– Metis inside of each socket 

 Subdivide does not care on 

balancing of the outer boundary 

 processes can get a lot of 

neighbors with inter-node 

communication 

 unbalanced communication  

05/28/10, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

Bottom-up  –   

Multi-level DD through recombination  

1. Core-level DD: partitioning of application’s data grid 

2. Numa-domain-level DD: recombining of core-domains 

3. SMP node level DD: recombining of socket-domains 

05/28/10, Author: 

Rolf Rabenseifner 

• Problem: 

Recombination 

must not 

calculate patches 

that are smaller 

or larger than the 

average 

• In this example  

the load-balancer 

must combine 

always exactly  

 6 cores, and 

 4 numa-

domains (i.e., 

sockets or 

dies) 

• Advantage: 

Communication 

is balanced! 

Graph of 
all sub-

domains 
(core-
sized)  

Divided 
into sub-
graphs 
for each 
socket  

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

Profiling solution 

• First run with profiling 

– Analysis of the communication pattern 

• Optimization step 

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD 

to the hardware grid (physical cores / sockets / SMP nodes) 

• Restart of the application with this optimized locating of the ranks on the 

hardware grid 

 

• Example: CrayPat and CrayApprentice 

05/28/10, Author: 

Rolf Rabenseifner 

ccNUMA aware hybrid 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

Remarks on Cache Optimization 

• After all parallelization domain decompositions (DD, up to 3 levels) 

are done: 

• Cache-blocking is an additional DD into data blocks 

– Blocks fulfill size conditions for optimal spatial/temporal locality 

– It is done inside of each MPI process (on each core). 

– Outer loops run from block to block 

– Inner loops inside of each block 

– Cartesian example:  3-dim loop is split into 
do i_block=1,ni,stride_i 

  do j_block=1,nj,stride_j 

   do k_block=1,nk,stride_k 

    do i=i_block,min(i_block+stride_i-1, ni) 

     do j=j_block,min(j_block+stride_j-1, nj) 

      do k=k_block,min(k_block+stride_k-1, nk) 

       a(i,j,k) = f( b(i±0,1,2, j±0,1,2, k±0,1,2) ) 

   … … … end do 

end do 

05/28/10, Author: 

Rolf Rabenseifner 

Access to 13-point stencil  

See SC’14 

Tutorial: 

Node-Level 

Performance 

Engineering unrz55 21.06.2014 

Blocks müssen i.A. 

NICHT in den Cache 

passen! Da gelten 

andere Regeln (--> 

"Layer Conditions"). 

U.U. auf das NLPE-

Tutorial hinweisen 

GHa14 
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Hybrid Parallel Programming 

The vendors 

should deliver 

scalable MPI 

libraries for their 

largest systems!  

Scalability of MPI to hundreds of thousands … 

Scalability of pure MPI 

• As long as the application does not use 

– MPI_ALLTOALL 

– MPI_<collectives>V    (i.e., with length arrays) 

 and application 

– distributes all data arrays 

 one can expect: 

– Significant, but still scalable memory overhead for halo cells. 

– MPI library is internally scalable: 
• E.g., mapping ranks  hardware grid 

– Centralized storing in shared memory (OS level) 

– In each MPI process, only used neighbor ranks are stored (cached) in 

process-local memory. 

• Tree based algorithm with O(log N) 

– From 1000 to 1000,000 process O(Log N) only doubles!  

 

 

05/28/10, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

pure MPI 
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Hybrid Parallel Programming 

To overcome MPI scaling problems 

compared to pure MPI 
• Reduced number of MPI messages, 

reduced aggregated message size 

• MPI has a few scaling problems 

– Handling of more than 10,000 MPI processes 

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv() 

 Scaling applications should not use MPI_....v() routines 

– MPI-2.1 Graph topology (MPI_Graph_create) 

 MPI-2.2 MPI_Dist_graph_create_adjacent 

– Creation of sub-communicators with MPI_Comm_create 

 MPI-2.2 introduces a new scaling meaning of MPI_Comm_create 

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009. 

• Hybrid programming reduces all these problems (due to a smaller number of processes) 

2010?, Author: 

Rolf Rabenseifner 
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Hybrid Parallel Programming 

Pinning of MPI processes 

 

• Pinning is helpful for all programming models 

 

• Highly system-dependent! 

 

• Intel MPI: env variable I_MPI_PIN 

 

• OpenMPI:  

mpirun options –bind-to-core, -bind-to-socket, -bycore, -byslot … 

 

 

GHa14 

Rab 2014 
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Hybrid Parallel Programming 

Anarchy vs. affinity with a heat equation solver 

• Reasons for caring about affinity: 

• Eliminating performance variation 

• Making use of architectural features 

• Avoiding resource contention 

June 2014?, Author: 

Georg Hager 

GHa14 

… … 

With affinity, physical cores, filling 

left socket first: 

mpirun -bind-to-core -byslot …  

2x 10-core Intel Ivy Bridge, OpenMPI 

No affinity settings 
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Hybrid Parallel Programming 

Pure MPI: Main advantages 

• Simplest programming model 

• Library calls need not to be thread-safe  

• The hardware is typically prepared for many MPI processes per 

SMP node 

• Only minor problems if pinning is not applied 

Rab 2014 
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Hybrid Parallel Programming 

Pure MPI: Main disadvantages  

• Unnecessary communication 

• Too much memory consumption for 

– Halo data for communication between MPI processes  

on same SMP node 

– Other replicated data on same SMP node 

– MPI buffers due to the higher number of MPI processes 

• Additional programming costs for minimizing node-to-node 

communication, 

– i.e. for optimizing the communication topology 

• No efficient use of hardware-threads (hyper-threads)  

 

 

 

Rab 2014 
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Hybrid Parallel Programming 

Pure MPI: Conclusions 

• Still a good programming model for small and medium size 

applications. 

• Major problem may be memory consumption 

Rab 2014 
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Hybrid Parallel Programming 

Programming 

models 

- MPI + MPI-3.0  

   shared memory 



Rabenseifner, Hager, Jost Slide 61 / 170 

Hybrid Parallel Programming 

Hybrid MPI + MPI-3 shared memory 

Advantages 

– No message passing inside of the SMP nodes 

– Using only one parallel programming standard 

– No OpenMP problems  (e.g., thread-safety isn’t an issue) 

Major Problems 

– Communicator must be split into shared 

memory islands 

– To minimize shared memory communication 

overhead: 

Halos (or the data accessed by the neighbors) 

must be stored in  

MPI shared memory windows 

– Same work-sharing as with pure MPI 

– MPI-3.0 shared memory synchronization waits 

for clarification  MPI-3.0 errata / MPI-3.1  

 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 
MPI for inter-node 

communication  

+ MPI-3.0 shared memory 

programming 

Rab 2014 
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Hybrid Parallel Programming 

MPI-3 shared memory 

• Split main communicator into shared memory islands 

– MPI_Comm_split_type 

• Define a shared memory window on each island 

– MPI_Win_allocate_shared  

– Result (by default):   
contiguous array, directly accessible by all processes of the island 

• Accesses and sychronization 

– Normal assignments and expressions 

– No MPI_PUT/GET ! 

– Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 
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Hybrid Parallel Programming 

Splitting the communicator &  

contiguous shared memory allocation 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr;   

MPI_Comm  comm_all,  comm_sm; int  my_rank_all,  my_rank_sm,  size_sm,  disp_unit;  

MPI_Comm_rank (comm_all, &my_rank_all); 

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0, 
                                            MPI_INFO_NULL,  &comm_sm); 

MPI_Comm_rank (comm_sm, &my_rank_sm);  MPI_Comm_size (comm_sm, &size_sm); 

disp_unit = sizeof(double);  /* shared memory should contain doubles */ 

MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  MPI_INFO_NULL, 
                                                   comm_sm,  &base_ptr,  &win_sm);   

    0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

… 

MPI process 

Sub-communicator 
comm_sm 
for one SMP node 

local_window_count 
doubles 

base_ptr 

Contiguous shared memory window within each SMP node 

Sequence in comm_sm 

as in  comm_all 

comm_all 

F 

F In Fortran, MPI-3.0, page 341, Examples 8.1 (and 8.2) show how to convert buf_ptr into a usable array a. 

This mapping is based on a sequential ranking of the SMP nodes in comm_all. 

M 

M 
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Hybrid Parallel Programming 

Within each SMP node  –  Essentials 

• The allocated shared memory is contiguous across process ranks, 

• i.e., the first byte of rank i starts right after the last byte of rank i-1. 

• Processes can calculate remote addresses’ offsets 

with local information only. 

• Remote accesses through load/store operations, 

• i.e., without MPI RMA operations (MPI_GET/PUT, …)  

• Although each process in comm_sm accesses the same physical memory, 

the virtual start address of the whole array  

may be different in all processes! 

 linked lists only with offsets in a shared array,  

 but not with binary pointer addresses! 

 

• Following slides show only the shared memory accesses, 

i.e., communication between the SMP nodes is not presented. 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 



Rabenseifner, Hager, Jost Slide 65 / 170 

Hybrid Parallel Programming 

Shared memory access example 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 
MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  MPI_INFO_NULL, 
                                                   comm_sm,  &base_ptr,  &win_sm);  

MPI_Win_fence (0, win_sm);  /*local store epoch can start*/ 

for (i=0; i<local_window_count; i++)  base_ptr[i] = … /* fill values into local portion */ 

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */ 

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1] ); 

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n", 
              base_ptr[local_window_count] ); 

    0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

… 

MPI process 

Sub-communicator 
for one SMP node 

base_ptr 

Contiguous shared memory window within each SMP node local_window_count 
doubles 

Direct load access to 

remote window 

portion 

Direct load access to 

remote window 

portion 

Synchroni- 

zation 

Synchroni- 

zation 
Local stores 

F 

F 

F 

F 

F In Fortran, before and after the synchronization, on must add:  CALL MPI_F_SYNC_REG (buffer) 
to guarantee that register copies of buffer are written back to memory, respectively read again from memory.  



Rabenseifner, Hager, Jost Slide 66 / 170 

Hybrid Parallel Programming 

Establish comm_sm, comm_nodes, comm_all, 

if SMPs are not contiguous within comm_orig 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

    0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all 

    0     1     2     3      
     my_rank_sm 

… 
Sub-communicator 
for one SMP node: 
comm_sm 

MPI_Comm_split_type (comm_orig,  MPI_COMM_TYPE_SHARED,  0,  MPI_INFO_NULL,  &comm_sm); 

MPI_Comm_size (comm_sm,  &size_sm);  MPI_Comm_rank (comm_sm,  &my_rank_sm); 

MPI_Comm_split (comm_orig, my_rank_sm, 0, &comm_nodes);  

MPI_Comm_size (comm_nodes,  &size_nodes); 

if (my_rank_sm==0) { 

   MPI_Comm_rank (comm_nodes,  &my_rank_nodes); 

   MPI_Exscan (&size_sm, &my_rank_all, 1, MPI_INT, MPI_SUM, comm_nodes);  

   if (my_rank_nodes == 0)  my_rank_all = 0; 

} 

MPI_Comm_free (&comm_nodes); 

MPI_Bcast (&my_rank_nodes, 1, MPI_INT, 0, comm_sm); 

MPI_Comm_split (comm_orig, my_rank_sm, my_rank_nodes, &comm_nodes); 

MPI_Bcast (&my_rank_all, 1, MPI_INT, 0, comm_sm); my_rank_all = my_rank_all + my_rank_sm; 

MPI_Comm_split (comm_orig,  /*color*/ 0,  my_rank_all,  &comm_all); 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

Establish a 
communicator 

comm_sm 
with ranks 

my_rank_sm 
on each SMP 

node 

Establish the node rank. It is calculated based 
on the sequence of ranks in comm_orig in the 
processes with my_rank_sm == 0 

Result: comm_nodes combines all processes with a 
given my_rank_sm into a separate communicator. Exscan does 

not return 
value on the 

first rank, 
therefore 

comm_all 

comm_nodes  
combining all  
processes with same 
my_rank_sm   

On processes with my_rank_sm > 0, this comm_nodes is unused 
because node-numbering within these comm_nodes may be different. 

Expanding the numbering from 
comm_nodes with my_rank_sm 
== 0  to all new node-to-node 
communicators comm_nodes. 

Calculating my_rank_all and 
establishing global communicator 
comm_all with sequential SMP 
subsets. 

    0                              1                             2                             3 

my_rank_nodes 

Input 
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Alternative: Non-contiguous shared memory 

• Using info key "alloc_shared_noncontig“ 

• MPI library can put processes’ window portions 

– on page boundaries, 
• (internally, e.g., only one OS shared memory segment with some unused 

padding zones) 

– into the local ccNUMA memory domain + page boundaries 
• (internally, e.g., each window portion is one OS shared memory segment) 

Pros: 

• Faster local data accesses especially on ccNUMA nodes 

Cons: 

• Higher programming effort for neighbor accesses: MPI_WIN_SHARED_QUERY 

2013, Author: 

Rolf Rabenseifner 

Further reading: 

Torsten Hoefler, James Dinan, Darius Buntinas,  

Pavan Balaji, Brian Barrett, Ron Brightwell,  

William Gropp, Vivek Kale, Rajeev Thakur:  

MPI + MPI: a new hybrid approach to parallel  

programming with MPI plus shared memory. 
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

NUMA effects? 
Significant impact of alloc_shared_noncontig 
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Non-contiguous shared memory allocation 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr;  

disp_unit = sizeof(double);  /* shared memory should contain doubles */ 

MPI_Info  info_noncontig;   

MPI_Info_create (&info_noncontig); 

MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true"); 

MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  info_noncontig, 
                                                   comm_sm,  &base_ptr,  &win_sm );  

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

    0     1     2     3      
     my_rank_sm 

… 

MPI process 

Sub-communicator 
for one SMP node 

local_window_count 
doubles 

base_ptr 

Non-contiguous shared memory window within each SMP node 
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Non-contiguous shared memory: 
Neighbor access through MPI_WIN_SHARED_QUERY 

• Each process can retrieve each neighbor’s base_ptr  
with calls to MPI_WIN_SHARED_QUERY 

• Example: only pointers to the window memory 
of the left & right neighbor 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

if (my_rank_sm > 0)  MPI_Win_shared_query (win_sm, my_rank_sm – 1,  
                   &win_size_left,     &disp_unit_left,     &base_ptr_left); 

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1,  
                   &win_size_right,  &disp_unit_right,   &base_ptr_right); 

… 

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */ 

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n",  
              base_ptr_left[ win_size_left/disp_unit_left – 1 ] ); 

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n", 
              base_ptr_right[ 0 ] ); 

base_ptr_left base_ptr_right 

Thanks to Steffen Weise (TU Freiberg) for testing and correcting the example codes. 
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Other technical aspects with 

MPI_WIN_ALLOCATE_SHARED 
Caution: On some systems  

• the number of shared memory windows, and  

• the total size of shared memory windows 

may be limited. 

Some OS systems may provide options, e.g., 

• at job launch, or 

• MPI process start, 

to enlarge restricting defaults. 

If MPI shared memory support is based on POSIX shared memory: 

• Shared memory windows are located in memory-mapped /dev/shm 

• Default:  25% or 50% of the physical memory, but a maximum of ~2043 windows! 

• Root may change size with:  mount  –o  remount,size=6G  /dev/shm . 

Cray XT/XE/XC (XPMEM):  No limits. 

On a system without virtual memory (like CNK on BG/Q), you have to reserve a chunk 

of address space when the node is booted (default is 64 MB).  

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett (SANDIA), and Steffen Weise (TU Freiberg),  
for input and discussion. 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

Another restriction in a 

low-quality MPI: 

MPI_COMM_SPLIT_TYPE 

may return always 

MPI_COMM_SELF 

Due to default limit 

of context IDs 

in mpich 
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Splitting the communicator without 

MPI_COMM_SPLIT_TYPE 

Alternatively, if you want to group based on a fixed amount size_sm of shared memory 

cores in comm_all: 

– Based on sequential ranks in comm_all 

– Pro: comm_sm can be restricted to ccNUMA locality domains 

– Con: MPI does not guarantee MPI_WIN_ALLOCATE_SHARED() on whole SMP node   

(MPI_COMM_SPLIT_TYPE() may return MPI_COMM_SELF or partial SMP node) 

2013, Author: 

Rolf Rabenseifner 

Hybrid MPI+MPI 

MPI for inter-node 
communication  

+ MPI-3.0 shared memory 
programming 

    0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15     …  comm_all 

    0     1     2     3      
      comm_sm 

    0     1     2     3      
      comm_sm 

    0     1     2     3      
      comm_sm 

    0     1     2     3      
      comm_sm 

    0     1     2     3      
      comm_sm 

MPI_Comm_rank (comm_all, &my_rank);  

MPI_Comm_split (comm_all, /*color*/ my_rank / size_sm,  0, &comm_sm); 

MPI_Win_allocate_shared (…); To guarantee shared memory, 

one may add an additional 

MPI_Comm_split_type (comm_sm, 

MPI_COMM_TYPE_SHARED, 0, 

MPI_INFO_NULL,  

&comm_sm_really); 

Input from outside 
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Pure MPI versus MPI+MPI-3.0 shared memory 

June 2014, Author: 

Rolf Rabenseifner 

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes 

(with 16 and  512kB per message; bandwidth: each message is counted only once, 

i.e., not twice at sender and receiver) on Cray XC30 with Sandybridge  @ HLRS 

  2.9 µs,  4.4 GB/s   Irecv+send         Pure MPI 

 

  3.0 µs,  4.5 GB/s   Irecv+send 

 

  3.3 µs,  4.4 GB/s   Irecv+send 

 

  5.2 µs,  4.3 GB/s   Irecv+send 

 

10.3 µs,  4.5 GB/s   Irecv+send 

Internode: Irecv + Send 

  3.4 µs,  4.4 GB/s   MPI-3.0 store     MPI+MPI-3.0 shared memory 

 

  3.0 µs,  4.6 GB/s   MPI-3.0 store 

 

  3.5 µs,  4.4 GB/s   MPI-3.0 store 

 

  5.2 µs,  4.4 GB/s   MPI-3.0 store 

 

10.1 µs,  4.5 GB/s   MPI-3.0 store 

Additional  

intra-node 

communi- 

cation with: 

Latency Accumulated 

inter-node  

bandwidth per node 

Rab 2014 
“bi-directional 

bandwidth” defined 

Rab 2014 
MPI+OpenMP 

entfernt 

Conclusion: 

No win through 

MPI-3.0 shared 

memory 

programming  
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1 MPI process   versus   several MPI processes 

(1 Intel Xeon Phi per node) 
1 MPI process per Intel Xeon Phi 

Intel Xeon Phi + Infiniband 
beacon @ NICS 

  19 µs,  0.54 GB/s   Irecv+send 

Similar Conclusion: 

• Several MPI processes inside Phi (in a line) cause slower communication  

• No win through MPI-3.0 shared memory programming  

4 MPI processes per Intel Phi 

  25 µs,  0.52 GB/s   MPI-3.0 store 
  15 µs,  0.83 GB/s 

 

  26 µs,  0.87 GB/s 

  25 µs,  0.91 GB/s 

  23 µs,  0.91 GB/s 

  24 µs,  0.92 GB/s 

  21 µs,  0.91 GB/s 

  51 µs,  0.90 GB/s 

 

Links  

per Phi 

  1x 

 

  2x 

  4x 

  8x 

16x 

30x 

60x 

Latency Accumulated 

inter-node  

bandwidth per  

Latency Accumulated 

inter-node  

bandwidth per  

Additional  

intra-node 

communi- 

cation with: 
Internode: Irecv + Send 

June 2014, Author: 

Rolf Rabenseifner 
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Hybrid shared/cluster programming models 

• MPI on each core (not hybrid) 

– Halos between all cores 

– MPI uses internally shared memory and  

cluster communication protocols 

• MPI+OpenMP 

– Multi-threaded MPI processes 

– Halos communica. only between MPI processes 

• MPI cluster communication + MPI shared memory 

communication  

– Same as “MPI on each core”, but 

– within the shared memory nodes,  

halo communication through direct copying  

with C or Fortran statements 

• MPI cluster comm. + MPI shared memory access 

– Similar to “MPI+OpenMP”, but 

– shared memory programming through  

work-sharing between the MPI processes  

within each SMP node 

MPI inter-node communication 
MPI intra-node communication 
Intra-node direct Fortran/C copy 
Intra-node direct neighbor access 

[6A] 
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Halo Copying within SMP nodes 

MPI process use halos: 

• Communication overhead depends on communication method 

– (Nonblocking) message passing (since MPI-1) 

– One-sided communication (typically not faster, since MPI-2.0)  

– MPI_Neighbor_alltoall (since MPI-3.0) 

– Shared memory remote loads ore stores (since MPI-3.0) 

• Next slides: benchmarks on halo-copying inside of an SMP node 

– On Cray XE6: Fastest is shared memory copy  

 + point-to-point synchronization with zero-length msg 

• Point-to-point synchronization for shared memory requires MPI_Win_sync 

• MPI-3.0 forgot to define the synchronization methods 

– See errata coming Dec. 2014 or March 2015 

– Current proposal see 

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456 

June 2013, Author: 

Rolf Rabenseifner 

Rab 2014 
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MPI Communication inside of the SMP nodes 

June 2013, Author: 

Rolf Rabenseifner 

High latency  
MPI_Win_fence 

Low latency pt-to-pt 
synchronization 
 next slide 

Low bandwidth 
with MPI_Put 

Medium bandwidth 
point-to-point and  
neighbor alltoall 

High bandwidth 
direct shared  
memory store 

19 µs 

30 µs 

 2.9 µs 

 1.7 µs 

 2.8 µs 

 2.9 µs Latency 

On Cray XE6 Hermit at HLRS with aprun –n 32 –d 1 –ss, best values out of 6 repetitions, modules PrgEnv-cray/4.1.40 and cray-mpich2/6.2.1 

Low bandwidth 
with MPI_Put 

Rab 2014 
unskipped 
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Other synchronization on MPI-3.0 shared memory 

• If the shared memory data transfer is done without RMA operation, 

then the synchronization can be done by other methods. 

• This example demonstrates the rules for the unified memory model if the data 

transfer is implemented only with load and store (instead of MPI_PUT or MPI_GET) 

and the synchronization between the processes is done with MPI communication 

(instead of RMA synchronization routines). 

 Process A Process B 

MPI_WIN_LOCK_ALL( MPI_WIN_LOCK_ALL( 

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)  

DO ... DO ... 

  X=... 

  MPI_F_SYNC_REG(X) 1) 

  MPI_WIN_SYNC(win)     

  MPI_Send  

   MPI_Recv 

   MPI_WIN_SYNC(win) 

   MPI_F_SYNC_REG(X) 1) 

   print X 

   MPI_F_SYNC_REG(X) 1) 

   MPI_WIN_SYNC(win) 

   MPI_Send 
  MPI_Recv 

  MPI_WIN_SYNC(win) 

  MPI_F_SYNC_REG(X) 1)   1) Fortran only. 

END DO END DO 

MPI_WIN_UNLOCK_ALL(win) MPI_WIN_UNLOCK_ALL(win) 
   

Also needed due to read-write-rule 

Data exchange in this direction, 

therefore MPI_WIN_SYNC is 

needed in both processes: 

Write-read-rule 

• The used synchronization must be 

supplemented with MPI_WIN_SYNC, 

which acts only locally as a 

processor-memory-barrier. 

For MPI_WIN_SYNC, a passive 

target epoch is established with 

MPI_WIN_LOCK_ALL. 

• X is part of a shared memory window 

and should be the same memory 

location in both processes. 

Feb 2014, Author: 

Rolf Rabenseifner 

Rab 2014 
unskipped / modified 
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MPI communication &  

MPI-3.0 Shared Memory on Intel Phi 

• MPI-3.0 shared memory accesses inside of an Intel Phi: 
– They work, but 

– MPI communication may be faster than user-written loads and stores. 

• Communication of MPI processes inside of an Intel Phi: 
(bi-directional halo exchange benchmark with all processes in a ring;  

 bandwidth: each message is counted only once, i.e., not twice at sender and receiver)  

– Number of  Latency Bandwidth Shared mem. bandwidth 

MPI processes (16 byte msg) (bi-directional, 512 kB messages, per process) 

      4     9 µs 0.80 GB/s 0.25 GB/s 

    16   11 µs 0.75 GB/s 0.24 GB/s 

    30   15 µs 0.66 GB/s 0.24 GB/s 

     60   29 µs 0.50 GB/s 0.22 GB/s 

  120 149 µs 0.19 GB/s 0.20 GB/s 

  240 745 µs 0.05 GB/s 

 

 

June 2013, Author: 

Rolf Rabenseifner 

Conclusion: 

MPI on Intel Phi works fine on up to 60 processes,  

but the 4 hardware threads per core 

require OpenMP parallelization. 

MPI pt-to-pt substituted 

by MPI-3.0 shared  

memory store  

Conclusion: Slow 

Rab 2014 
“bi-directional 

bandwidth” defined 
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MPI+MPI-3.0 shared mem: Main advantages 

• A new method for replicated data 

– To allow only one replication per SMP node 

• Interesting method for direct access to neighbor data (without halos!) 

• A new method for communicating between MPI processes within each 

SMP node 

• On some platforms significantly better bandwidth than with send/recv 

• Library calls need not be thread-safe  

Rab 2014 

Sep 2014, Author: 

Rolf Rabenseifner 
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MPI+MPI-3.0 shared mem: Main disadvantages  

• Synchronization not yet fully defined (MPI-3.0 errata is needed) 

• Same problems as with all library based shared memory (e.g., pthreads) 

– Should be solved through the rules in future errata 

– (See  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456 ) 

• Does not reduce the number of MPI processes 

Rab 2014 

Sep 2014, Author: 

Rolf Rabenseifner 

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/456
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MPI+MPI-3.0 shared mem: Conclusions 

• Add-on feature for pure MPI 

• Opportunity for reducing communication within SMP nodes 

• Opportunity for reducing memory consumption (halos & replicated 

data) 

Rab 2014 

Sep 2014, Author: 

Rolf Rabenseifner 
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Programming 

models 

- MPI + OpenMP 
• General considerations slide 83 

• How to compile, link, and run 90 

• Case-study: The Multi-Zone NAS Parallel Benchmarks 95 

• Memory placement on ccNUMA systems 104 

• Topology and affinity on multicore 110 

• Overlapping communication and computation 124 

• Main advantages, disadvantages, conclusions 135 
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Hybrid MPI+OpenMP Masteronly Style 

Advantages 

– No message passing inside of the SMP nodes 

– No topology problem 

for (iteration ….) 

{ 

  #pragma omp parallel  

     numerical code 

  /*end omp parallel */ 

 

  /* on master thread only */ 

     MPI_Send (original data 

       to halo areas  

       in other SMP nodes) 

     MPI_Recv (halo data  

       from the neighbors) 

} /*end for loop 

Masteronly 
MPI only outside 

of parallel regions 

2004-2006, Author: 

Rolf Rabenseifner 

Major Problems 

– All other threads are sleeping 

while master thread communicates! 

– Which inter-node bandwidth?  

– MPI-lib must support at least 

MPI_THREAD_FUNNELED 
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MPI rules with OpenMP /  

Automatic SMP-parallelization 

• Special MPI-2 Init for multi-threaded MPI processes: 

 

• REQUIRED values (increasing order): 
– MPI_THREAD_SINGLE: Only one thread will execute 

– THREAD_MASTERONLY: MPI processes may be multi-threaded,  

(virtual value,  but  only master thread will make MPI-calls 

 not part of the standard)  AND only while other threads are sleeping 

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls 

– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls, 

  but only one at a time 

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,  

  with no restrictions 

• returned provided may be less than REQUIRED by the application 

int MPI_Init_thread( int * argc, char ** argv[], 

   int thread_level_required, 

   int * thead_level_provided); 

int MPI_Query_thread( int * thread_level_provided); 

int MPI_Is_main_thread(int * flag); 

08/12/06, Author: 

Rolf Rabenseifner+ 

Rainer Keller 
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Calling MPI inside of OMP MASTER 

• Inside of a parallel region, with “OMP MASTER” 

• Requires MPI_THREAD_FUNNELED, 

i.e., only master thread will make MPI-calls 

• Caution: There isn’t any synchronization with “OMP MASTER”! 

  Therefore, “OMP BARRIER” normally necessary to 

  guarantee, that data or buffer space from/for other  

  threads is available before/after the MPI call! 
  

 !$OMP BARRIER #pragma omp barrier 

 !$OMP MASTER  #pragma omp master 

              call MPI_Xxx(...)          MPI_Xxx(...);   

 !$OMP END MASTER 

 !$OMP BARRIER #pragma omp barrier 

• But this implies that all other threads are sleeping! 

• The additional barrier implies also the necessary cache flush! 

08/12/06, Author: 

Rolf Rabenseifner+ 

Rainer Keller 
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 … the barrier is necessary  –   

example with MPI_Recv 
!$OMP PARALLEL 

!$OMP DO 

 do i=1,1000 

  a(i) = buf(i) 

 end do 

!$OMP END DO NOWAIT 

!$OMP BARRIER 

!$OMP MASTER 

 call MPI_RECV(buf,...) 

!$OMP END MASTER 

!$OMP BARRIER 

!$OMP DO 

 do i=1,1000 

  c(i) = buf(i) 

 end do 

!$OMP END DO NOWAIT 

!$OMP END PARALLEL 

#pragma omp parallel 

{ 

#pragma omp for nowait 

 for (i=0; i<1000; i++) 

  a[i] = buf[i]; 

 

#pragma omp barrier 

#pragma omp master 

  MPI_Recv(buf,...); 

#pragma omp barrier 

 

#pragma omp for nowait 

 for (i=0; i<1000; i++) 

  c[i] = buf[i]; 

 

} 
/* omp end parallel */ 

08/12/06, Author: 

Rolf Rabenseifner+ 

Rainer Keller 
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MPI + OpenMP   versus   pure MPI   (Cray XC30) 

June 2014, Author: 

Rolf Rabenseifner 

MPI+OpenMP 

Cray XC30 
Sandybridge @ HLRS 

Measurements: bi-directional halo exchange in a ring with 4 SMP nodes 

(with 16 and  512kB per message; bandwidth: each message is counted 

only once, i.e., not twice at sender and receiver) 

  2.9 µs,  4.4 GB/s   Irecv+send 

 

  3.0 µs,  4.5 GB/s   Irecv+send 

 

  3.3 µs,  4.4 GB/s   Irecv+send 

 

  5.2 µs,  4.3 GB/s   Irecv+send 

 

10.3 µs,  4.5 GB/s   Irecv+send 

  4.1 µs,  6.8 GB/s 

 

  4.1 µs,  7.1 GB/s 

 

  4.1 µs,  5.2 GB/s 

 

  4.4 µs,  4.7 GB/s 

 

10.2 µs,  4.2 GB/s 

Conclusion: 

• MPI+OpenMP is faster (but not much) 

• Best bandwidth with only 1 or 2 communication links per node 

• No win through MPI-3.0 shared memory programming  

Pure MPI 

Internode: Irecv + Send 

  3.4 µs,  4.4 GB/s   MPI-3.0 store 

 

  3.0 µs,  4.6 GB/s   MPI-3.0 store 

 

  3.5 µs,  4.4 GB/s   MPI-3.0 store 

 

  5.2 µs,  4.4 GB/s   MPI-3.0 store 

 

10.1 µs,  4.5 GB/s   MPI-3.0 store 

Latency Accumulated 

inter-node  

bandwidth per node  

Additional  

intra-node 

communi- 

cation with: 
Latency Accumulated 

inter-node  

bandwidth per node 

MPI processes within an SMP node 

Rab 2014 
“bi-directional 

bandwidth” defined 
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Load-Balancing 

(on same or different level of parallelism) 

• OpenMP enables 

– Cheap dynamic and guided load-balancing 

– Just a parallelization option (clause on omp for / do directive) 

– Without additional software effort 

– Without explicit data movement 

• On MPI level 

– Dynamic load balancing requires  

moving of parts of the data structure through the network 

– Significant runtime overhead 

– Complicated software  /   therefore not implemented 

• MPI & OpenMP 

– Simple static load-balancing on MPI level, medium quality  

dynamic or guided on OpenMP level cheap implementation 

07/11/08, Author: 

Rolf Rabenseifner 

#pragma omp parallel for schedule(dynamic) 

for (i=0; i<n; i++) { 

  /* poorly balanced iterations */ … 

} 
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Sleeping threads with 

Problem: 

– Sleeping threads are 

wasting CPU time 

Solution: 

– Overlapping of 

computation and 

communication 

 

Limited benefit: 

– In the best case, 

communication overhead 

can be reduced from 50% 

to 0%  speedup of 2.0 

– Usual case of 20% to 0% 

 speedup is 1.25 

– Achievable with significant 

work  next slides  

for (iteration ….) 

{ 

  #pragma omp parallel  

     numerical code 

  /*end omp parallel */ 

 

  /* on master thread only */ 

     MPI_Send (original data 

       to halo areas  

       in other SMP nodes) 

     MPI_Recv (halo data  

       from the neighbors) 

} /*end for loop 

Masteronly 
MPI only outside of 

parallel regions 

Node Interconnect 

Master 

thread 

Socket 1 

SMP node SMP node 

Socket 2 

Master 

thread 

Socket 1 

Socket 2 

Master 

thread 

Master 

thread 

08/28/08, Author: 

Rolf Rabenseifner 

hybrid 

MPI+OpenMP 
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Programming models 

- MPI + OpenMP 

 
How to compile, link, and run 
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How to compile, link and run 

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp,  

-mp, -qsmp=openmp, …) and MPI compiler script (if available) 

• Link with MPI library 

– Usually wrapped in MPI compiler script 

– If required, specify to link against thread-safe MPI library 
• Often automatic when OpenMP or auto-parallelization is switched on 

• Running the code 

– Highly non-portable! Consult system docs! (if available…) 

– If you are on your own, consider the following points 

– Make sure OMP_NUM_THREADS etc. is available on all MPI 

processes 
• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone 

• Use Pete Wyckoff’s mpiexec MPI launcher (see below): 

http://www.osc.edu/~djohnson/mpiexec/ 

– Figure out how to start fewer MPI processes than cores on your 

nodes 

 

08/29/08, Author: 

Georg Hager 

Rab 2014: 

http://www.osc.ed

u/~pw/mpiexec 

was broken. 

Substituted. 
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Examples for compilation and execution 

09/26/07, Author: 

Gabriele Jost 

• Cray XE6 (4 NUMA domains w/ 8 cores each): 

• ftn -h omp ... 

• export OMP_NUM_THREADS=8 

• aprun -n nprocs -N nprocs_per_node \ 

      -d $OMP_NUM_THREADS a.out  

 

• Intel Sandy Bridge (8-core 2-socket) cluster, Intel MPI/OpenMP 

• mpiifort -openmp ... 

• OMP_NUM_THREADS=8 mpirun –ppn 2 –np 4 \ 

     -env I_MPI_PIN_DOMAIN socket \ 

     -env KMP_AFFINITY scatter ./a.out 
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Interlude: Advantages of mpiexec  

or similar mechanisms 

• Startup mechanism should use a resource manager interface to 

spawn MPI processes on nodes 

– As opposed to starting remote processes with ssh/rsh: 
• Correct CPU time accounting in batch system 

• Faster startup  

• Safe process termination 

• Allowing password-less user login not required between nodes  

– Interfaces directly with batch system to determine number of 

procs 

 

• Provisions for starting fewer processes per node than available 

cores 

– Required for hybrid programming 

– E.g., “-pernode” and “-npernode #” options – does not 

require messing around with nodefiles 

08/29/08, Author: 

Georg Hager 
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Thread support within OpenMPI 

• In order to enable thread support in Open MPI, configure with: 

configure --enable-mpi-threads 

• This turns on: 

– Support for full MPI_THREAD_MULTIPLE 

– internal checks when run with threads (--enable-debug) 

05/09/08, Author: 

Rainer Keller 

configure --enable-mpi-threads --enable-progress-threads 

• This (additionally) turns on: 

– Progress threads to asynchronously transfer/receive data per 

network BTL. 

• Additional Feature: 

– Compiling with debugging support, but without threads will 

check for recursive locking  

Courtesy of Rainer Keller, HLRS and ORNL  
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Programming models 

- MPI + OpenMP 

 
Case-study:  

The Multi-Zone NAS Parallel Benchmarks 
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The Multi-Zone NAS Parallel Benchmarks 

2014 updated, Author: 

Gabriele Jost 

OpenMP 

Call MPI  

MPI 
Processes 

sequential 

MPI/Open
MP 

OpenMP 
direct exchange 

boundaries 

sequential sequential Time step 

OpenMP sequential 
intra-
zones 

OpenMP 
direct 

access 
inter-
zones 

Nested 
OpenMP 

Seq 

 Multi-zone versions of the NAS Parallel Benchmarks  
LU,SP, and BT 

 Two hybrid sample implementations 

 Load balance heuristics part of sample codes 

 www.nas.nasa.gov/Resources/Software/software.html 

http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
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MPI/OpenMP BT-MZ 

call omp_set_numthreads (weight) 

do step = 1, itmax 

  call exch_qbc(u, qbc, nx,…) 

 

 

 

 

 

do zone = 1, num_zones 

    if (iam .eq. pzone_id(zone)) then 

        call zsolve(u,rsd,…) 

      end if 

    end do 

 

end do 

  ... 

call mpi_send/recv 

 

 subroutine zsolve(u, rsd,…) 

  ... 

!$OMP PARALLEL DEFAULT(SHARED) 

!$OMP& PRIVATE(m,i,j,k...) 

  do k = 2, nz-1 

!$OMP DO 

    do j = 2, ny-1 

      do i = 2, nx-1 

        do m = 1, 5             

  u(m,i,j,k)= 

    dt*rsd(m,i,j,k-1) 

        end do 

      end do 

    end do 

!$OMP END DO NOWAIT 

  end do 

  ... 

!$OMP END PARALLEL 

08/02/06, Author: 

Gabriele Jost 
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Benchmark Characteristics 

• Aggregate sizes: 

– Class D: 1632 x 1216 x 34 grid points 

– Class E: 4224 x 3456 x 92 grid points 

• BT-MZ: (Block tridiagonal simulated CFD application) 

– Alternative Directions Implicit (ADI) method 

–  #Zones: 1024 (D), 4096 (E) 

– Size of the zones varies widely: 

• large/small about 20 

• requires multi-level parallelism to achieve a good load-balance 

• SP-MZ: (Scalar Pentadiagonal simulated CFD application) 

– #Zones: 1024 (D), 4096 (E) 

– Size of zones identical 

• no load-balancing required 

08/02/06, Author: 

Gabriele Jost 

Load-balanced on 

MPI level: Pure MPI 

should perform best 

Pure MPI: Load-

balancing problems! 

Good candidate for 

MPI+OpenMP 

Expectations: 

Rab 2014: 
Without LU 
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Hybrid code on modern architectures 

• OpenMP:  

– Support only per MPI process 

– Version 3.1 has support for binding of threads via OMP_PROC_BIND 
environment variable. 

‒ Version 4.0:  
o The proc_bind clause (see Section 2.4.2  in  Spec OpenMP 4.0)  

o OMP_PLACES environment variable (see Section 4.5 ) were added to 
support thread affinity policies 

 Under discussion for Version 5.0: OpenMP interoperability support 

• MPI: 

– Initially not designed for multicore/ccNUMA architectures or mixing of 
threads and processes, MPI-2 supports threads in MPI 

– API does not provide support for memory/thread placement 

• Vendor specific APIs to control thread and memory placement: 

– Environment variables 

– System commands like numactl,taskset,dplace,omplace etc 

 See later for more! 

 

 

08/02/06, Author: 

Gabriele Jost 

David Barker 08.06.2014 

Update Text with up-to-date information 

TODO: 

OpenMP 

interop.? Mit 

OpenMP? 

[Rab] Ich habe 

den Text „Under 

discussion for 

Version 5.0: 

OpenMP 

interoperability 

support” 

weiß gemacht 
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Dell Linux Cluster Lonestar Topology 

09/26/07, Author: 

Gabriele Jost 

 
 

 

CPU type: Intel Core Westmere processor  

************************************ 

Hardware Thread Topology 

************************************ 

Sockets:                2  

Cores per socket:       6  

Threads per core:       1 

  

 

 --------------------------------- 

Socket 0: ( 1 3 5 7 9 11 ) 

Socket 1: ( 0 2 4 6 8 10 ) 

--------------------------------- 

  

 

 

Careful! 

 Numbering scheme of 

cores is system dependent 
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Pitfall (2): Cause remote memory access 

09/26/07, Author: 

Gabriele Jost 

Running NPB BT-MZ Class D 128 MPI Procs,  6 threads each 2 MPI per node 

 

Pinning A: 

if [ $localrank == 0 ]; then 

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $* 

elif [ $localrank == 1 ]; then 

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $* 

fi 

 

 

 

 

  

 

 

Running 128 MPI Procs, 6 threads each 

Pinning B: 

if [ $localrank == 0 ]; then 

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $* 

elif [ $localrank == 1 ]; then 

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $* 

fi 

 

  

 

 

Half of the threads 

access remote memory  

600 

Gflops 

900 

Gflops 

900 

Gflops 

Only local memory 

access 
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0
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MPIxOMP 

NPB-MZ Class E Scalability on Lonestar 

BT-MZ

SP-MZ

BT-MZ fixed

David Barker 08.06.2014 

Added new slide with with BT-MZ fixed results 

64 
nodes 

128 
nodes 

512 
nodes 

256 
nodes 

1024 
nodes 

June 2014: 

Gabriele Jost 
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MPI+OpenMP memory usage of NPB-MZ 

09/26/07, Author: 

Gabriele Jost 

Using more OpenMP threads reduces the memory usage substantially,  

up to five times on Hopper Cray XT5  (eight-core nodes). 

 
Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,  Alice Koniges, Nicholas J. Wright: 

Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray 

XT5 Platforms. 

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010. 

Always same 

number of 

cores 

Slide, courtesy of  

Alice Koniges, NERSC, LBLN  
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Programming models 

- MPI + OpenMP 

 
Memory placement on ccNUMA 

systems 
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Solving Memory Locality Problems: First Touch 

• "Golden Rule" of ccNUMA: 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

– Except if there is not enough local memory available 

– Some OSs allow to influence placement in more direct ways 
•  libnuma (Linux) 

• Caveat: "touch" means "write", not "allocate" 

• Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

// memory not mapped yet 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;  // mapping takes place here! 

 

• It is sufficient to touch a single item to map the entire page 

• With pure MPI (or process per ccNUMA domain): fully automatic! 

08/29/08, Author: 

Georg Hager 
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Most simple case: explicit initialization  

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

June 2013, Author: 

Georg Hager 
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ccNUMA problems beyond first touch 

• OS uses part of main memory for 

disk buffer (FS) cache 

– If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

–  non-local access 

– Locality problem even on hybrid  

and pure MPI  

 

• Remedies 

– Drop FS cache pages after user job has run (admin’s job) 
• Only prevents cross-job buffer cache “heritage” 

– “Sweeper” code (run by user) 

– Flush buffer cache after I/O if necessary (“sync” is not 

sufficient!) 

P0 
C 

P1 
C 

C C 

MI 

P2 
C 

P3 
C 

C C 

MI 

BC 

data(3) 

BC 

data(3) 

d
a

ta
(1

) 

08/29/08, Author: 

Georg Hager 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

installed in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

Cray: aprun -ss 

June 2013, Author: 

Georg Hager 
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How to overcome ccNUMA problems 

• Problems when one process spans multiple ccNUMA domains: 

– The memory is physically distributed across the ccNUMA domains. 

– First touch is needed to “bind” the data to the OpenMP threads of each 

socket  otherwise loss of performance 

– Dynamic and guided load-balancing automatically access the memory 

of all sockets  loss of performance 

• Possible way out: 

– One MPI process on each socket  

 small number (>1) of MPI processes on each SMP node 

  e.g., 1-dimensional: 4 sockets in one line: 

  simple programming with structured grids  

  non-optimal communication shape 

      or,  3-dimensional: 2x2x1 socket: 

  less node-to-node communication  

      due to minimal better shape 

  but rank re-numbering is needed 

June 2014, Author: 

Rolf Rabenseifner 
1) Provided that the application has a 20% communication footprint. 

GHa14 

Rab 2014 
surface=18 N2 

surface=16 N2 
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Programming models 

- MPI + OpenMP 

 
Topology and affinity on multicore 



Rabenseifner, Hager, Jost Slide 111 / 170 

Hybrid Parallel Programming 

The OpenMP-parallel vector triad benchmark 

Visualizing OpenMP overhead 

• OpenMP work sharing in the benchmark loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

double precision, dimension(:), allocatable :: A,B,C,D 

 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

!$OMP PARALLEL private(i,j) 

do j=1,NITER 

!$OMP DO 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

!$OMP END DO 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 

June 2013, Author: 

Georg Hager 

Real work sharing 

Implicit barrier 
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OpenMP vector triad on Sandy Bridge socket (3 GHz) 

sync overhead grows 

with # of threads  

 next slide for direct 

measurements! 

bandwidth 

scalability 

across memory 

interfaces 

June 2013, Author: 

Georg Hager 
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Thread synchronization overhead on SandyBridge-EP  
Direct measurement of barrier overhead in CPU cycles 

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1 

Shared L3 384 5242 4616 

SMT threads 2509 3726 3399 

Other socket 1375 5959 4909 

See also http://blogs.fau.de/hager/archives/6883 

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1 

Socket 1497 14546 14418 

Node 3401 34667 29788 

Node +SMT 6881 59038 58898 

June 2013, Author: 

Georg Hager 

Strong topology 

dependence! 

http://blogs.fau.de/hager/archives/6883
http://blogs.fau.de/hager/archives/6883
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Thread synchronization overhead on Intel Xeon Phi  
Barrier overhead in CPU cycles 

SMT1 SMT2 SMT3 SMT4 

One core n/a 1597 2825 3557 

Full chip 10604 12800 15573 18490 

That does not look too bad for 240 threads! 

 

Still the “pain” may be much larger, because more work can be done in one 

cycle on Phi compared to a full (16-core) Sandy Bridge node: 

 

• 3.75 x cores (16 vs 60) on Phi 

• 2 x more operations per cycle on Phi 

 

  7.5 x more work done on Xeon Phi per cycle 

 

• 2.7 x higher barrier penalty (cycles) on Phi but 3x slower clock speed 

                          

 One barrier causes  2.7 x 7.5 / 3 ≈ 7x more pain . 

2 threads on 

distinct cores: 1936 

2014?, Author: 

Georg Hager 
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Thread/Process Affinity (“Pinning”) 

• Highly OS-dependent system calls 

– But available on all systems 

 Linux:  sched_setaffinity(), PLPA   hwloc 
Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

• Support for “semi-automatic” pinning in all modern compilers 

– Intel, GCC, PGI,… 

– OpenMP 4.0 

– Generic Linux: taskset, numactl, likwid-pin (see below) 

• Affinity awareness in MPI libraries 

– Cray MPI 

– OpenMPI 

– Intel MPI 

– … 

08/29/08, Author: 

Georg Hager 
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Anarchy vs. affinity with OpenMP STREAM 

No pinning 

Pinning (physical cores first, 

first socket first) 

• Reasons for caring about affinity: 

• Eliminating performance variation 

• Making use of architectural features 

• Avoiding resource contention 

June 2014?, Author: 

Georg Hager 
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likwid-pin 

• Binds process and threads to specific cores without touching code 

• Directly supports pthreads, gcc OpenMP, Intel OpenMP 

• Allows user to specify “skip mask” (i.e., supports many different compiler/MPI 

combinations) 

• Replacement for taskset 

• Uses logical (contiguous) core numbering when running inside a restricted set of 

cores 

• Supports logical core numbering inside node, socket, core 

 

• Usage examples: 

– env OMP_NUM_THREADS=6 likwid-pin -c 0,2,4-6  ./myApp parameters  

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp  

05/25/10, Author: 

Georg Hager 
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Likwid-pin 
Example: Intel OpenMP 

• Running the STREAM benchmark with likwid-pin: 

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 

June 2013, Author: 

Georg Hager 
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OMP_PLACES and Thread Affinity  (see OpenMP-4.0 page 7 lines 29-32, p. 241-243) 

A place consists of one or more processors. 

Pinning on the level of places. 

Free migration of the threads on a place between the processors of that place. 

• setenv  OMP_PLACES  threads 

 Each place corresponds to the single processor of a single hardware thread (hyper-thread) 

• setenv  OMP_PLACES  cores 

 Each place corresponds to the processors (one or more hardware threads) of a single core 

• setenv  OMP_PLACES  sockets 

 Each place corresponds to the processors of a single socket (consisting of all hardware 

threads of one or more cores) 

• setenv  OMP_PLACES  abstact_name(num_places) 

 In general, the number of places may be explicitly defined 

• Or with explicit numbering, e.g. 8 places, each consisting of 4 processors: 

– setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}" 

– setenv OMP_PLACES "{0:4},{4:4},{8:4}, … {28:4}" 

– setenv OMP_PLACES "{0:4}:8:4" 

 

abstract_name 

processor is the smallest  

unit to run a thread or task  

<lower-bound>:<number of entries>[:<stride>] 

CAUTION: 

The numbers highly depend on hardware  

and operating system, e.g., 

{0,1} = hyper-threads of 1st core of 1st socket, or 

{0,1} = 1st hyper-thread of 1st core  

of 1st and 2nd socket, or … July 2013, Author: 

Rolf Rabenseifner 
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OpenMP places and proc_bind  (see OpenMP-4.0 pages 49f, 239, 241-243) 

setenv OMP_PLACES "{0},{1},{2}, … {29},{30},{31}" or 

setenv OMP_PLACES threads (example with P=32 places) 

• sentenv OMP_NUM_THREADS "8,2,2" 

sentenv OMP_PROC_BIND "spread,spread,close" 

• Master thread encounters nested parallel regions: 
  #pragma omp parallel  uses: num_threads(8)  proc_bind(spread) 

       #pragma omp parallel      uses: num_threads(2)  proc_bind(spread) 

            #pragma omp parallel          uses: num_threads(2)   proc_bind(close) 

 

     

 

 

 

 

spread: Sparse distribution of the 8 threads among the 32 places; partitioned place lists. 

close: New threads as close as possible to the parent’s place; same place lists. 

master: All new threads at the same place as the parent. 

 

After first #pragma omp parallel: 

8 threads in a team, each on a partitioned place list with 32/8=4 places 

    outside of first parallel region: master thread has a place list with all 32 places 

Only one place is used 

July 2013, Author: 

Rolf Rabenseifner 
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Goals behind OMP_PLACES and proc_bind 

Example: 4 sockets x 6 cores x 2 hyper-threads  =  48 processors 

Vendor’s numbering: round robin over the sockets, over cores, and hyperthreads 

    0    4    8   12  16  20      1    5    9   13  17  21      2    6   10  14  18  22      3    7   11  15  19  23      

   24  28  32  36  40  44     25  29  33  37  41  45     26  30  34  38  42  46     27  31  35  39  43  47 

setenv OMP_PLACES threads (= {0},{24},{4},{28},{8},{32},{12},{36},{16},{40},{20},{44},{1},{25},  … ,     {23},{47} ) 

  OpenMP threads/tasks are pinned to hardware hyper-threads 

setenv OMP_PLACES cores (=  {0,24},  {4,28},   {8,32},   {12,36},   {16,40},   {20,44},  {1,25},    … ,       {23,47}  ) 

  OpenMP threads/tasks are pinned to hardware cores  
  and can migrate between hyper-threads of the core 

setenv OMP_PLACES sockets (=      {0, 24,   4, 28,   8, 32,   12, 36,   16, 40,   20, 44},  {1,25,…}, {…} , {…,23,47}  ) 

  OpenMP threads/tasks are pinned to hardware sockets  
  and can migrate between cores & hyper-threads of the socket 

Examples should be independent of vendor’s numbering & chosen pinning! 

• Without nested parallel regions: 
  #pragma omp parallel  num_threads(4*6)  proc_bind(spread)     one thread per core 

• With nested regions: 
  #pragma omp parallel  num_threads(4)  proc_bind(spread)    one thread per socket 
     #pragma omp parallel  num_threads(6)  proc_bind(spread)   one thread per core 
        #pragma omp parallel  num_threads(2)  proc_bind(close)     one thread per hyper-thread 

July 2013, Author: 

Rolf Rabenseifner 
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Topology (“mapping”) with MPI+OpenMP: 
Lots of choices – solutions are highly system specific!  

One MPI process per 

node 

 

 

One MPI process per 

socket 

 

 

OpenMP threads 

pinned “round robin” 

across cores  

in node 

 

Two MPI processes 

per socket 

09/2010, Author: 

Georg Hager 
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MPI/OpenMP ccNUMA and topology: Take-home messages 

• Learn how to take control of hybrid execution! 

– Almost all performance features depend on topology and thread 

placement! 

• Be aware of intranode MPI behavior 

• Always observe the topology dependence of 

– Intranode MPI 

– OpenMP overheads 

– Saturation effects / scalability behavior with bandwidth-bound 

code 

• Enforce proper thread/process to core binding, using appropriate 

tools (whatever you use, but use SOMETHING) 

 

• Multi-LD OpenMP processes on ccNUMA nodes require correct 

page placement: Observe first touch policy! 

 

 

05/25/10, Author: 

Georg Hager 
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Programming models 

- MPI + OpenMP 

 
Overlapping Communication and 

Computation 
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Parallel Programming Models on Hybrid Platforms 

No overlap of 

Comm. + Comp. 
MPI only outside of 

parallel regions 

of the numerical 

application code 

Overlapping 

Comm. + Comp. 
MPI communication by 

one or a few threads 

while other threads are 

computing 

pure MPI 
one MPI 

process 

on each core 

hybrid MPI+OpenMP 
MPI: inter-node 

communication 

OpenMP: inside of each 

SMP node 

OpenMP only 

 
distributed virtual 

shared memory 

2004-2006, Author: 

Rolf Rabenseifner 

Masteronly 
MPI only outside 

of parallel regions 

Hybrid MPI+MPI 
MPI for inter-node 

communication  

+ MPI-3.0 shared memory 

programming 

Within shared 

memory nodes: 

Halo updates 

through direct 

data copy 

Within shared 

memory nodes: 

No halo updates, 

direct access to 

neighbor data 

Funneled 
MPI only  

on master-thread 

Multiple 
more than one thread 

may communicate 

Funneled & 

Reserved 
reserved thread  

for communication 

Funneled 
with  

Full Load 

Balancing 
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Overlapping communication and computation 

if (my_thread_rank < …) { 

MPI_Send/Recv….  

  i.e., communicate all halo data 

} else { 

Execute those parts of the application 

  that do not need halo data 

  (on non-communicating threads) 

} 

 

Execute those parts of the application 

  that  need halo data 

  (on all threads) 

Overlapping Communication and Computation 
MPI communication by one or a few threads while other threads are computing 

08/09/06, Author: 

Rolf Rabenseifner 
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Overlapping communication and computation 

Three problems: 

• the application problem: 

– one must separate application into:  

• code that can run before the halo data is received 

• code that needs halo data 

very hard to do !!! 

• the thread-rank problem: 

– comm. / comp. via 
thread-rank 

– cannot use 
work-sharing directives 

loss of major 
OpenMP support 
(see next slide) 

• the load balancing problem 

if (my_thread_rank < 1) { 

MPI_Send/Recv…. 

} else { 

my_range = (high-low-1) / (num_threads-1) + 1; 

my_low = low + (my_thread_rank+1)*my_range; 

my_high=high+ (my_thread_rank+1+1)*my_range; 

my_high = max(high, my_high) 

for (i=my_low; i<my_high; i++) { 

 …. 

} 

} 

 

Overlapping Communication and Computation 
MPI communication by one or a few threads while other threads are computing 

2004-2006, Author: 

Rolf Rabenseifner 

unrz55 21.06.2014 

muss das bei der 

Berechnung von 

my_low nicht "-1" 

heissen? 

JA, Du hast recht. 

Bei low und high! 
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Overlapping communication and computation 

Subteams 

 

• Proposal  

for OpenMP 3.x  

or  OpenMP 4.x 

or  OpenMP 5.x 

#pragma omp parallel 

{ 

#pragma omp single onthreads( 0 ) 

   { 

  MPI_Send/Recv…. 

   } 

#pragma omp for onthreads( 1 : omp_get_numthreads()-1 ) 

     for (……..) 

     { /* work without halo information */ 

     }  /* barrier at the end is only inside of the subteam */ 

    … 

#pragma omp barrier 

#pragma omp for 

     for (……..) 

     { /* work based on halo information */ 

     } 

} /*end omp parallel */ 

Overlapping Communication and Computation 
MPI communication by one or a few threads while other threads are computing 

09/06/2006, Author: 

Rolf Rabenseifner 

Barbara Chapman et al.: 

Toward Enhancing OpenMP’s 

Work-Sharing Directives. 

In proceedings, W.E. Nagel et 

al. (Eds.): Euro-Par 2006, 

LNCS 4128, pp. 645-654, 

2006. 

Not yet part of 
the OpenMP 

standard 

Workarounds today:  

• nested parallelism: one thread MPI + one for computation  nested (n-1) threads 

• Loop with guided/dynamic schedule and first iteration invokes communication 

GHa14 
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Example: sparse matrix-vector multiply (spMVM) 

• spMVM on Intel 

Westmere cluster  

(6 cores/socket) 

• “task mode” == explicit 

communication overlap 

using ded. thread 

• “vector mode” == 

MASTERONLY  

• “naïve overlap” == 

non-blocking MPI 

• Memory bandwidth  

is already saturated  

by 5 cores 

 

 
G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with explicit 

communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-358 

(2011). DOI: 10.1142/S0129626411000254 

50% efficiency 

w/ respect to 

best 1-node 

performance 

2011, Author: 

Georg Hager 

G
fl
o
p

/s
 

http://dx.doi.org/10.1142/S0129626411000254
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Overlapping: Using OpenMP tasks 

NEW OpenMP Tasking Model gives a new way to achieve more parallelism 

form hybrid computation.  

Slides, courtesy of Alice Koniges, NERSC, LBNL  

Alice Koniges et al.: 

Application Acceleration on Current and Future Cray Platforms. 

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010. 
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Case study:  Communication and Computation in 

Gyrokinetic Tokamak Simulation (GTS) shift routine 

Work on particle array (packing for sending, reordering, adding after 

sending) can be overlapped with data independent MPI 

communication using OpenMP tasks. 

IN
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GTS shift routine 

Slides, courtesy of Alice Koniges, NERSC, LBNL  
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Overlapping can be achieved with OpenMP tasks (1st part) 

Overlapping MPI_Allreduce with particle work  

• Overlap: Master thread encounters (!$omp master) tasking statements and creates 

work for the thread team for deferred execution. MPI Allreduce call is immediately 

executed. 

• MPI implementation has to support at least MPI_THREAD_FUNNELED 

• Subdividing tasks into smaller chunks to allow better load balancing and scalability 

among threads. 
Slides, courtesy of Alice Koniges, NERSC, LBNL  
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Overlapping can be achieved with OpenMP tasks (2nd part) 

Overlapping particle reordering 

Overlapping remaining MPI_Sendrecv 

Particle reordering of remaining 

particles (above) and adding sent 

particles into array (right)  & sending 

or receiving of shifted particles can 

be independently executed. 

Slides, courtesy of Alice Koniges, NERSC, LBNL  
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OpenMP tasking version outperforms original shifter, 

especially in larger poloidal domains 

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-

cess with varying domain decomposition and particles per cell on Franklin Cray XT4. 

• MPI communication in the shift phase uses a toroidal MPI communicator  

(constantly 128). 

• Large performance differences in the 256 MPI run compared to 2048 MPI run! 

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands 

CPUs since MPI communication is more expensive. 

256 size run 2048 size run 

Slides, courtesy of  

Alice Koniges, NERSC, LBNL  
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MPI+OpenMP: Main advantages 

Masteronly style (i.e., MPI outside of parallel regions) 

• Increase parallelism 

– Scaling to higher number of cores 

– Adding OpenMP with incremental additional parallelization 

• Lower memory requirements due to smaller number of MPI processes 

– Reduced amount of application halos & replicated data 

– Reduced size of MPI internal buffer space 

– Very important on systems with many cores per node 

• Lower communication overhead (possibly)  

– Few multithreaded MPI processes vs many single-threaded processes  

– Fewer number of calls and smaller amount of data communicated 

– Topology problems from pure MPI are solved 

(was application topology versus multilevel hardware topology) 

• Provide for flexible load-balancing on coarse and fine levels 

– Smaller #of MPI processes leave room for assigning workload more evenly 

– MPI processes with higher workload could employ more threads 

Additional advantages when overlapping communication and computation: 

– No sleeping threads  

 

 

Rab 2014 

With text from 

Gabriele Jost 
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MPI+OpenMP: Main disadvantages & challenges  

Masteronly style (i.e., MPI outside of parallel regions) 

• Non-Uniform Memory Access: 

– Not all memory access is equal:  ccNUMA locality effects 

– Penalties for access across NUMA domain boundaries 

– First touch is needed for more than one ccNUMA node per MPI process  

– Alternative solution:  

One MPI process on each ccNUMA domain (i.e., chip) 

• Multicore / multisocket anisotropy effects 

– Bandwidth bottlenecks, shared caches 

– Intra-node MPI performance 

• Core ↔ core  vs.  socket ↔ socket 

• OpenMP loop overhead 

• Amdahl’s law on both, MPI and OpenMP level 

• Thread and process pinning 

• Other disadvantages through OpenMP 

Additional disadvantages when overlapping communication and computation: 

• High programming overhead 

• OpenMP is not prepared for this programming style 

 

Rab 2014 

With text from 

Gabriele Jost 
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MPI+OpenMP: Conclusions 

Work-horse on large systems: 

• Increase parallelism with MPI+OpenMP 

• Lower memory requirements due to smaller number of MPI processes 

• Lower communication overhead  

• More flexible load balancing 

• Challenges due to ccNUMA 

– May be solved by using multi-threading  

only within ccNUMA domains 

– Pinning 

• Overlapping communication & computation 

– Benefit calculation: compute time versus programming time 

 

 

Rab 2014 
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Programming 

models 

- MPI + Accelerator 
Courtesy of Gabriele Jost 
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OpenMP 4.0 Support for Co-Processors 

09/2011, Author: 

Gabriele Jost 

• New concepts:  

- Device: An implementation defined logical execution engine; local storage 
which could be shared with other devices; device could have one or more 
processors 

• Extension to the previous Memory Model: 

- Previous: Relaxed-Consistency Shared-Memory 

- Added in 4.0 : 

• Device with local storage 

• Data movement can be explicitly indicated by compiler directives 

• League: Set of thread teams created by a “teams” construct 

• Contention group: threads within a team; OpenMP synchronization 
restricted to contention groups.  

• Extension to the previous Execution Model  

- Previous: Fork-join of OpenMP threads 

- Added in 4.0:  

• Host device offloads a region for execution on a target device 

• Host device waits for completion of execution on the target device  
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OpenMP Accelerator Additions 

09/2011, Author: 

Gabriele Jost 

09/26/07, Author: 

Gabriele Jost 

Target data 

Place objects on the device 

Target 

Move execution to a device 

Target update 

Update objects on the device or host 

Declare target 

Place objects on the device, eg common 

blocks  

Place subroutines/functions on the 

device 

Teams 

Start multiple contention groups 

Distribute 

Similar to the OpenACC loop construct, 

binds to teams construct 

OpenMP 4.0 Specification: 

http://openmp.org/wp/openmp-specifications/ 

• The “target data” construct: 

₋ When a target data construct is encountered, a 
new device data environment is created, and the 
encountering task executes the target data 
region 

pragma omp target data [device, map, if] 

• The “target” construct: 

₋ Creates device data environment and specifies 
that the region is executed by a device. The 
encountering task waits for the device to 
complete the target region at the end of the 
construct 

       pragma omp target [device, map, if] 

₋ The “teams” construct: 

₋ Creates a league of thread teams. The master 
thread of each team executes the teams region 

pragma omp teams [num_teams, num_threads, 
…] 

₋ The ”distribute” construct: 

₋ Specifies that the iterations of one or more loops 
will be executed by the thread teams. The 
iterations of the loop are distributed across the 
master threads of all teams 

pragma omp distribute [collapse, dist_schedule, 
….]  
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OpenMP 4.0 Simple Example 

09/2011, Author: 

Gabriele Jost 

    void smooth( float* restrict a, float* restrict b, 
        float w0, float w1, float w2, int n, int m, int niters ) 

{ 

   int i, j, iter; 

   float* tmp; 

 #pragma omp target mapto(b[0:n*m]) map(a[0:n*m]) 

 #pragma omp team num_teams(8) num_maxthreads(5)   

   for( iter = 1; iter < niters; ++iter ){ 

 #pragma omp distribute dist_schedule(static) // chunk across teams      

      for( i = 1; i < n-1; ++i ) 

 #pragma omp parallel for // chunk across threads           

         for( j = 1; j < m-1; ++j ) 

             a[i*m+j] = w0 * b[i*m+j] + 

                 w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +  

                                    b[i*m+j+1]) + 

                 w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +  

                                      b[(i+1)*m+j+1]); 

      tmp = a;  a = b;  b = tmp; 

   } } 

In main: 

#pragma omp target data map(b[0:n*m],a[0:n*m]) 

{ 

smooth( a, b, w0, w1, w2, n, m, iters ); 

} 
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OpenMP 4.0 Team and Distribute Construct 

09/2011, Author: 

Gabriele Jost 

#pragma omp target device(acc) 

#pragma omp team num_teams(8) num_maxthreads(5) 

{ 

Stmt1; 

#pragma omp distribute  // chunk across thread blocks 

for (i=0; i<N; i++) 

#pragma omp parallel for  // chunk across threads 

for (j=0; j<M; j++) 

{ 

Threads cannot 

synchronize 
Threads can 

synchronize 

only executed by master thread of each team 
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NAS Parallel Benchmark SP 

09/2011, Author: 

Gabriele Jost 

     

  

subroutine z_solve 

…. 

 include 'header.h’ <--- !$omp declare target (/fields/) 

    

!$omp declare target (lhsinit) 

 … 

!$omp target update to (rhs) 

….. 

!$omp target 

!$omp parallel do default(shared) private(i,j,k,k1,k2,m,…) 

   do   j = 1, ny2 

     call lhsinit(lhs, ….) 

         do i = 1, nx 

           …  

            do k = 0, nz2 + 1 

                rtmp(1,k) = rhs(1,i,j,k) 

                 ….          …. 

            do   k = 0, nz2 + 1rhs(1,i,j,k) = rtmp(1,k)+ …. 

               …. 

!$omp end target 

!$omp target update from (rhs) 

 

David Barker 08.06.2014 

New slide: sample code from NPB SP 
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What is OpenACC? 

09/2011, Author: 

Gabriele Jost 

• API that supports off-loading of loops and regions of code (e.g. loops) from a 

host CPU to an attached accelerator in C, C++, and Fortran 

• Managed by a nonprofit corporation  formed by a group of companies: 

– CAPS Enterprise, Cray Inc., PGI and NVIDIA 

• Set of compiler directives, runtime routines and environment variables 

• Simple programming model for using accelerators (focus on GPGPUs) 

• Memory model: 

– Host CPU + Device may have completely separate memory; Data 

movement between host and device performed by host via runtime calls; 

Memory on device may not support memory coherence between 

execution units or need to be supported by explicit barrier 

• Execution model: 

― Compute intensive code regions offloaded to the device, executed as 

kernels ; Host orchestrates data movement, initiates computation, waits 

for completion; Support for multiple levels of parallelism, including SIMD 

(gangs, workers, vector) 

― Example constructs: acc parallel loop, acc data 
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OpenACC Simple Example 

09/2011, Author: 

Gabriele Jost 

    void smooth( float* restrict a, float* restrict b, 
        float w0, float w1, float w2, int n, int m, int niters ) 

{ 

   int i, j, iter; 

   float* tmp; 

   for( iter = 1; iter < niters; ++iter ){ 

       #pragma acc parallel loop gang(16) worker(8)// chunk across gangs and workers 

      for( i = 1; i < n-1; ++i ) 

         #pragma acc vector (32) // execute in SIMD mode 

         for( j = 1; j < m-1; ++j ) 

             a[i*m+j] = w0 * b[i*m+j] + 

                 w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +  

                                    b[i*m+j+1]) + 

                 w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +  

                                      b[(i+1)*m+j+1]); 

      tmp = a;  a = b;  b = tmp; 

   } } 

In main: 

#pragma acc data copy (b[0:n*m],a[0:n*m]) 

{ 

smooth( a, b, w0, w1, w2, n, m, iters ); 

} 

  

CAPS HMPPWorkbench compiler: 

 

 acc_test.c:11: Loop 'j' was vectorized(32) 

acc_test.c:9: Loop 'i' was shared among 

gangs(16) and workers(8) 
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 Mantevo miniGhost on Cray XK7  

09/2011, Author: 

Gabriele Jost 

!$acc data present ( GRID) 

 

! Back boundary 

 

IF ( NEIGHBORS(BACK) /= -1 ) THEN 

         TIME_START_DIR = MG_TIMER () 

!$acc data present ( SEND_BUFFER_BACK ) 

!$acc parallel loop 

 

 DO J = 0, NY+1 

   DO I = 0, NX+1 

    SEND_BUFFER_BACK(COUNT_SEND_BACK + J*(NX+2) + I + 1) = & 

                 GRID ( I, J, 1 ) 

            END DO 

         END DO 

!$acc end data 

#endif 

 

... 

  

 
• Mantevo 1.0.1 miniGhost 1.0  

-Finite-Difference Proxy 

Application 

-27 PT Stencil + Boundary 

Exchange of Ghost Cells 

-Implemented in Fortran;  

-MPI+OenMP and 

MPI+OpenACC 

-http://www.mantevo.org 

 

• Test System: 

-Located at HLRS Stuttgart, 

 

• Test Case:Problem size 

384x796x384, 10 variables, 20 

time steps 

 

• Compilation: 

•pgf90 13.4-0 -O3  -fast –fastsse 

–m -acc 

 

 

CALL MPI_WAITANY ( MAX_NUM_SENDS + MAX_NUM_RECVS, MSG_REQS, ...  ) 

.... 

!$acc             data present ( RECV_BUFFER_BACK ) 

!$acc             update device ( RECV_BUFFER_BACK ) 

!$acc             end data$acc data present ( GRID) 

 

 

  

Packing of boundary data 

Unpacking of boundary data 

http://www.mantevo.org
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Mantevo miniGhost: 27-PT Stencil 

09/2011, Author: 

Gabriele Jost 

#if defined _MOG_OMP 
!$OMP PARALLEL DO PRIVATE(SLICE_BACK, SLICE_MINE, SLICE_FRONT) 

#else 

!$acc data present ( WORK ) 

!$acc parallel 

!$acc loop 

#endif 

      DO K = 1, NZ 

         DO J = 1, NY 

            DO I = 1, NX 

 

               SLICE_BACK =  GRID(I-1,J-1,K-1) + GRID(I-1,J,K-1) + GRID(I-1,J+1,K-1) + & 

                             GRID(I  ,J-1,K-1) + GRID(I  ,J,K-1) + GRID(I  ,J+1,K-1) + & 

                             GRID(I+1,J-1,K-1) + GRID(I+1,J,K-1) + GRID(I+1,J+1,K-1) 

 

               SLICE_MINE =  GRID(I-1,J-1,K)   + GRID(I-1,J,K)   + GRID(I-1,J+1,K) + & 

                             GRID(I  ,J-1,K)   + GRID(I  ,J,K)   + GRID(I  ,J+1,K) + & 

                             GRID(I+1,J-1,K)   + GRID(I+1,J,K)   + GRID(I+1,J+1,K) 

 

               SLICE_FRONT = GRID(I-1,J-1,K+1) + GRID(I-1,J,K+1) + GRID(I-1,J+1,K+1) + & 

                             GRID(I  ,J-1,K+1) + GRID(I  ,J,K+1) + GRID(I  ,J+1,K+1) + & 

                             GRID(I+1,J-1,K+1) + GRID(I+1,J,K+1) + GRID(I+1,J+1,K+1) 

 

               WORK(I,J,K) = ( SLICE_BACK + SLICE_MINE + SLICE_FRONT ) / 27.0 

 

            END DO 

         END DO 

      END DO 

David Barker 08.06.2014 

Inserted code for Stencil 
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Cray XK7 Hermit 

09/26/07, Author: 

Gabriele Jost 

 

 

------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:        1  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6) 

• 3552 compute nodes 113.664 cores 

• Two AMD 6276 Interlagos processors with 16 cores each, running at 2.3 GHz (TurboCore 
3.3GHz) per node  

• Around 1 Pflop theoretical peak performance  

• 32 GB of main memory available per node 

• 32-way shared memory system 

• High-bandwidth interconnect using Cray Gemini communication chips 

https://wickie.hlrs.de/platforms/index.php/Cray_XE6
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Scalability of miniGhost on Cray XK7  

09/2011, Author: 

Gabriele Jost 

Total Time(sec) Comm. Time (sec) 

OpenMP (16x1t) 12.1 0.4 

OpenMP (16x16t) 1.9 0.16 

OpenACC (16x16t) 1.17 0.34 

Pure MPI (256 Ranks) 1.5 0.28 

Elapsed time as reported 

by the application 

Communication includes 

packing/unpacking 
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Profiling Information: export PGI_ACC_TIME=1 

09/2011, Author: 

Gabriele Jost 

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_UNPACK_BSPMA.F 

  mg_unpack_bspma  NVIDIA  devicenum=0 

        time(us): 36,951 

        124: data copyin reached 20 times 

             device time(us): total=8,603 max=431 min=429 avg=430 

          …. 

 

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F 

  mg_stencil_3d27pt  NVIDIA  devicenum=0 

        time(us): 1,063,875 

        330: kernel launched 200 times 

            grid: [160]  block: [256] 

             device time(us): total=1,063,875 max=5,337 min=5,302 avg=5,319 

            elapsed time(us): total=1,073,817 max=5,444 min=5,349 avg=5,369 

        … 

  

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_SEND_BSPMA.F  

  mg_send_bspma  NVIDIA  devicenum=0 

        time(us): 33,150 

        94: data copyout reached 20 times 

             device time(us): total=7,800 max=392 min=389 avg=390 

         … 

  

device time(us): total=12,618 max=633 min=630 avg=630 

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F 

  mg_pack  NVIDIA  devicenum=0     

        time(us): 9,615 

        91: kernel launched 200 times 

            grid: [98]  block: [256] 

             device time(us): total=2,957 max=68 min=13 avg=14 

            elapsed time(us): total=11,634 max=107 min=51 avg=58  

         

TODO: 

Diese Folie 151 

hat ein „Skipped“ 

aber war nicht 

ausgeblendet. 

[rab] Was 

möchtest Du? 

Ich habe sie 

vorläufig 

audgeblendet. 
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Profiling Information: export PGI_ACC_TIME=1 

09/2011, Author: 

Gabriele Jost 

Accelerator Kernel Timing data 

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F 

  mg_stencil_3d27pt  NVIDIA  devicenum=0 

        time(us): 1,064,197 

        330: kernel launched 200 times 

            grid: [160]  block: [256] 

             device time(us): total=1,064,197 max=5,351 min=5,299 avg=5,320 

            elapsed time(us): total=1,074,081 max=5,442 min=5,348 avg=5,370 

 

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F 

  mg_pack  NVIDIA  devicenum=0 

        time(us): 9,568 

        91: kernel launched 200 times 

            grid: [98]  block: [256] 

             device time(us): total=2,924 max=70 min=12 avg=14 

            elapsed time(us): total=11,624 max=110 min=51 avg=58 

        195: kernel launched 200 times 

            grid: [162]  block: [256] 

             device time(us): total=3,432 max=120 min=15 avg=17 

            elapsed time(us): total=11,385 max=160 min=53 avg=56 

        221: kernel launched 200 times 

            grid: [162]  block: [256] 

             device time(us): total=3,212 max=19 min=15 avg=16 

            elapsed time(us): total 

 

TODO: 

Diese Folie 151 

hat ein „Skipped“ 

aber war nicht 

ausgeblendet. 

[rab] Was 

möchtest Du? 

Ich habe sie 

vorläufig 

audgeblendet. 



Rabenseifner, Hager, Jost Slide 152 / 170 

Hybrid Parallel Programming 

MPI+Accelerators: Main advantages 

• Hybrid MPI/OpenMP and MPI/OpenACC can leverage 
accelerators and yield performance increase over pure MPI 
on multicore 

 

• Compiler pragma based API provides relatively easy way to 
use coprocessors 

 

• OpenACC targeted toward GPU type coprocessors 

 

• OpenMP 4.0 extensions provide flexibility to use a wide range 
of heterogeneous coprocessors (GPU, APU, heterogeneous 
many-core types) 

 

Sep 2014, Author: 

Georg Hager 
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MPI+Accelerators: Main challenges 

• Considerable implementation effort for basic usage, 
depending on complexity of the application 

 

• Efficient usage of pragmas may require high 
implementation effort and good understanding of 
performance issues  

 

• Not many compilers support accelerator pragmas (yet) 

 

Sep 2014, Author: 

Georg Hager 
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Tools 
• Topology & Affinity 

• Tools for debugging and profiling 

MPI+OpenMP 
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Tools for Thread/Process Affinity (“Pinning”) 

• Likwid tools  slides in section MPI+OpenMP 

– likwid-topology prints SMP topology 

– likwid-pin binds threads to cores / HW threads 

 

• numactl 

– Standard in Linux numatools, enables restricting movement of 

thread team bot no individual thread pinning 

 

• OpenMP 4.0 thread/core/socket binding 

 

Rab 

2014 
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Tools 
• Topology & Affinity 

• Tools for debugging and profiling 

MPI+OpenMP 
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Thread Correctness – Intel ThreadChecker  1/3 

• Intel ThreadChecker operates in a similar fashion to helgrind, 

• Compile with –tcheck, then run program using tcheck_cl: 
 

 

 

Application finished 

_______________________________________________________________________________ 

|ID|Short De|Sever|C|Contex|Description                       |1st Acc|2nd Acc| 

|  |scriptio|ity  |o|t[Best|                                  |ess[Bes|ess[Bes| 

|  |n       |Name |u|]     |                                  |t]     |t]     | 

|  |        |     |n|      |                                  |       |       | 

|  |        |     |t|      |                                  |       |       | 

_______________________________________________________________________________ 

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea| 

|  |Write da|     | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.| 

|  |ta-race |     | |e.c":2|a prior memory write of           |c":31  |c":31  | 

|  |        |     | |5     |global_variable at                |       |       | 

|  |        |     | |      |"pthread_race.c":31 (output       |       |       | 

|  |        |     | |      |dependence)                       |       |       | 

_______________________________________________________________________________ 

08/31/08, Author: 

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT  

With new Intel Inspector XE 2011: 

Command line interface must be 

used within mpirun / mpiexec 
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Thread Correctness – Intel ThreadChecker 2/3 

• One may output to HTML: 

 tcheck_cl --format HTML --report pthread_race.html pthread_race 

08/31/08, Author: 

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT  
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Thread Correctness – Intel ThreadChecker 3/3 

• Then run with: 

   mpirun --mca tcp,sm,self -np 2 tcheck_cl             \ 

    --reinstrument -u full --format html             \ 

    --cache_dir '/tmp/my_username_$$__tc_cl_cache'   \ 

    --report 'tc_mpi_test_suite_$$'                  \ 

    --options 'file=tc_my_executable_%H_%I,          \ 

                  pad=128, delay=2, stall=2'        --  \ 

  ./my_executable my_arg1 my_arg2 … 

08/31/08, Author: 

Rainer Keller 

configure --enable-mpi-threads 

          --enable-debug 

          --enable-mca-no-build=memory-ptmalloc2 

      CC=icc F77=ifort FC=ifort 

      CFLAGS=‘-debug all –inline-debug-info tcheck’ 

      CXXFLAGS=‘-debug all –inline-debug-info tcheck’ 

      FFLAGS=‘-debug all –tcheck’    LDFLAGS=‘tcheck’ 

• If one wants to compile with threaded Open MPI (option for IB): 

Courtesy of Rainer Keller, HLRS, ORNL and FhT  
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Performance Tools Support for Hybrid Code 

• Paraver examples have already 

been shown, tracing is done with  

linking against (closed-source) 
omptrace or ompitrace 

 

 

 

 

 

• For Vampir/Vampirtrace performance analysis: 
./configure –enable-omp  

  –enable-hyb 

  –with-mpi-dir=/opt/OpenMPI/1.3-icc 

CC=icc F77=ifort FC=ifort 

(Attention: does not wrap MPI_Init_thread!) 

08/31/08, Author: 

Rainer Keller Courtesy of Rainer Keller, HLRS, ORNL and FhT  
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Scalasca – Example “Wait at Barrier” 

Indication of  

non-optimal load 

balance 

Screenshots, courtesy of KOJAK JSC, FZ Jülich 
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Scalasca – Example “Wait at Barrier”, Solution 

Better load balancing 
with dynamic  

loop schedule 

Screenshots, courtesy of KOJAK JSC, FZ Jülich 
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Conclusions 
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Major advantages of hybrid MPI+OpenMP 

 

In principle, none of the programming models perfectly fits to 

clusters of SMP nodes 

 

Major advantages of MPI+OpenMP: 

• Only one level of sub-domain “surface-optimization”:  

– SMP nodes, or 

– Sockets 

• Second level of parallelization  

– Application may scale to more cores 

• Smaller number of MPI processes implies: 

– Reduced size of MPI internal buffer space 

– Reduced space for replicated user-data 

Most 

important 

arguments on 

many-core 

systems,  

e.g., Intel Phi   

June 2014, Author: 

Rolf Rabenseifner 
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Major advantages of hybrid MPI+OpenMP, continued 

• Reduced communication overhead 

– No intra-node communication 

– Longer messages between nodes and fewer parallel links may 

imply better bandwidth 

 

• “Cheap” load-balancing methods on OpenMP level 

– Application developer can split the load-balancing issues between 

course-grained MPI and fine-grained OpenMP 

June 2014, Author: 

Rolf Rabenseifner 
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Disadvantages of MPI+OpenMP 

• Using OpenMP  

 may prohibit compiler optimization 

 may cause significant loss of computational performance 

• Thread fork / join overhead 

• On ccNUMA SMP nodes: 

– Loss of performance due to missing memory page locality  
or missing first touch strategy 

– E.g., with the MASTERONLY scheme: 

• One thread produces data 

• Master thread sends the data with MPI 

 data may be internally communicated from one memory to the other one 

• Amdahl’s law for each level of parallelism 

• Using MPI-parallel application libraries?   Are they prepared for hybrid?  

• Using thread-local application libraries?   Are they thread-safe?  

 

See, e.g., the necessary –O4 flag with 

mpxlf_r on IBM Power6 systems 

June 2014, Author: 

Rolf Rabenseifner 
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MPI+OpenMP versus MPI+MPI-3.0 shared mem. 

MPI+3.0 shared memory 

• Pro: Thread-safety is not needed for libraries. 

• Con: No work-sharing support as with OpenMP directives. 

• Pro: Replicated data can be reduced to one copy per node: 

 May be helpful to save memory,  

 if pure MPI scales in time, but not in memory. 

• Substituting intra-node communication by shared memory loads or stores 

has only limited benefit (and only on some systems), 

especially if the communication time is dominated by inter-node 

communication 

• Con: No reduction of MPI ranks  

  no reduction of MPI internal buffer space 

• Con: Virtual addresses of a shared memory window  

 may be different in each MPI process 

  no binary pointers 

  i.e., linked lists must be stored with offsets rather than pointers 

June 2014, Author: 

Rolf Rabenseifner 
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Lessons for pure MPI 

and ccNUMA-aware hybrid MPI+OpenMP 

• MPI processes on an SMP node should form a cube 

and not a long chain 

– Reduces inter-node communication volume 

 

• For structured or Cartesian grids: 

– Adequate renumbering of MPI ranks and process coordinates 

 

• For unstructured grids: 

– Two levels of domain decomposition 
• First fine-grained on the core-level 

• Recombining cores to SMP-nodes 

June 2014, Author: 

Rolf Rabenseifner 
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Conclusions  

• Future hardware will be more complicated 
– Heterogeneous  GPU, FPGA, …  

– ccNUMA quality may be lost on cluster nodes 

– …. 

• High-end programming  more complex  many pitfalls 

• Medium number of cores  more simple 

(if  #cores / SMP-node will not shrink) 

• MPI + OpenMP  work horse on large systems 

– Major pros: reduced memory needs and second level of parallelism 

• MPI + MPI-3  only for special cases and medium rank number 

• Pure MPI  still on smaller cluster 

• OpenMP only  on large ccNUMA nodes 

 
Thank you for your interest 

Q & A 
Please fill out the feedback sheet – Thank you 

20xx-2014, Author: 

Rolf Rabenseifner 
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Appendix 

• Abstract 

• Authors 

• References (with direct relation to the content of this tutorial) 

• Further references 

08/10/2006, Author: 

Rolf Rabenseifner 
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Abstract 

Half-Day Tutorial   (Level: 25% Introductory, 50% Intermediate, 25% Advanced) 

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany 

 Georg Hager, University of Erlangen-Nuremberg, Germany 

Abstract. Most HPC systems are clusters of shared memory nodes. Such SMP nodes can be small 

multi-core CPUs up to large many-core CPUs. Parallel programming may combine the distributed 

memory parallelization on the node interconnect (e.g., with MPI) with the shared memory 

parallelization inside of each node (e.g., with OpenMP or MPI-3.0 shared memory).  

This tutorial analyzes the strengths and weaknesses of several parallel programming models on 

clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given 

special consideration. MPI-3.0 introduced a new shared memory programming interface, which can 

be combined with inter-node MPI communication. It can be used for direct neighbor accesses similar 

to OpenMP or for direct halo copies, and enables new hybrid programming models. These models 

are compared with various hybrid MPI+OpenMP approaches and pure MPI. This tutorial also 

includes a discussion on OpenMP support for accelerators. Benchmark results are presented for 

modern platforms such as Intel Xeon Phi and Cray XC30. Numerous case studies and micro-

benchmarks demonstrate the performance-related aspects of hybrid programming. The various 

programming schemes and their technical and performance implications are compared. Tools for 

hybrid programming such as thread/process placement support and performance analysis are 

presented in a "how-to" section.  

Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2014-hybrid.html  

08/11/2006, Author: 

Rolf Rabenseifner 
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08/11/2006, Author: 

Rolf Rabenseifner 
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08/11/06, Author: 
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