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Motivation

• Efficient programming of clusters of SMP nodes

SMP nodes:

• Dual/multi core CPUs

• Multi CPU shared memory

• Multi CPU ccNUMA

• Any mixture with shared memory programming model

• Hardware range

• mini-cluster with dual-core CPUs

• …

• large constellations with large SMP nodes

… with several sockets (CPUs) per SMP node

… with several cores per socket

���� Hierarchical system layout

• Hybrid MPI/OpenMP programming seems natural

• MPI between the nodes

• OpenMP inside of each SMP node

Node Interconnect

SMP nodes

cores

shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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Motivation

• Which programming model 
is fastest?

• MPI everywhere?

• Fully hybrid 
MPI & OpenMP?

• Something between?
(Mixed model)

?
• Often hybrid programming 

slower than pure MPI
– Examples, Reasons, …
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Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems 

• Technical aspects of hybrid programming

see sections � Programming models on clusters 
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories 
that can benefit from hybrid paralleliz.

• Issues and their Solutions 

with sections � Thread-safety quality of MPI libraries 
� Tools for debugging and profiling 

for MPI+OpenMP

•Less
frustration
& 

•More
success

with your 
parallel 
program on 
clusters of 
SMP nodes
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• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary



Slide 7 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each core)

• Hybrid MPI+OpenMP

– shared memory OpenMP

– distributed memory MPI 

• Other: Virtual shared memory systems, PGAS, HPF, …

• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the 
SMP nodes

MPI between the nodes
via node interconnect
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some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions
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Pure MPI

Advantages

– No modifications on existing MPI codes

– MPI library need not to support multiple threads

Major problems

– Does MPI library uses internally different protocols?
• Shared memory inside of the SMP nodes

• Network communication between the nodes

– Does application topology fit on hardware topology?

– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed 
in detail later on 

in the section 
Mismatch 
Problems
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Hybrid Masteronly

Advantages

– No message passing inside of the SMP nodes

– No topology problem

for (iteration ….)

{

#pragma omp parallel 
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth? 

– MPI-lib must support at least 
MPI_THREAD_FUNNELED

� Section 
Thread-safety 
quality of MPI 

libraries
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Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv…. 

i.e., communicate all halo data

} else {

Execute those parts of the application

that do not need halo data

(on non-communicating threads)

}

Execute those parts of the application

that  need halo data

(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush  (part of each OpenMP barrier)

OpenMP only
distributed virtual 
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters! 

Experience:
� Mismatch 

section
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• Introduction  /  Motivation
• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks

– For each application we discuss:

• Benchmark implementations based on different strategies and 
programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary

Gabriele Jost (Supersmith, Maximum Performance Software)

• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI 

MPI 
Processes

sequential

MPI/OpenMP

OpenMP
data copy+ 

sync.
exchange

boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMP
MLP 

Processes
inter-zones

Nested 
OpenMP

MLP

• Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT

• Two hybrid sample implementations

• Load balance heuristics part of sample codes

• www.nas.nasa.gov/Resources/Software/software.html
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MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL
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MPI/OpenMP LU-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor

end if

end do

end do

...
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Pipelined Thread Execution in SSOR

subroutine  ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             

rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1) + …

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

subbroutine sync1

…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2

…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)
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Golden Rule for ccNUMA: “First touch”

c---------------------------------------------------------------------

c      do one time step to touch all data 

c---------------------------------------------------------------------

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call adi(rho_i(start1(iz)), us(start1(iz)),

$            vs(start1(iz)), ws(start1(iz)

…..

$ end do

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call initialize(u(start5(iz)),…

$ end do

•A memory page gets mapped into the local memory of the processor that first 
touches it!
•"touch" means "write", not "allocate"

All benchmarks use first 

touch policy to achieve 
good memory placement!
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• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

Benchmark Characteristics

Load-balanced on 
MPI level: Pure MPI 
should perform best

Pure MPI: Load-
balancing problems!

Good candidate for 
MPI+OpenMP

Limitted MPI 
Parallelism:

� MPI+OpenMP
increases 

Parallelism

Expectations:
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• OpenMP: 

– Support only per MPI process

– Version 3.1 has support for binding of threads via OMP_PROC_BIND
environment variable.

– Under consideration for Version 4.0: OMP_PROC_SET or OMP_LIST to
restrict the execution to a subset of the machine; OMP_AFFINITY to influence 
how the threads are distributed and bound on the machine 

– Version 4.0 announced at SC12

• MPI:

– Initially not designed for NUMA architectures or mixing of threads and 
processes, MPI-2 supports threads in MPI

– API does not provide support for memory/thread placement

• Vendor specific APIs to control thread and memory placement:

– Environment variables

– System commands like numactl,taskset,dplace,omplace etc

� http://www.halobates.de/numaapi3.pdf

� More in “How-to’s”

Hybrid code on cc-NUMA architectures
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• Dell Linux Cluster Lonestar
• Cray XE6: Hector/Hermit
• IBM Power 6

Benchmark Architectures—
skip

ped —
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Dell Linux Cluster Lonestar

• Located at the Texas Advanced Computing Center (TACC), University of 
Texas at Austin (http://www.tacc.utexas.edu)

• 1888 nodes, 2 Xeon Intel 6-Core 64-bit Westmere processors, 3.33 GHz, 24 
GB memory per node, Peak Performance 160 Gflops per node, 3 channels 
from each processor's memory controller to 3 DDR3 ECC DIMMS,  1333 MHz, 

• Processor interconnect, QPI,  6.4GT/s

• Node Interconnect: InfiniBand Mellanox Switches, fat-tree topology, 40Gbit/sec 
point-to-point bandwidth

• More details: http://www.tacc.utexas.edu/user-services/user-guides/lonestar-
user-guide

• Compiling the benchmarks:  I

• fort 11.1, Options: -O3 –ipo –openmp –mcmodel=medium

• Running the benchmarks:

• MVAPICH 2

• setenv OMP_NUM_THREADS=

• ibrun tacc_affinity ./bt-mz.x
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Example run script

#!/bin/csh
#$  -cwd
#$  -j y
#$  -q systest
#$  -pe 12way  24
#$  -V
#$  -l  h_rt=00:10:00
setenv OMP_NUM_THREADS 1
setenv MY_NSLOTS 16
ibrun tacc_affinity ./bin/sp-mz.D.

Run 12 MPI processes per node, 
allocate 24 cores (2nodes) alltogether

1 thread per MPI process

Only use 16 of the 
24 cores for MPI.
NOTE: 
8 cores unused!!!

numactl script for 

process/thread placementCommand to 

run mpi job
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NUMA Operations
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NUMA Operations: Memory Placement

Memory allocation:

• MPI

– Pure MPI: socket local allocation is best

– Hybrid: Depending on #threads per process remote socket 
memory may be required

• OpenMP

– Regular structured access pattern that does not 
change: Allocate close to core where thread runs

– Irregular, unpredictable access: Round-robin 
placement of pages

• Once allocated, a memory-structure is fixed

Example: numactl –c  1 -l ./a.out

Use socket 1, allocate memory on current socket

—
skip

ped —
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Example numactl script

myway=`echo $PE | sed s/way//`

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

my_rank=$PMI_RANK 

local_rank=$(( my_rank % myway ))

if [ $myway -eq 12 ]; then

numnode=$(( local_rank / 6 ))

fi

exec numactl -c $numnode -m $numnode $*



Slide 27 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Dell Linux Cluster Lonestar Topology
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Dell Linux Cluster Lonestar Topology

CPU type: Intel Core 

Westmere processor 

***************************

*********

Hardware Thread Topology

***************************

*********

Sockets:                2 

Cores per socket:       6 

Threads per core:       1

---------------------------------

Socket 0: ( 1 3 5 7 9 11 )

Socket 1: ( 0 2 4 6 8 10 )

---------------------------------

Careful!

Numbering scheme of 
cores is system 
dependent
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No idle cores

64 
nodes

On
128 nodes

On 
256 nodes

On
512 
nodes

On 
1024 
nodes

BT-MZ 
improves 

using 
hybrid as 

expected 
due to 
better load 

balance

Unexpected: 
SP-MZ 

improves in 
some cases 

using hybrid 
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Pitfall (1): Running 2 threads on the same core

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs,  12 threads each, 1 MPI per node (1way)

Pinning A:

exec numactl –c 0  -m 0 $*

Running 128 MPI Procs, 12 threads each

Pinning B:

exec numactl –c 0,1 -m 0,1 $*

Only use cores and memory on socket 0,
12 threads on 6 cores

Use cores and memory on 2 sockets
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Pitfall (2): Cause remote memory access

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs,  6 threads each 2 MPI per node

Pinning A:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $*

elif [ $localrank == 1 ]; then

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $*

fi

Running 128 MPI Procs, 6 threads each

Pinning B:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $*

elif [ $localrank == 1 ]; then

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $*

fi

Half of the threads 
access remote 
memory 

600 
Gflops

900 
Gflops

900 
Gflops

Only local memory 
access
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LU-MZ Class D  Scalability on Lonestar

• LU-MZ significantly  benefits from hybrid mode:

- Pure MPI limited to 16 cores, due to #zones = 16

• Decrease of resource contention large contribution to improvement
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Cray XE6 Hermit

• Located at HLRS Stuttgart, Germany 
(https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores

• Each node contains two AMD 6276 Interlagos processor with 16 cores 
each, running at 2.3 GHz (TurboCore 3.3GHz) 

• Around 1 Pflop theoretical peak performance 

• 32 GB of main memory available per node

• 32-way shared memory system

• High-bandwidth interconnect using Cray Gemini communication chips.
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Cray XE6 Hermit Topology

CPU type: AMD Interlagos processor 
**********************************************************
***
Hardware Thread Topology
**********************************************************
***
Sockets: 2 
Cores per socket: 16 
Threads per core: 1 
--------------------------------------------------------------------------------------------------------------------------

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 )
Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 )

-------------------------------------------------------------

4 NUMA Domains per Node
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Cray XE6 Hermit Scalability

32K 
cores

16K 
cores8K 

cores
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32K 
cores

16K 
cores8K 

cores

Expected:
BT-MZ benefits from hybrid 
approach:
- high number of MPI processes 
yields bad workload distribution
-Best MPIxOMP combination 
depends on problem size
Expected:
-Both benchmarks benefit by 
increasing parallelism
Unexpected:
SP-MZ improves when reducing 
number of MPI processes
BT-MZ  1024x32 unexpected low 
performance   

Cray XE6 Hermit Scalability, continued
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Cray XE6 Hector

• Located at EPCC, Edinburgh, Scotland,  UK National Supercomputing 
Services, Hector Phase 2b (http://www.hector.ac.uk)

• 1856 XE6 compute nodes. 

• Each node contains two AMD 2.1 GHz 12-core processors giving a 
total of 44,544 cores

• Around 373 Tflops theoretical peak performance 

• 32 GB of main memory available per node

• 24-way shared memory system.

• High-bandwidth interconnect using Cray Gemini communication 
chips.

CPU type:       AMD Magny Cours processor 
Hardware Thread Topology
Sockets:                       2 
Cores per socket:       12 
Threads per core:         1 

-------------------------------------------------------------

no SMT

—
skip

ped —
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4 NUMA domains

Cray XE6 Hector Node Topology—
skip

ped —
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BUT: 

…unexpected 
low 

performance 
for 4096 
cores..?

BT-MZ 

improves 
using 
hybrid as 

expected 
due to 

better load 
balance…

1 SMP node
= 2 AMD Magny Cours

= 4 NUMA domains
= 24 cores
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Craypat BT-MZ 256x16

Number of PEs (MPI ranks):   256

Numbers of PEs per Node:       1  PE on each of       256  Nodes

Numbers of Threads per PE:    16  threads on each of  248  PEs

17  threads on each of    8  PEs

Number of Cores per Socket:   12

Number of PEs (MPI ranks):   256

Numbers of PEs per Node:       1  PE on each of  256  Nodes

Numbers of Threads per PE:    16

Number of Cores per Socket:   12

export NPB_MZ_BLOAD=0

Benchmark will not try to load-balance between threads

Benchmark tries to balance load,
aprun –d 16 yields multiple 
threads on same core!
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BT-MZ improves using 
hybrid as expected due 
to better load balance…

Unexpected: SP-MZ 

improves in some cases 
using hybrid 
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Cray XE6:  CrayPat Performance Analysis

• module load xt-craypat

• Compilation:

� ftn –fastsse –r8  –mp[= trace ]

• Instrument:

� pat_build –w  –g  mpi,omp bt.exe bt.exe.pat

• Execution :

� (export  PAT_RT_HWPC  {0,1,2,..})

� export  OMP_NUM_THREADS  4

� aprun –n  NPROCS –d  4  ./bt.exe.pat

• Generate report:

� pat_report –O 
load_balance,thread_times,program_time,mpi_callers –O 
profile_pe.th $1

-d depth Specifies 
the number of CPUs 
for each PE and its 
threads.

-apa !!!
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BT-MZ 32x4 Function Profile
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BT-MZ Load-Balance 32x4 vs 128x1

bt-mz-C.32x4

bt-mz-C.128x1

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User 
and MPI time

• bt-mz.C.32x4 shows well balanced times
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IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the 
Engineer Research and Development Center Major Shared 
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at 
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes

• 32   4.7GHz Power6 Cores per Node (4800 cores total)

• 64 GBytes of dedicated memory per node

• QLOGOC Infiniband DDR interconnect

• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp

• Execution:

� poe launch  $PBS_O_WORKDIR./sp.C.16x4.exe

Flag was essential to achieve full 

compiler optimization in 

presence of OMP directives!
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SUPERsmith

• Results for 128-2048 
cores

• Only 1024 cores were 
available for the 
experiments

• BT-MZ and SP-MZ 
show benefit from 
Simultaneous 

Multithreading (SMT): 
2048 threads 
on 1024 cores

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

128 cores

256 cores

1024 cores

512 cores

2
0

4
8

x1

Doubling the number of threads 
through hyperthreading (SMT):
#!/bin/csh

#PBS -l select=32:ncpus=64:

mpiprocs=NP:ompthreads=NT

2048 

“cores”

best of category
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SUPERsmith

LU-MZ Class D Scalability IBM Power 6

• LU-MZ significantly  benefits from hybrid mode:

� Pure MPI limited to 16 cores, due to #zones = 16 
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SUPERsmith

Conclusions:

• BT-MZ:

� Inherent workload imbalance on MPI level

� #nprocs = #nzones yields poor performance

� #nprocs < #zones => better workload balance, but decreases parallelism

� Hybrid MPI/OpenMP yields better load-balance, 
maintains amount of parallelism

• SP-MZ:

� No workload imbalance on MPI level, pure MPI should perform best

� MPI/OpenMP outperforms MPI on some platforms due contention to 
network access within a node

• LU-MZ:

� Hybrid MPI/OpenMP increases level of parallelism

• All Benchmarks:

• Decrease network pressure

• Lower memory requirements 

• Good process/thread affinity essential
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

Georg Hager,  Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems

• Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming

– How to compile and link

– Getting a hybrid program to run on a cluster

• Running hybrid programs efficiently on multi-core clusters

– Affinity issues
• ccNUMA

• Bandwidth bottlenecks

• Other overhead

– Intra-node MPI/OpenMP anisotropy
• MPI communication characteristics

• OpenMP loop startup overhead

– Thread/process binding
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How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp, 
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library

– Usually wrapped in MPI compiler script

– If required, specify to link against thread-safe MPI library
• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code

– Highly non-portable! Consult system docs! (if available…)

– If you are on your own, consider the following points

– Make sure OMP_NUM_THREADS etc. is available on all MPI 
processes

• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

• Use Pete Wyckoff’s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

– Figure out how to start less MPI processes than cores on your 
nodes
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Some examples for compilation and execution (1)

• NEC SX9

– NEC SX9 compiler

– mpif90 –C hopt –P openmp … # –ftrace for profiling info

– Execution:

$ export OMP_NUM_THREADS=<num_threads>

$ MPIEXPORT=“OMP_NUM_THREADS”

$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

• Standard Intel Xeon cluster (e.g. @HLRS):

– Intel Compiler

– mpif90 –openmp …

– Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out
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Handling of OMP_NUM_THREADS 

• without any support by mpirun:

– E.g. with mpich-1

– Problem:
mpirun has no features to export environment variables to the via ssh
automatically started MPI processes

– Solution: Set
export OMP_NUM_THREADS=<# threads per MPI process>

in ~/.bashrc (if a bash is used as login shell)

– If you want to set OMP_NUM_THREADS individually when starting the MPI 
processes:

• Add 
test -s ~/myexports && . ~/myexports

in your ~/.bashrc

• Add
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > ~/myexports

before invoking mpirun

• Caution: Several invocations of mpirun cannot be executed at the same time with this trick!

Some examples for compilation and execution (2)
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Handling of OMP_NUM_THREADS  (continued)

• with support by OpenMPI –x option:

export OMP_NUM_THREADS= <# threads per MPI process>

mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./executable

Some examples for compilation and execution (3)
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Some examples for compilation and execution (4)

• Sun Constellation Cluster:

• mpif90 -fastsse -tp barcelona-64 –mp …

• SGE Batch System

• setenv OMP_NUM_THREADS

• ibrun numactl.sh a.out

• Details see TACC Ranger User Guide 
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

• Cray XT5:

• ftn -fastsse -tp barcelona-64 -mp=nonuma …

• aprun -n nprocs -N nprocs_per_node a.out
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Interlude: Advantages of mpiexec
or similar mechanisms

• Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI 
processes on nodes

– As opposed to starting remote processes with ssh/rsh:
• Correct CPU time accounting in batch system

• Faster startup 

• Safe process termination

• Understands PBS per-job nodefile

• Allowing password-less user login not required between nodes 

– Support for many different types of MPI
• All MPICHs, MVAPICHs, Intel MPI, …

– Interfaces directly with batch system to determine number of procs

– Downside: If you don’t use PBS or Torque, you’re out of luck…

• Provisions for starting less processes per node than available cores

– Required for hybrid programming

– “-pernode” and “-npernode #” options – does not require messing 
around with nodefiles
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Running the code
Examples with mpiexec

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8

$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4

$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code

$ mpiexec ./a.out

Where do the
threads run? 
� see later!
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Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals

– NEC SX

– Intel 1-socket (“Port Townsend/Melstone/Lynnfield”) – see case 
studies

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…
(all dead)

• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix, 
IBM Power6 (p575), Intel Sandy Bridge)

– Multi-core, multi-socket
• Shared vs. separate caches

• Multi-chip vs. single-chip

• Separate/shared buses   
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Issues for running code efficiently 
on “non-isotropic” nodes

• ccNUMA locality effects

– Penalties for access across locality domains

– Impact of contention

– Consequences of file I/O for page placement

– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects

– Bandwidth bottlenecks, shared caches

– Intra-node MPI performance
• Core ↔ core  vs.  socket ↔ socket

– OpenMP loop overhead depends on mutual position of threads 
in team
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A short introduction to ccNUMA

• ccNUMA:

– whole memory is transparently accessible by all processors

– but physically distributed

– with varying bandwidth and latency

– and potential contention (shared memory paths)

C C C C

M M

C C C C

M M
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How much does non-local access cost?

• Example: AMD Magny Cours 2-socket system (4 chips, 2 sockets)
STREAM bandwidth measurements



Slide 62 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA

– Less of a problem with pure MPI, but see below

• What factors can destroy locality?

• MPI programming:

– processes lose their association with the CPU the mapping took 
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails

• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on 
originally

– improper initialization of distributed data

– Lots of extra threads are running on a node, especially for hybrid

• All cases: 

– Other agents (e.g., OS kernel) may fill memory with data that 
prevents optimal placement of user data
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Avoiding locality problems

• How can we make sure that memory ends up where it is close to 
the CPU that uses it?

– See the following slides

• How can we make sure that it stays that way throughout program 
execution?

– See end of section
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Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the 
processor that first touches it!

– Except if there is not enough local memory available

– this might be a problem, see later

– Some OSs allow to influence placement in more direct ways
• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"

• Example: 

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Im
porta

nt
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Most simple case: explicit initialization 

integer,parameter :: 

N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel
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ccNUMA problems beyond first touch

• OS uses part of main memory for
disk buffer (FS) cache

– If FS cache fills part of memory, 
apps will probably allocate from 
foreign domains

– � non-local access!

– Locality problem even on hybrid 
and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies

– Drop FS cache pages after user job has run (admin’s job)
• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)

– Flush buffer cache after I/O if necessary (“sync” is not sufficient!)

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)
d
a

ta
(1

)
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ccNUMA problems beyond first touch

• Real-world example: ccNUMA vs. UMA and the Linux buffer cache

• Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB 
main memory

• Run 4 concurrent
array copy loops 
(512 MB each)
after writing a large 
file

• Report perfor-
mance vs. file size

• Drop FS cache after
each data point



Slide 68 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S):   mpirun –np 2 –pin “1 3” ./a.out

• Intranode (2S):   mpirun –np 2 –pin “2 3” ./a.out

• Internode:   mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then

MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)

MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)

else

MPI_RECV(…)

MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C
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IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)
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Affinity matters!
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IMB Ping-Pong: Bandwidth Characteristics 
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache 
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of 
one socket

Between two nodes 
via InfiniBand

Between two sockets 
of one node
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The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

• What about OpenMP overhead?

• Simple streaming benchmark:

• Report performance for different N

• Choose NITER so that accurate time measurement is possible

• Triad results lead to a deep understanding of multicore architecture 
and OpenMP performance overhead

for(int j=0; j < NITER; j++){

#pragma omp parallel for

for(i=0; i < N; ++i)

a[i]=b[i]+c[i]*d[i];

if(OBSCURE)

dummy(a,b,c,d);

}



Slide 72 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start);

  for(j=0; j<niter; j++){

    if(size > CACHE_SIZE>>5) {

#pragma omp parallel for

#pragma vector always

#pragma vector aligned

#pragma vector nontemporal

      for(i=0; i<size; ++i)

        a[i]=b[i]+c[i]*d[i];

    } else {

#pragma omp parallel for

#pragma vector always

#pragma vector aligned

      for(i=0; i<size; ++i)

        a[i]=b[i]+c[i]*d[i];

    }

    if(a[5]<0.0)

      cout << a[3] << b[5] << c[10] << d[6];

  }

timing(&wct_end, &cput_end);

Large-N version (NT)

Small-N version (noNT)

// size = multiple of 8

int vector_size(int n){  

return int(pow(1.3,n))&(-8); 

}

#pragma omp parallel private(j)

{

}
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The parallel vector triad benchmark
Single thread on AMD Interlagos chip

OMP overhead 

and/or lower 
optimization w/ 
OpenMP active

L1 cache L2 cache memoryL3 cache

Team restart is 
expensive!

���� use only 
outer parallel 
from now on!
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The parallel vector triad benchmark
Intra-chip scaling on Interlagos chip

L2 bottleneck

Aggregate L2, 
exclusive L3

sync overhead

Memory BW 
saturated @ 4 
threads

Per-module 
L2 caches
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The parallel vector triad benchmark
Nontemporal stores on Interlagos chip

slow L3

NT stores hazardous 
if data in cache

25% speedup for 
vector triad in 
memory via NT 
stores
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The parallel vector triad benchmark
Topology dependence  on Interlagos chip

sync overhead nearly 
topology-independent 
@ constant thread count

more aggregate 
L3 with more 

chips
bandwidth 
scalability across 
memory interfaces
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The parallel vector triad benchmark
Inter-chip scaling on Interlagos node

sync overhead grows 
with core/chip count

bandwidth scalability 
across memory 
interfaces
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Most of the OpenMP overhead is barrier sync! 
But how much is it exactly, and does it depend on the topology?

Overhead in cycles:

4 Threads Q9550 i7 920 (shared L3)

(pthreads_barrier_wait) 42533 9820

omp barrier (icc 11.0) 977 814

gcc 4.4.3 41154 8075

pthreads/gcc � OS kernel call

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Nehalem 2 Threads Shared SMT 
threads

shared L3 different socket

(pthreads_barrier_wait) 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

P C
P C

C
C

P C
P C

C
C

C

P C
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• SMT can be a performance problem for synchronizing threads

• Topology has an influence on overhead!
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Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls

– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments

– Intel compilers > V9.1 (KMP_AFFINITY environment variable)

– Pathscale

– SGI Altix dplace (works with logical CPU numbers!)

– Generic Linux: taskset, numactl, likwid-pin (see below)

• Affinity awareness in MPI libraries

– SGI MPT

– OpenMPI

– Intel MPI

– …

Widely usable example: Using PLPA
under Linux!

Seen on SUN Ranger slides
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Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

• Portable Linux Processor Affinity

• Wrapper library for sched_*affinity() functions

– Robust against changes in kernel API

• Example for pure OpenMP: Pinning of threads 

#include <plpa.h>

...

#pragma omp parallel

{

#pragma omp critical

{

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);

}

plpa_cpu_set_t msk;

PLPA_CPU_ZERO(&msk);

int cpu = omp_get_thread_num();

PLPA_CPU_SET(cpu,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning 
available?

Which CPU 
to run on?

Pin “me”

Care about correct 
core numbering! 
0…N-1 is not always 
contiguous! If 
required, reorder by 
a map:
cpu = map[cpu];
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Process/Thread Binding With PLPA

• Example for pure MPI: Process pinning

– Bind MPI processes to cores in a cluster 
of 2x2-core machines

• Hybrid case: 

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

int mask = (rank % 4);

PLPA_CPU_SET(mask,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0, 

sizeof(cpu_set_t), &msk);

P0
C

P1
C

C C

MI

Memory

P2
C

P3
C

C C

MI

Memory

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

#pragma omp parallel

{

plpa_cpu_set_t msk;

PLPA_CPU_ZERO(&msk);

int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();

PLPA_CPU_SET(cpu,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}
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How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?

• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid
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Likwid Tool Suite

• Command line tools for Linux:

– works with standard linux 2.6 kernel

– supports Intel and AMD CPUs

– Supports all compilers whose OpenMP implementation is based on 
pthreads

• Current tools:

– likwid-topology: Print thread and cache topology
(similar to lstopo from the hwloc package)

– likwid-pin: Pin threaded application without touching code

– likwid-perfctr: Measure performance counters

– likwid-perfscope: Performance oscilloscope w/ real-time display

– likwid-powermeter: Current power consumption of chip (alpha stage)

– likwid-features: View and enable/disable hardware prefetchers

– likwid-bench: Low-level bandwidth benchmark generator tool

– likwid-mpirun: mpirun wrapper script for easy LIKWID integration
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likwid-topology – Topology information

• Based on cpuid information

• Functionality:

– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:

– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem, Westmere, Sandy Bridge (alpha)

– AMD K10 (Quadcore and Hexacore)

– AMD K8
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Output of likwid-topology

CPU name:       Intel Core i7 processor

CPU clock:      2666683826 Hz

*************************************************************

Hardware Thread Topology

*************************************************************

Sockets:                2

Cores per socket:       4

Threads per core:       2

-------------------------------------------------------------

HWThread Thread Core Socket

0               0               0               0

1               1               0               0

2               0               1               0

3               1               1               0

4               0               2               0

5               1               2               0

6               0               3               0

7               1               3               0

8               0               0               1

9               1               0               1

10              0               1               1

11              1               1               1

12              0               2               1

13              1               2               1

14              0               3               1

15              1               3               1

-------------------------------------------------------------
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likwid-topology continued

• … and also try the ultra-cool -g option!

Socket 0: ( 0 1 2 3 4 5 6 7 )

Socket 1: ( 8 9 10 11 12 13 14 15 )

-------------------------------------------------------------

*************************************************************

Cache Topology

*************************************************************

Level:   1

Size:    32 kB

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )

-------------------------------------------------------------

Level:   2

Size:    256 kB

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )

-------------------------------------------------------------

Level:   3

Size:    8 MB

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )

-------------------------------------------------------------
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likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI 

combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted set of 

cores

• Supports logical core numbering inside node, socket, core

• Usage examples:
– env OMP_NUM_THREADS=6 likwid-pin -c 0,2,4-6 ./myApp parameters 

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

– env OMP_NUM_THREADS=2 mpirun –npernode 2 \

likwid-pin -s 0x3 -c 0,1 ./myApp parameters 
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Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (round-robin across 
sockets, physical cores first)
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Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per 
node

One MPI process per 
socket

OpenMP threads 
pinned “round robin”
across cores in 
node

Two MPI processes 
per socket

env OMP_NUM_THREADS=8 mpirun -pernode \

likwid-pin -c 0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \

likwid-pin -c L:0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \

likwid-pin -c L:0,1 ./a.out
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Case study: 3D Jacobi Solver
Basic implementation (2 arrays; no blocking etc…)

do k = 1 , Nk

do j = 1 , Nj

do i = 1 , Ni

y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+ x(i+1,j,k) + x(i,j-1,k)

+x(i,j+1,k)+ x(i,j,k-1) + x(i,j,k+1))

enddo

enddo

enddo

MPI Parallelization by

• Domain Decomposition

• Halo cells

• Data Exchange through cyclic SendReceive operation

Performance metric:
Million Lattice Site Updates per second (MLUPs)

Equivalent MFLOPs:
8 FLOP/LUP * MLUPs
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MPI/OpenMP Parallelization – 3D Jacobi

i

j

k

1,1,0

0,0,1

1,0,0

0,0,0

1,1,1

• Cubic 3D computational domain with periodic BCs in all directions

• Use single-node IB/GE cluster with one dual-core chip per node

• Homogeneous distribution of workload, e.g. on 8 procs

pure MPI:

000001

010011

100101

110111

hybrid:

000

100

110

010

1,0,1
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Performance Data for 3D MPI/hybrid Jacobi

Strong scaling, N3 = 4803

IB

GE

FullHybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

Performance model

T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE) = 100 MByte/s

Performance estimate (GE) for n nodes:
P(n) = N3 / ((TCOMP/n) + TCOMM(n))

Vdata = Data volume of 
halo exchange
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Example: Sparse MVM
JDS parallel sparse matrix-vector multiply – storage scheme

…

column index

ro
w

 i
n

d
e

x
1 2 3 4 …

1

2

3

4

…

4 3 2 21 3 36711 7 26 4 651 … col_idx[]9 9

val[]

1 11 21 … jd_ptr[] 2 16 4 953 1087 … perm[]

• val[] stores all the nonzeroes (length 

Nnz)

• col_idx[] stores the column index of 

each nonzero (length Nnz)

• jd_ptr[] stores the starting index of 
each new jagged diagonal in val[]

• perm[] holds the permutation map 

(length Nr) 

(JDS = Jagged Diagonal Storage)
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JDS Sparse MVM – Kernel Code
OpenMP parallelization

• Implement c(:) = m(:,:) * b(:)

• Operation count = 2Nnz

do diag=1, zmax

diagLen = jd_ptr(diag+1) - jd_ptr(diag)

offset = jd_ptr(diag) – 1

!$OMP PARALLEL DO

do i=1, diagLen

c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))

enddo

!$OMP END PARALLEL DO

enddo

• Long inner loop (max. Nr): OpenMP parallelization / vectorization

• Short outer loop (number of jagged diagonals)

• Multiple accesses to each element of result vector c[]

– optimization potential!

• Stride-1 access to matrix data in val[]

• Indexed (indirect) access to RHS vector b[]

—
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JDS Sparse MVM
MPI parallelization

Row-wise distribution

P2

P0

P

P

1

3

Each processor: local JDS (shift&order) 

P0

P

P

1

3

P2

Avoid mixing of local and 
non-local diagonals:

1. Shift within local subblock

2. Fill local subblock with non-
local elements from the right

P0

P

P

1

3

P2
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JDS Sparse MVM
Parallel MVM implementations: MPP

Start: isend/irecv

Release local diags

Compute MVM with 
diags released

Test:irecv

Release diags ?

irecv ?

1

2

3

4

5

6

MPI

• One MPI process per processor

• Non-blocking MPI communication

• Potential overlap of communication and 
computation

– However, MPI progress is only 
possible inside MPI calls on many 
implementations

• SMP Clusters: Intra-node and inter-
node MPI
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JDS Sparse MVM
Parallel MVM implementations: Hybrid

1

2

3

4

5

6

ThreadsM ThreadsM

1

2

34

5

6

LOCK: Rel. list

LOCK: Rel. list

OMP END PARALLEL

OMP PARALLEL

MPI MPI

VECTOR mode TASK mode
VECTOR mode:

• Automatic parallel. of inner 
i loop (data parallel)

• Single threaded MPI calls

TASK mode:

• Functional parallelism: 
Simulate asynchronous 
data transfer! (OpenMP)

• Release list - LOCK 

• Single threaded MPI calls

• Optional: Comm. Thread 
executes configurable 
fraction of work 
(load = 0...1)
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JDS Sparse MVM:
Performance and scalability on two different platforms

GBE

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Opteron 270 2 GHz

P
C

Chipset

Memory

P
C

C

P
C

P
C

CSDR IB

Xeon 5160 3 GHz

no NUMA 
placement!

hybrid 
advantage

71·106 

nonzeroes
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MPI/OpenMP hybrid “how-to”: Take-home messages

• Do not use hybrid if the pure MPI code scales ok

• Be aware of intranode MPI behavior

• Always observe the topology dependence of

– Intranode MPI

– OpenMP overheads

• Enforce proper thread/process to core binding, using appropriate 
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct 
page placement

• Finally: Always compare the best pure MPI code with the best 
OpenMP code!
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Mismatch Problems

• None of the programming models
fits to the hierarchical hardware 
(cluster of SMP nodes)

• Several mismatch problems

� following slides

• Benefit through hybrid programming

� Opportunities, see next section

• Quantitative implications 

� depends on you application 

Examples: No.1 No.2

Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%

Total +20% –15%

In most 
cases: 
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?
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The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

C

C

C

C C

CC

C

D

D

D

D D

DD

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

GG

G G

G

G

G

H

HH

H H

H

H

H

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

28 x inter-node connections per node

0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

AA

AA

AA

AA

JJ

JJ

JJ

JJ

Never tru
st the default !!!
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The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

Bad affinity of cores to thread ranks

4 x inter-socket connection per node

—
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The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks
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The Topology Problem with

Problem

– Does application topology inside of SMP parallelization 
fit on inner hardware topology of each SMP node?

Solutions:

– Domain decomposition inside of each thread-parallel 
MPI process,  and

– first touch strategy with OpenMP

Successful examples:

– Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing 
on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA
data traffic through 
domain decomposition 
inside of each 
MPI process 
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The Topology Problem with

Application example:

• Same Cartesian application aspect ratio: 5 x 16 

• On system with 10 x dual socket x quad-core

• 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

3 x inter-node connections per node, but ~ 4 x more traffic

2 x inter-socket connection per node

Affinity of cores to thread ranks !!!
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Numerical Optimization inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Optimizing the
numerical
performance
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The Mapping Problem with mixed model

Several multi-threaded MPI 
process per SMP node:

Problem

– Where are your processes 
and threads really located?

Solutions:

– Depends on your platform,

– e.g., with numactl

hybrid MPI+OpenMP

pure MPI

&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI 

process

4 x multi-

threaded

MPI 

process

4 x multi-

threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI 

pro-

cess

0

MPI 

pro-

cess

1

� Case study on 
Sun Constellation Cluster 

Ranger
with BT-MZ and SP-MZ

Further questions:

– Where is the NIC1) located?

– Which cores share caches?

1) NIC = Network Interface Card
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Unnecessary intra-node communication

Problem:

– If several MPI process on each SMP node
� unnecessary intra-node communication

Solution:

– Only one MPI process per SMP node

Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than 
inter-node bandwidth
� problem may be small

– MPI implementation may cause 
unnecessary data copying
� waste of memory bandwidth 

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI 
processes per SMP node)

pure MPI
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Sleeping threads and network saturation 
with

Problem 1:

– Can the master thread 
saturate the network?

Solution:
– If not, use mixed model
– i.e., several MPI 

processes per SMP node

Problem 2:

– Sleeping threads are 
wasting CPU time

Solution:
– Overlapping of 

computation and 
communication

Problem 1&2 together:
– Producing more idle time 

through lousy bandwidth 
of master thread

for (iteration ….)

{

#pragma omp parallel 
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of 

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sl
ee

pin
g

sl
ee

pin
g
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OpenMP:  Additional Overhead & Pitfalls

• Using OpenMP 

� may prohibit compiler optimization

� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality 
or missing first touch strategy

– E.g. with the masteronly scheme:

• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries?  � Are they prepared for hybrid? 

See, e.g., the necessary –O4 flag 
with mpxlf_r on IBM Power6 systems
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Overlapping communication and computation

Three problems:

• the application problem:

– one must separate application into: 
• code that can run before the halo data is received

• code that needs halo data

�very hard to do !!!

• the thread-rank problem:

– comm. / comp. via
thread-rank

– cannot use
work-sharing directives

�loss of major
OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

….

}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Overlapping communication and computation

Subteams

• Important proposal
for OpenMP 3.x 
or  OpenMP 4.x

#pragma omp parallel

{

#pragma omp single onthreads( 0 )

{

MPI_Send/Recv….

}

#pragma omp for onthreads( 1 : omp_get_numthreads()-1 )

for (……..)

{ /* work without halo information */

}  /* barrier at the end is only inside of the subteam */

…

#pragma omp barrier

#pragma omp for

for (……..)

{ /* work based on halo information */

}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:

Toward Enhancing OpenMP’s
Work-Sharing Directives.

In proceedings, W.E. Nagel et 
al. (Eds.): Euro-Par 2006, 
LNCS 4128, pp. 645-654, 
2006.

Not yet part of 
the OpenMP

standard
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some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate

Funneled & 
Reserved

reserved thread 
for communication

Funneled 
with 

Full Load 
Balancing

Multiple & 
Reserved

reserved threads
for communication

Multiple
with 

Full Load 
Balancing

Different strategies
to simplify the
load balancing
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Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver 
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is 
always faster in this 
experiments

• Reason: 
Memory bandwidth 
is already saturated 
by 15 CPUs, see inset

• Inset: 
Speedup on 1 SMP node 
using different 
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .
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Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation. 

Slides, courtesy of Alice Koniges, NERSC, LBNL 

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.
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Case study:  Communication and Computation in 
Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after 
sending) can be overlapped with data independent MPI 
communication using OpenMP tasks.

IN
D

E
P

E
N

D
E

N
T

IN
D

E
P

E
N

D
E

N
T

S
E

M
I-IN

D
E

P
E

N
D

E
N

T

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work 

• Overlap: Master thread encounters (!$omp master) tasking statements and creates 
work for the thread team for deferred execution. MPI Allreduce call is immediately 
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED

• Subdividing tasks into smaller chunks to allow better load balancing and scalability 

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining 
particles (above) and adding sent 
particles into array (right)  & sending 
or receiving of shifted particles can 
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL 
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OpenMP tasking version outperforms original shifter, 
especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator 

(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands 
CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of 
Alice Koniges, NERSC, LBNL 
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OpenMP/DSM

• Distributed shared memory (DSM)   //

• Distributed virtual shared memory (DVSM)  //

• Shared virtual memory (SVM)

• Principles

– emulates a shared memory

– on distributed memory hardware

• Implementations

– e.g., Intel® Cluster OpenMP

OpenMP only
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Intel® Compilers with Cluster OpenMP   –
Consistency Protocol

Basic idea:

• Between OpenMP barriers, data exchange is not necessary, i.e., 
visibility of data modifications to other threads only after synchronization.

• When a page of sharable memory is not up-to-date,
it becomes protected.

• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,
which requests info from remote nodes and updates the page.

• Protection is removed from page.

• Instruction causing the fault is re-started, 
this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel 
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Comparison:  
MPI based parallelization   ���� DSM 

• MPI based:

– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):

– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages

� Not all of this data may be needed 

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries 
of a domain decomposition

� probably more data must be transferred than 
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication 
may be

10 times slower
than with MPI
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Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7
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Heat example:  Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster
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se
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nodes
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6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node

6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node

6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node

3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node

1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node

250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs 
with 3000x3000

Efficiency only with small 
communication foot-print

Terrible with non-default schedule

—
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Back to the mixed model  – an Example

• Topology-problem solved:
Only horizontal inter-node comm. 

• Still intra-node communication

• Several threads per SMP node are 
communicating in parallel:
� network saturation is possible

• Additional OpenMP overhead

• With Masteronly style:
75% of the threads sleep while 
master thread communicates

• With Overlapping Comm.& Comp.:
Master thread should be only 
partially reserved for communication  
– otherwise too expensive 

• MPI library must support 

– Multiple threads

– Two fabrics (shmem + internode)

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI 

process

4 x multi-

threaded

MPI 

process

4 x multi-

threaded

MPI 

process

4 x multi-

threaded

MPI 

process

4 x multi-

threaded
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No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we 
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons



Slide 129 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid 
parallelization 

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Nested Parallelism

• Example NPB: BT-MZ  (Block tridiagonal simulated CFD application)

– Outer loop: 

• limited number of zones  ���� limited parallelism

• zones with different workload ���� speedup <

– Inner loop:

• OpenMP parallelized (static schedule)

• Not suitable for distributed memory parallelization 

• Principles:

– Limited parallelism on outer level

– Additional inner level of parallelism

– Inner level not suitable for MPI

– Inner level may be suitable for static OpenMP worksharing 

Sum of workload of all zones 
Max workload of a zone
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Load-Balancing
(on same or different level of parallelism)

• OpenMP enables

– Cheap dynamic and guided load-balancing

– Just a parallelization option (clause on omp for / do directive)

– Without additional software effort

– Without explicit data movement

• On MPI level

– Dynamic load balancing requires 
moving of parts of the data structure through the network

– Significant runtime overhead

– Complicated software  /   therefore not implemented

• MPI & OpenMP

– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}
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Memory consumption

• Shared nothing

– Heroic theory

– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:

– Duplicated data may be reduced by factor n



Slide 133 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Using more 
OpenMP threads 
could reduce the 
memory usage 
substantially, 
up to five times on 
Hopper Cray XT5 
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, 
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon 
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of 
Alice Koniges, NERSC, LBLN 

Always same 
number of cores
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Memory consumption   (continued)

• Future:
With 100+ cores per chip the memory per core is limited.

– Data reduction through usage of shared memory 
may be a key issue

– Domain decomposition on each hardware level

• Maximizes

– Data locality

– Cache reuse

• Minimizes

– ccNUMA accesses

– Message passing

– No halos between domains inside of SMP node

• Minimizes

– Memory consumption
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How many threads per MPI process?

• SMP node = with m sockets and n cores/socket

• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused? 

– Too few threads
� too much memory consumption (see previous slides)

• Optimum

– somewhere between 1 and m x n threads per MPI process,

– Typically:
• Optimum = n, i.e., 1 MPI process per socket

• Sometimes = n/2 i.e., 2 MPI processes per socket

• Seldom = 2n, i.e., each MPI process on 2 sockets
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Opportunities, if MPI speedup is limited due to 
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of 
each MPI process

� If multigrid algorithm only inside of MPI processes

� If separate preconditioning inside of MPI nodes and between 
MPI nodes

� If MPI domain decomposition is based on physical zones
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To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)
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Summary: Opportunities of hybrid parallelization 
(MPI & OpenMP)

• Nested Parallelism 

� Outer loop with MPI  /  inner loop with OpenMP

• Load-Balancing

� Using OpenMP dynamic and guided worksharing

• Memory consumption

� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem

� Significantly reduced number of MPI processes

• Reduced MPI scaling problems

� Significantly reduced number of MPI processes
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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MPI rules with OpenMP / 
Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded, 

(virtual value, but  only master thread will make MPI-calls

not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls

– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,
but only one at a time

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, 
with no restrictions

• returned provided may be less than REQUIRED by the application

int MPI_Init_thread( int * argc, char ** argv[],

int thread_level_required,

int * thead_level_provided);

int MPI_Query_thread( int * thread_level_provided);

int MPI_Is_main_thread(int * flag);
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Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other 
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);  
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!

• The additional barrier implies also the necessary cache flush!
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… the barrier is necessary  –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

—
skip

ped —
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Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch3:sock supports MPI_THREAD_MULTIPLE 

ch:nemesis has “Initial Thread-support”

ch3:nemesis (default) has MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE

MPI_THREAD_FUNNELED

Full MPI_THREAD_MULTIPLE (with libmtmpi)

Not thread-safe?

Full MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPIch-1.2.7p1

MPIch2-1.0.8

MPIch2-1.1.0a2

Intel MPI 3.1

SciCortex MPI

HP MPI-2.2.7

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplementation

• Testsuites for thread-safety may still discover bugs in the 
MPI libraries

Courtesy of Rainer Keller, HLRS and ORNL 

—
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Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:

– Support for full MPI_THREAD_MULTIPLE

– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:

– Progress threads to asynchronously transfer/receive data per 
network BTL.

• Additional Feature:

– Compiling with debugging support, but without threads will 
check for recursive locking 

Courtesy of Rainer Keller, HLRS and ORNL 
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Thread Correctness – Intel ThreadChecker 1/3

• Intel ThreadChecker operates in a similar fashion to helgrind,

• Compile with –tcheck, then run program using tcheck_cl:

Application finished

_______________________________________________________________________________

|ID|Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|

|  |scriptio|ity |o|t[Best|                                  |ess[Bes|ess[Bes|

|  |n       |Name |u|]     |                                  |t]     |t]     |

|  |        |     |n|      |                                  | |       |

|  |        |     |t|      |                                  | |       |

_______________________________________________________________________________

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

|  |Write da|     | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.|

|  |ta-race |     | |e.c":2|a prior memory write of           |c":31  |c":31 |

|  |        |     | |5     |global_variable at                |       |       |

|  |        |     | |      |"pthread_race.c":31 (output       | |       |

|  |        |     | |      |dependence)                       | |       |

_______________________________________________________________________________

Courtesy of Rainer Keller, HLRS and ORNL 

With new Intel Inspector XE 2011:
Command line interface must be 
used within mpirun / mpiexec
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Thread Correctness – Intel ThreadChecker 2/3

• One may output to HTML:

tcheck_cl --format HTML --report pthread_race.html pthread_race

Courtesy of Rainer Keller, HLRS and ORNL 

—
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Thread Correctness – Intel ThreadChecker 3/3

• Then run with:
mpirun --mca tcp,sm,self -np 2 tcheck_cl \

--reinstrument -u full --format html             \

--cache_dir '/tmp/my_username_$$__tc_cl_cache'   \

--report 'tc_mpi_test_suite_$$'                  \

--options 'file=tc_my_executable_%H_%I,          \

pad=128, delay=2, stall=2'        -- \

./my_executable my_arg1 my_arg2 …

configure --enable-mpi-threads

--enable-debug

--enable-mca-no-build=memory-ptmalloc2

CC=icc F77=ifort FC=ifort

CFLAGS=‘-debug all –inline-debug-info tcheck’

CXXFLAGS=‘-debug all –inline-debug-info tcheck’

FFLAGS=‘-debug all –tcheck’ LDFLAGS=‘tcheck’

• If one wants to compile with threaded Open MPI (option for IB):

Courtesy of Rainer Keller, HLRS and ORNL 
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Performance Tools Support for Hybrid Code

• Paraver examples have already
been shown, tracing is done with 
linking against (closed-source)
omptrace or ompitrace

• For Vampir/Vampirtrace performance analysis:
./configure –enable-omp

–enable-hyb

–with-mpi-dir=/opt/OpenMPI/1.3-icc 

CC=icc F77=ifort FC=ifort

(Attention: does not wrap MPI_Init_thread!)

Courtesy of Rainer Keller, HLRS and ORNL 
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Scalasca – Example “Wait at Barrier”

Indication of 
non-optimal load 

balance

Screenshots, courtesy of KOJAK JSC, FZ Jülich
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Scalasca – Example “Wait at Barrier”, Solution

Better load balancing 
with dynamic 
loop schedule

Screenshots, courtesy of KOJAK JSC, FZ Jülich
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

– Pure MPI  – multi-core aware    (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators    (Gabriele Jost)

• Summary
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Pure MPI  – multi-core aware

• Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further 
partitioning:

1 sub-domain / 
socket

1 / core

Cache 
optimization:

Blocking inside of 
each core,

block size relates 
to cache size.

1-3 cache levels.

Example on 10 nodes, each with 4 sockets, each with 6 cores.
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How to achieve a 
hierarchical domain decomposition (DD)?

• Cartesian grids:

– Several levels of subdivide

– Ranking of MPI_COMM_WORLD   – three choices:

a) Sequential ranks through original data structure

+ locating these ranks correctly on the hardware

� can be achieved with one-level DD on finest grid
+ special startup (mpiexec) with optimized rank-mapping

b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

� requires optimized MPI_CART_CREATE,  
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

• Unstructured grids:

� next slide

Implementation hints 
to previous slide 

—
skip

ped —



Slide 155 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to achieve a 
hierarchical domain decomposition (DD)?

• Unstructured grids:

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
� unbalanced communication

� demonstrated on next (skipped) slide

• Bottom-up: Low level DD 
+  higher level recombination

� based on DD of the grid of subdomains

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run 
(with only a few iterations)

• Optimized rank mapping to the hardware before production run

• E.g., with CrayPAT + CrayApprentice
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Top-down  – several levels of (Par)Metis

Steps:

– Load-balancing (e.g., with 
ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on 
balancing of the outer boundary

� processes can get a lot of 
neighbors with inter-node 
communication

� unbalanced communication

—
skip

ped —
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Bottom-up  –
Multi-level DD through recombination 

1. Core-level DD: partitioning of application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

• Problem: 
Recombination 
must not
calculate patches 
that are smaller 
or larger than the 
average

• In this example 
the load-balancer 
must combine 
always 

� 6 cores, and

� 4 numa-
domains (i.e., 
sockets or 
dies)

• Advantage:

Communication 
is balanced!

Graph of 
all sub-

domains 
(core-
sized) 

Divided 
into sub-
graphs 
for each 
socket 
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Profiling solution

• First run with profiling

– Analysis of the communication pattern

• Optimization step

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD
to the hardware grid (physical cores / sockets / SMP nodes)

• Restart of the application with this optimized locating of the ranks on the 
hardware grid

• Example: CrayPat and CrayApprentice

—
skip
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The vendors 
should deliver 
scalable MPI 

libraries for their 
largest systems! 

Scalability of MPI to hundreds of thousands …

Scalability of pure MPI

• As long as the application does not use

– MPI_ALLTOALL

– MPI_<collectives>V    (i.e., with length arrays)

and application

– distributes all data arrays

one can expect:

– Significant, but still scalable memory overhead for halo cells.

– MPI library is internally scalable:
• E.g., mapping ranks ���� hardware grid

– Centralized storing in shared memory (OS level)

– In each MPI process, only used neighbor ranks are stored (cached) in 
process-local memory.

• Tree based algorithm with O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles! 
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Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels) 
are done:

• Cache-blocking is an additional DD into data blocks

– that fit to 2nd or 3rd level cache.

– It is done inside of each MPI process (on each core).

– Outer loops run from block to block

– Inner loops inside of each block

– Cartesian example:  3-dim loop is split into
do i_block=1,ni,stride_i

do j_block=1,nj,stride_j
do k_block=1,nk,stride_k

do i=i_block,min(i_block+stride_i-1, ni)
do j=j_block,min(j_block+stride_j-1, nj)

do k=k_block,min(k_block+stride_k-1, nk)
a(i,j,k) = f( b(i±0,1,2, j±0,1,2, k±0,1,2) )

… … … end do
end do

Access to 13-point stencil
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Remarks on Cost-Benefit Calculation

Costs

• for optimization effort

– e.g., additional OpenMP parallelization

– e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

• from reduced CPU utilization 

– e.g., Example 1:
100,000 € hardware costs of the cluster
x  20% used by this application over whole lifetime of the cluster
x  7% performance win through the optimization
= 1,400 € ���� total loss = 13,600 €

– e.g., Example 2:
10 Mio € system x  5% used  x  8% performance win
= 40,000 € ���� total win = 25,000 €
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Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means

– expressing locality.

• If the application has no locality,

– Then the parallelization needs not to model locality

� UPC with its round robin data distribution may fit

• If the application has locality,

– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:

– A(17,15)[3] 
= element A(17,13) in the distributed array A in process with rank 3

—
skip
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Remarks on MPI and PGAS (UPC & CAF) 

• Future shrinking of memory per core implies

– Communication time becomes a bottleneck 

� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.

– But it is hard for the compiler to access data such early that the 
transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.

– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers

– Typical packing strategies do not work for PGAS on compiler level

– Only with MPI, or with explicit application programming with PGAS

—
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Remarks on MPI and PGAS (UPC & CAF) 

• Point-to-point neighbor communication

– PGAS or MPI nonblocking may fit
if message size makes sense for overlapping.

• Collective communication

– Library routines are best optimized

– Non-blocking collectives (comes with MPI-3.0)
versus calling MPI from additional communication thread

– Only blocking collectives in PGAS library?

—
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Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC  (many nodes  x   many cores)

– Most parallelization may still use MPI

– Parts are optimized with PGAS, e.g., for better latency hiding

– PGAS efficiency is less portable than MPI

– #ifdef … PGAS

– Requires mixed programming PGAS & MPI  
� will be addressed by MPI-3.0

—
skip

ped —
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• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

– Pure MPI  – multi-core aware    (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators    (Gabriele Jost)

• Summary



Slide 167 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Hybrid Programming and Accelerators

• Under Discussion OpenMP support for Accelerators in 4.0

- To be announced at SC12 

- Multiple devices of the same type (homogeneous) 

- Device type known at compile time

- Automatic run-time and programmed user-control device 
selection

- Structured and unstructured block data placement

- Data regions and mirror directives

- Synchronous and asynchronous data-movement

- Accelerator style parallel launch with multiple 'threads' of 
execution on the device: eg accelerator parallel regions

- Dispatch-style parallel launch(offload) to a single thread of 
execution on the device; eg accelerator tasks
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OpenMP Accelerator Memory Model

• Current Memory Model:

• Relaxed-Consisteny Shared-Memory

• All threads have access to the memory

• Data-sharing attributes: shared, private

• Proposed Additions to Memory Model

• Separate Host and Accelerator Memory

• Data Movement Host<->Accelerator indicated by compiler 
directives

• Updates to different memories indicated by compiler directives

• #pragma omp acc_data [clause]

• acc_shared

• acc_copyout, acc_copyin
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OpenMP Accelerator Execution Model

• Current OpenMP Execution Model:

• Execution starts single threaded

• Fork-Join Threads at OpenMP parallel regions

• Work-sharing indicated via compiler directives

• Proposed additions to the Execution Model:

• Explicit accelerator regions or tasks are generated at beginning of 
accelerator regions

• #pragma acc_region [clause]

• Purpose: Define code that is to be run on accelerator

• acc_copyin (list)

• acc_copyout (list)

#pragma omp acc_loop [clause]
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Other Compiler Directive Based APIs 

• OpenACC:

• Support of separate host and device memory: copy-in, copy-out, etc.

• Support to execute compute kernels on the accelerator device

• Fine grained control of execution on accelerator: num_gangs, 
num_workers, vector length, etc

• http://www.openacc-standard.org

• PGI Compiler Directives:

• Similar to OpenMP (see example)

• Compiler Directives for Many Core Architectures: 

• Generate tasks for parts of the code to be off-loaded to many core 
nodes 
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Example: Jacobi Iteration OpenMP directives 

!$OMP PARALLEL DO PRIVATE(i,j,k)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = &

( data(i,j,k,old) + + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data2(i,j,k+1,old) - &

edge(i,j,k) ) / 6.0

END DO

END DO

END DO
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Test Case: Hybrid Jacobi using PGI directives

• PGI (http://www.pgroup.com) provides compiler directives for accelerators

– Website for some documentation

• PGI active member of OpenMP Language committee

– Use PGI  Directives

• OpenMP Language committee at this time closely follows path set by PGI

• Original Hybrid MPI/OpenMP implementation provided by courtesy of 
EPCC (Edingburgh Parallel Computing Center) (http://www.epcc.ed.ac.uk)
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Test System

• TACC's Dell XD Visualization Cluster Longhorn 
(http://www.tacc.utexas.edu/user-services/user-guides/longhorn-
user-guide)

• 240 nodes containing 48GB of RAM, 

• 8 Intel Nehalem cores (@ 2.5 GHz), and 2 NVIDIA Quadro FX 
5800 GPUs per node

• Test System: Longhorn at TACC

• pgf90 11.5

• -fastsse -ta=nvidia,time -Minfo=vect,accel -Mcuda=cuda3.2
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Unoptimized

!$omp acc_region
DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = &

( data(i,j,k,old) + + &

data(i,j-1,k,old) + 

data(i,j+1,k,old) + &

data(i,j,k-1,old) + 

data2(i,j,k+1,old) - &

edge(i,j,k) ) / 6.0

END DO

END DO

END DO

!$omp end acc_region

jacobistep:
59, Loop carried dependence of 'data' prevents 

parallelization
Loop carried backward dependence of 'data' 

prevents vectorization
60, Loop carried dependence of 'data' prevents 

parallelization
Loop carried backward dependence of 'data' 

prevents vectorization
61, Loop carried dependence of 'data' prevents 

parallelization
Loop carried backward dependence of 'data' 

prevents vectorization
Accelerator kernel generated
59, !$acc do seq
60, !$acc do seq
61, !$acc do seq

Non-stride-1 accesses for array 'data'
Non-stride-1 accesses for array 'edge'

No performance increase when using accelerator 
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Optimized for parallelization:

!$acc data region local(temp2) 

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region   

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) =

&( temp2(i-1,j,k)

+ temp2(i+1,j,k) + &

& ……

edge(i,j,k) ) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

244, Loop is parallelizable
245, Loop is parallelizable
246, Loop is parallelizable

Accelerator kernel generated
244, !$acc do parallel, vector(4) ! blockidx%y threadidx%z
245, !$acc do parallel, vector(4) ! blockidx%x threadidx%y
246, !$acc do vector(16) ! threadidx%x

Cached references to size [18x6x6] block of 'temp2'

copy to temporary array to expose 
non-overlap
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Optimized for parallelization alternative: Compiler directives 

!$acc data region local(temp2) 

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region   

!$acc do parallel,independent

DO k = 1, Z, 1

!$acc do parallel,independent

DO j = 1, Y, 1

!$acc do parallel independent

DO i = 1, X, 1

data(i,j,k,new) = &

( data(i-1,j,k,old) + data(i+1,j,k,old) + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data(i,j,k+1,old) - &

edge(i,j,k) ) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

Indicate non-overlap using 
“independent” clause
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Optimized for parallelization alternative: Compiler directives 

!$acc data region local(temp2) 

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region   

!$acc do parallel,independent

DO k = 1, Z, 1

!$acc do parallel,independent

DO j = 1, Y, 1

!$acc do parallel independent

DO i = 1, X, 1

data(i,j,k,new) = &

( data(i-1,j,k,old) + data(i+1,j,k,old) + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data(i,j,k+1,old) - &

edge(i,j,k) ) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

Accelerator kernel generated

238, !$acc do parallel, vector(2) ! blockidx%y threadidx%z
240, !$acc do parallel, vector(8) ! blockidx%x threadidx%y
242, !$acc do vector(8) ! threadidx%x

Non-stride-1 accesses for array 'data'
252, Generating !$acc update host(data(0:x+1,0:y+1,0:z+1,:new))
255, Generating !$acc update device(data(0:x+1,0:y+1,0:z+1,:old))
259, Loop is parallelizable
261, Loop is parallelizable
263, Loop is parallelizable

Accelerator kernel generated
259, !$acc do parallel, vector(2) ! blockidx%y threadidx%z
261, !$acc do parallel, vector(8) ! blockidx%x threadidx%y
263, !$acc do vector(8) ! threadidx%x
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Using different Devices

!$acc data region local(temp2) 

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region   

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) =

&( temp2(i-1,j,k)

+ temp2(i+1,j,k) + &

& ……

edge(i,j,k) ) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

if (first) then

macc = MOD(rank,2)+1

call acc_set_device_num

(macc,acc_device_type)

endif

Use different devices for different MPI processes
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Version 1 (cont): ….and data movement 

module glob

real (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: data

real (kind(1.0e0)), dimension(:,:,:), allocatable,pinned :: edge

logical first

!$acc mirror(data,edge)

end module glob

!$acc data region local(temp2) 

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region   

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = ( temp2(i-1,j,k) + temp2(i+1,j,k) + … edge (I,j,k))/6.

END DO

END DO

END DO

!$acc end region

!$acc end data region



Slide 180 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Compare PGI, openACC and OpenMP extensions

module glob

real (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: data

real (kind(1.0e0)), dimension(:,:,:), allocatable,pinned :: edge

logical first

!$acc mirror(data,edge) 

end module glob

!$acc data region local(temp2)   

updatein(data(0:X+1,0:Y+1,0:Z+1,old)) 

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region 

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = ( temp2(i-1,j,k) + temp2(i+1,j,k) + … edge (I,j,k))/6.

END DO

END DO

END DO

!$acc end region

!$acc end data region

planned for OpenMP

OpenMP: planned OpenACC: copyin clause 

OpenMP and OpenACC

OpenMP and OpenACC

OpenACC provides more detailed control of 
how the kernel should be executed 
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Concluding Remarks

Still many open questions:
• Multi-core vs accelerator: General purpose vs specialized, 

e.g.:
- GPU runs kernels independently
- GPU accelerator has large team of threads
- GPU thread counts exceed number of cores
- GPU uses scheduling algorithm to hide memory latency, 

synchronize threads into groups.
- Stream processing

• How do we address parallelism within accelerator?
• Other types of co-processors?
• Which of the differences should be exposed via OpenMP?
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• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Summary  – hybrid MPI+OpenMP

MPI + OpenMP

• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)

– SP-MZ � small improvement

– Usability on higher number of cores

• Advantages

– Memory consumption 

– Load balancing

– Two levels of parallelism 
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

• Huge amount of pitfalls

• Optimum:  Somewhere in the area of 1 MPI process per NUMA domain

Maybe the most important advantage!
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Summary  – the bad news

MPI+OpenMP:  There is a huge amount of pitfalls

• Pitfalls of MPI

• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch

– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP

– E.g., topology and mapping problems

– Many mismatch problems

• Tools are available 

– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style

• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library

– Loss of OpenMP worksharing support � using OpenMP tasks 
as workaround

—
skip

ped —
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Summary  – good and bad

• Optimization 

– 1 MPI process 1 MPI process 
per core ……………………………………..… per SMP node

^– somewhere between
may be the optimum 

• Efficiency of MPI+OpenMP is not for free:

The efficiency strongly depends on
the amount of work in the source code development

mismatch
problem

—
skip

ped —
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Summary  – Alternatives 

Pure MPI

+ Ease of use

– Topology and mapping problems may need to be solved
(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP

+ Good candidate for perfectly load-balanced applications

Pure OpenMP

+ Ease of use

– Limited to problems with tiny communication footprint

– source code modifications are necessary
(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool



Slide 188 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary 

• This tutorial tried to

– help to negotiate obstacles with hybrid parallelization,

– give hints for the design of a hybrid parallelization,

– and technical hints for the implementation � “How To”,

– show tools if the application does not work as designed.

• This tutorial was not an introduction into other parallelization models:

– Partitioned Global Address Space (PGAS) languages
(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium, 

and X10).

– High Performance Fortran (HPF)

� Many rocks in the cluster-of-SMP-sea do not vanish 
into thin air by using new parallelization models

� Area of interesting research in next years 
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Conclusions 

• Future hardware will be more complicated
– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex

• Medium number of cores � more simple
(if  #cores / SMP-node will not shrink)

• MPI+OpenMP ���� work horse on large systems

• Pure MPI � still on smaller cluster

• OpenMP � on large ccNUMA nodes
(not ClusterOpenMP)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you
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Abstract

Half-Day Tutorial   (Level: 20% Introductory, 50% Intermediate, 30% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany
Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Supersmith, Maximum Performance Software, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC 
clusters with single/multi-socket and multi-core SMP nodes, but also “constellation” type systems with 
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the 
node interconnect with the shared memory parallelization inside of each node. 

This tutorial analyzes the strengths and weaknesses of several parallel programming models on 
clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given 
special consideration. This includes a discussion on planned future OpenMP support for accelerators. 
Various hybrid MPI+OpenMP approaches are compared with pure MPI, and benchmark results on
different platforms are presented. Numerous case studies demonstrate the performance-related 
aspects of hybrid MPI/OpenMP programming, and application categories that can take advantage of 
this model are identified. Tools for hybrid programming such as thread/process placement support 
and performance analysis are presented in a "how-to" section.

Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-hybrid.html 
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