
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI & OpenMP
Parallel Programming

MPI + OpenMP and other models

on clusters of SMP nodes

Rolf Rabenseifner1) Georg Hager2) Gabriele Jost3)

Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de gjost@supersmith.com

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Supersmith, Maximum Performance Software, USA

Tutorial tut163 at SC12,
November 11, 2012, Salt Lake City, Utah, USA

Slide 2 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline
slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 6

• Case Studies / pure MPI vs hybrid MPI+OpenMP 13

• Practical “How-To” on hybrid programming 49

• Mismatch Problems 100

• Opportunities: Application categories that can 129

benefit from hybrid parallelization

• Thread-safety quality of MPI libraries 139

• Tools for debugging and profiling MPI+OpenMP 145

• Other options on clusters of SMP nodes 152

• Summary 182

• Appendix 190

• Content (detailed) 206

8:30 – 10:00

10:30 – 12:00

Slide 3 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Motivation

• Efficient programming of clusters of SMP nodes

SMP nodes:

• Dual/multi core CPUs

• Multi CPU shared memory

• Multi CPU ccNUMA

• Any mixture with shared memory programming model

• Hardware range

• mini-cluster with dual-core CPUs

• …

• large constellations with large SMP nodes

… with several sockets (CPUs) per SMP node

… with several cores per socket

���� Hierarchical system layout

• Hybrid MPI/OpenMP programming seems natural

• MPI between the nodes

• OpenMP inside of each SMP node

Node Interconnect

SMP nodes

cores

shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 4 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model
is fastest?

• MPI everywhere?

• Fully hybrid
MPI & OpenMP?

• Something between?
(Mixed model)

?
• Often hybrid programming

slower than pure MPI
– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Slide 5 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems

• Technical aspects of hybrid programming

see sections � Programming models on clusters
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories
that can benefit from hybrid paralleliz.

• Issues and their Solutions

with sections � Thread-safety quality of MPI libraries
� Tools for debugging and profiling

for MPI+OpenMP

•Less
frustration
&

•More
success

with your
parallel
program on
clusters of
SMP nodes

Slide 6 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 7 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each core)

• Hybrid MPI+OpenMP

– shared memory OpenMP

– distributed memory MPI

• Other: Virtual shared memory systems, PGAS, HPF, …

• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

Slide 8 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Slide 9 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure MPI

Advantages

– No modifications on existing MPI codes

– MPI library need not to support multiple threads

Major problems

– Does MPI library uses internally different protocols?
• Shared memory inside of the SMP nodes

• Network communication between the nodes

– Does application topology fit on hardware topology?

– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed
in detail later on

in the section
Mismatch
Problems

Slide 10 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Masteronly

Advantages

– No message passing inside of the SMP nodes

– No topology problem

for (iteration ….)

{

#pragma omp parallel
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least
MPI_THREAD_FUNNELED

� Section
Thread-safety
quality of MPI

libraries

Slide 11 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….

i.e., communicate all halo data

} else {

Execute those parts of the application

that do not need halo data

(on non-communicating threads)

}

Execute those parts of the application

that need halo data

(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 12 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

Experience:
� Mismatch

section

Slide 13 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks

– For each application we discuss:

• Benchmark implementations based on different strategies and
programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary

Gabriele Jost (Supersmith, Maximum Performance Software)

• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 14 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMP
data copy+

sync.
exchange

boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMP
MLP

Processes
inter-zones

Nested
OpenMP

MLP

• Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

• Two hybrid sample implementations

• Load balance heuristics part of sample codes

• www.nas.nasa.gov/Resources/Software/software.html

Slide 15 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL

Slide 16 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

MPI/OpenMP LU-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor

end if

end do

end do

...

Slide 17 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Pipelined Thread Execution in SSOR

subroutine ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1) + …

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

subbroutine sync1

…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2

…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)

Slide 18 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Golden Rule for ccNUMA: “First touch”

c---

c do one time step to touch all data

c---

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call adi(rho_i(start1(iz)), us(start1(iz)),

$ vs(start1(iz)), ws(start1(iz)

…..

$ end do

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call initialize(u(start5(iz)),…

$ end do

•A memory page gets mapped into the local memory of the processor that first
touches it!
•"touch" means "write", not "allocate"

All benchmarks use first

touch policy to achieve
good memory placement!

Slide 19 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

Benchmark Characteristics

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI: Load-
balancing problems!

Good candidate for
MPI+OpenMP

Limitted MPI
Parallelism:

� MPI+OpenMP
increases

Parallelism

Expectations:

Slide 20 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

• OpenMP:

– Support only per MPI process

– Version 3.1 has support for binding of threads via OMP_PROC_BIND
environment variable.

– Under consideration for Version 4.0: OMP_PROC_SET or OMP_LIST to
restrict the execution to a subset of the machine; OMP_AFFINITY to influence
how the threads are distributed and bound on the machine

– Version 4.0 announced at SC12

• MPI:

– Initially not designed for NUMA architectures or mixing of threads and
processes, MPI-2 supports threads in MPI

– API does not provide support for memory/thread placement

• Vendor specific APIs to control thread and memory placement:

– Environment variables

– System commands like numactl,taskset,dplace,omplace etc

� http://www.halobates.de/numaapi3.pdf

� More in “How-to’s”

Hybrid code on cc-NUMA architectures

Slide 21 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

• Dell Linux Cluster Lonestar
• Cray XE6: Hector/Hermit
• IBM Power 6

Benchmark Architectures—
skip

ped —

Slide 22 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Dell Linux Cluster Lonestar

• Located at the Texas Advanced Computing Center (TACC), University of
Texas at Austin (http://www.tacc.utexas.edu)

• 1888 nodes, 2 Xeon Intel 6-Core 64-bit Westmere processors, 3.33 GHz, 24
GB memory per node, Peak Performance 160 Gflops per node, 3 channels
from each processor's memory controller to 3 DDR3 ECC DIMMS, 1333 MHz,

• Processor interconnect, QPI, 6.4GT/s

• Node Interconnect: InfiniBand Mellanox Switches, fat-tree topology, 40Gbit/sec
point-to-point bandwidth

• More details: http://www.tacc.utexas.edu/user-services/user-guides/lonestar-
user-guide

• Compiling the benchmarks: I

• fort 11.1, Options: -O3 –ipo –openmp –mcmodel=medium

• Running the benchmarks:

• MVAPICH 2

• setenv OMP_NUM_THREADS=

• ibrun tacc_affinity ./bt-mz.x

Slide 23 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Example run script

#!/bin/csh
#$ -cwd
#$ -j y
#$ -q systest
#$ -pe 12way 24
#$ -V
#$ -l h_rt=00:10:00
setenv OMP_NUM_THREADS 1
setenv MY_NSLOTS 16
ibrun tacc_affinity ./bin/sp-mz.D.

Run 12 MPI processes per node,
allocate 24 cores (2nodes) alltogether

1 thread per MPI process

Only use 16 of the
24 cores for MPI.
NOTE:
8 cores unused!!!

numactl script for

process/thread placementCommand to

run mpi job

Slide 24 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

NUMA Operations

Slide 25 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

NUMA Operations: Memory Placement

Memory allocation:

• MPI

– Pure MPI: socket local allocation is best

– Hybrid: Depending on #threads per process remote socket
memory may be required

• OpenMP

– Regular structured access pattern that does not
change: Allocate close to core where thread runs

– Irregular, unpredictable access: Round-robin
placement of pages

• Once allocated, a memory-structure is fixed

Example: numactl –c 1 -l ./a.out

Use socket 1, allocate memory on current socket

—
skip

ped —

Slide 26 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Example numactl script

myway=`echo $PE | sed s/way//`

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

my_rank=$PMI_RANK

local_rank=$((my_rank % myway))

if [$myway -eq 12]; then

numnode=$((local_rank / 6))

fi

exec numactl -c $numnode -m $numnode $*

Slide 27 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Dell Linux Cluster Lonestar Topology

Slide 28 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Dell Linux Cluster Lonestar Topology

CPU type: Intel Core

Westmere processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 6

Threads per core: 1

Socket 0: (1 3 5 7 9 11)

Socket 1: (0 2 4 6 8 10)

Careful!

Numbering scheme of
cores is system
dependent

Slide 29 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

No idle cores

64
nodes

On
128 nodes

On
256 nodes

On
512
nodes

On
1024
nodes

BT-MZ
improves

using
hybrid as

expected
due to
better load

balance

Unexpected:
SP-MZ

improves in
some cases

using hybrid

Slide 30 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Pitfall (1): Running 2 threads on the same core

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs, 12 threads each, 1 MPI per node (1way)

Pinning A:

exec numactl –c 0 -m 0 $*

Running 128 MPI Procs, 12 threads each

Pinning B:

exec numactl –c 0,1 -m 0,1 $*

Only use cores and memory on socket 0,
12 threads on 6 cores

Use cores and memory on 2 sockets

Slide 31 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Pitfall (2): Cause remote memory access

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs, 6 threads each 2 MPI per node

Pinning A:

if [$localrank == 0]; then

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $*

elif [$localrank == 1]; then

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $*

fi

Running 128 MPI Procs, 6 threads each

Pinning B:

if [$localrank == 0]; then

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $*

elif [$localrank == 1]; then

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $*

fi

Half of the threads
access remote
memory

600
Gflops

900
Gflops

900
Gflops

Only local memory
access

Slide 32 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

LU-MZ Class D Scalability on Lonestar

• LU-MZ significantly benefits from hybrid mode:

- Pure MPI limited to 16 cores, due to #zones = 16

• Decrease of resource contention large contribution to improvement

Slide 33 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Cray XE6 Hermit

• Located at HLRS Stuttgart, Germany
(https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores

• Each node contains two AMD 6276 Interlagos processor with 16 cores
each, running at 2.3 GHz (TurboCore 3.3GHz)

• Around 1 Pflop theoretical peak performance

• 32 GB of main memory available per node

• 32-way shared memory system

• High-bandwidth interconnect using Cray Gemini communication chips.

Slide 34 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Cray XE6 Hermit Topology

CPU type: AMD Interlagos processor
**

Hardware Thread Topology
**

Sockets: 2
Cores per socket: 16
Threads per core: 1
--

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

4 NUMA Domains per Node

Slide 35 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Cray XE6 Hermit Scalability

32K
cores

16K
cores8K

cores

Slide 36 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

32K
cores

16K
cores8K

cores

Expected:
BT-MZ benefits from hybrid
approach:
- high number of MPI processes
yields bad workload distribution
-Best MPIxOMP combination
depends on problem size
Expected:
-Both benchmarks benefit by
increasing parallelism
Unexpected:
SP-MZ improves when reducing
number of MPI processes
BT-MZ 1024x32 unexpected low
performance

Cray XE6 Hermit Scalability, continued

Slide 37 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Cray XE6 Hector

• Located at EPCC, Edinburgh, Scotland, UK National Supercomputing
Services, Hector Phase 2b (http://www.hector.ac.uk)

• 1856 XE6 compute nodes.

• Each node contains two AMD 2.1 GHz 12-core processors giving a
total of 44,544 cores

• Around 373 Tflops theoretical peak performance

• 32 GB of main memory available per node

• 24-way shared memory system.

• High-bandwidth interconnect using Cray Gemini communication
chips.

CPU type: AMD Magny Cours processor
Hardware Thread Topology
Sockets: 2
Cores per socket: 12
Threads per core: 1

no SMT

—
skip

ped —

Slide 38 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

4 NUMA domains

Cray XE6 Hector Node Topology—
skip

ped —

Slide 39 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

BUT:

…unexpected
low

performance
for 4096
cores..?

BT-MZ

improves
using
hybrid as

expected
due to

better load
balance…

1 SMP node
= 2 AMD Magny Cours

= 4 NUMA domains
= 24 cores

Slide 40 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Craypat BT-MZ 256x16

Number of PEs (MPI ranks): 256

Numbers of PEs per Node: 1 PE on each of 256 Nodes

Numbers of Threads per PE: 16 threads on each of 248 PEs

17 threads on each of 8 PEs

Number of Cores per Socket: 12

Number of PEs (MPI ranks): 256

Numbers of PEs per Node: 1 PE on each of 256 Nodes

Numbers of Threads per PE: 16

Number of Cores per Socket: 12

export NPB_MZ_BLOAD=0

Benchmark will not try to load-balance between threads

Benchmark tries to balance load,
aprun –d 16 yields multiple
threads on same core!

Slide 41 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

BT-MZ improves using
hybrid as expected due
to better load balance…

Unexpected: SP-MZ

improves in some cases
using hybrid

Slide 42 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Cray XE6: CrayPat Performance Analysis

• module load xt-craypat

• Compilation:

� ftn –fastsse –r8 –mp[= trace]

• Instrument:

� pat_build –w –g mpi,omp bt.exe bt.exe.pat

• Execution :

� (export PAT_RT_HWPC {0,1,2,..})

� export OMP_NUM_THREADS 4

� aprun –n NPROCS –d 4 ./bt.exe.pat

• Generate report:

� pat_report –O
load_balance,thread_times,program_time,mpi_callers –O
profile_pe.th $1

-d depth Specifies
the number of CPUs
for each PE and its
threads.

-apa !!!

Slide 43 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

BT-MZ 32x4 Function Profile

Slide 44 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

BT-MZ Load-Balance 32x4 vs 128x1

bt-mz-C.32x4

bt-mz-C.128x1

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User
and MPI time

• bt-mz.C.32x4 shows well balanced times

Slide 45 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the
Engineer Research and Development Center Major Shared
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes

• 32 4.7GHz Power6 Cores per Node (4800 cores total)

• 64 GBytes of dedicated memory per node

• QLOGOC Infiniband DDR interconnect

• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r –O4 –qarch=pwr6 –qtune=pwr6 –qsmp=omp

• Execution:

� poe launch $PBS_O_WORKDIR./sp.C.16x4.exe

Flag was essential to achieve full

compiler optimization in

presence of OMP directives!

Slide 46 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

• Results for 128-2048
cores

• Only 1024 cores were
available for the
experiments

• BT-MZ and SP-MZ
show benefit from
Simultaneous

Multithreading (SMT):
2048 threads
on 1024 cores

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

128 cores

256 cores

1024 cores

512 cores

2
0

4
8

x1

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh

#PBS -l select=32:ncpus=64:

mpiprocs=NP:ompthreads=NT

2048

“cores”

best of category

Slide 47 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

LU-MZ Class D Scalability IBM Power 6

• LU-MZ significantly benefits from hybrid mode:

� Pure MPI limited to 16 cores, due to #zones = 16

Slide 48 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Conclusions:

• BT-MZ:

� Inherent workload imbalance on MPI level

� #nprocs = #nzones yields poor performance

� #nprocs < #zones => better workload balance, but decreases parallelism

� Hybrid MPI/OpenMP yields better load-balance,
maintains amount of parallelism

• SP-MZ:

� No workload imbalance on MPI level, pure MPI should perform best

� MPI/OpenMP outperforms MPI on some platforms due contention to
network access within a node

• LU-MZ:

� Hybrid MPI/OpenMP increases level of parallelism

• All Benchmarks:

• Decrease network pressure

• Lower memory requirements

• Good process/thread affinity essential

Slide 49 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

Georg Hager, Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems

• Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 50 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming

– How to compile and link

– Getting a hybrid program to run on a cluster

• Running hybrid programs efficiently on multi-core clusters

– Affinity issues
• ccNUMA

• Bandwidth bottlenecks

• Other overhead

– Intra-node MPI/OpenMP anisotropy
• MPI communication characteristics

• OpenMP loop startup overhead

– Thread/process binding

Slide 51 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp,
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library

– Usually wrapped in MPI compiler script

– If required, specify to link against thread-safe MPI library
• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code

– Highly non-portable! Consult system docs! (if available…)

– If you are on your own, consider the following points

– Make sure OMP_NUM_THREADS etc. is available on all MPI
processes

• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

• Use Pete Wyckoff’s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

– Figure out how to start less MPI processes than cores on your
nodes

Slide 52 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Some examples for compilation and execution (1)

• NEC SX9

– NEC SX9 compiler

– mpif90 –C hopt –P openmp … # –ftrace for profiling info

– Execution:

$ export OMP_NUM_THREADS=<num_threads>

$ MPIEXPORT=“OMP_NUM_THREADS”

$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

• Standard Intel Xeon cluster (e.g. @HLRS):

– Intel Compiler

– mpif90 –openmp …

– Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out

Slide 53 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Handling of OMP_NUM_THREADS

• without any support by mpirun:

– E.g. with mpich-1

– Problem:
mpirun has no features to export environment variables to the via ssh
automatically started MPI processes

– Solution: Set
export OMP_NUM_THREADS=<# threads per MPI process>

in ~/.bashrc (if a bash is used as login shell)

– If you want to set OMP_NUM_THREADS individually when starting the MPI
processes:

• Add
test -s ~/myexports && . ~/myexports

in your ~/.bashrc

• Add
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > ~/myexports

before invoking mpirun

• Caution: Several invocations of mpirun cannot be executed at the same time with this trick!

Some examples for compilation and execution (2)

Slide 54 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Handling of OMP_NUM_THREADS (continued)

• with support by OpenMPI –x option:

export OMP_NUM_THREADS= <# threads per MPI process>

mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./executable

Some examples for compilation and execution (3)

Slide 55 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Some examples for compilation and execution (4)

• Sun Constellation Cluster:

• mpif90 -fastsse -tp barcelona-64 –mp …

• SGE Batch System

• setenv OMP_NUM_THREADS

• ibrun numactl.sh a.out

• Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

• Cray XT5:

• ftn -fastsse -tp barcelona-64 -mp=nonuma …

• aprun -n nprocs -N nprocs_per_node a.out

Slide 56 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Interlude: Advantages of mpiexec
or similar mechanisms

• Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI
processes on nodes

– As opposed to starting remote processes with ssh/rsh:
• Correct CPU time accounting in batch system

• Faster startup

• Safe process termination

• Understands PBS per-job nodefile

• Allowing password-less user login not required between nodes

– Support for many different types of MPI
• All MPICHs, MVAPICHs, Intel MPI, …

– Interfaces directly with batch system to determine number of procs

– Downside: If you don’t use PBS or Torque, you’re out of luck…

• Provisions for starting less processes per node than available cores

– Required for hybrid programming

– “-pernode” and “-npernode #” options – does not require messing
around with nodefiles

Slide 57 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Running the code
Examples with mpiexec

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8

$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4

$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code

$ mpiexec ./a.out

Where do the
threads run?
� see later!

Slide 58 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals

– NEC SX

– Intel 1-socket (“Port Townsend/Melstone/Lynnfield”) – see case
studies

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…
(all dead)

• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), Intel Sandy Bridge)

– Multi-core, multi-socket
• Shared vs. separate caches

• Multi-chip vs. single-chip

• Separate/shared buses

Slide 59 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Issues for running code efficiently
on “non-isotropic” nodes

• ccNUMA locality effects

– Penalties for access across locality domains

– Impact of contention

– Consequences of file I/O for page placement

– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects

– Bandwidth bottlenecks, shared caches

– Intra-node MPI performance
• Core ↔ core vs. socket ↔ socket

– OpenMP loop overhead depends on mutual position of threads
in team

Slide 60 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

A short introduction to ccNUMA

• ccNUMA:

– whole memory is transparently accessible by all processors

– but physically distributed

– with varying bandwidth and latency

– and potential contention (shared memory paths)

C C C C

M M

C C C C

M M

Slide 61 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How much does non-local access cost?

• Example: AMD Magny Cours 2-socket system (4 chips, 2 sockets)
STREAM bandwidth measurements

Slide 62 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA

– Less of a problem with pure MPI, but see below

• What factors can destroy locality?

• MPI programming:

– processes lose their association with the CPU the mapping took
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails

• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on
originally

– improper initialization of distributed data

– Lots of extra threads are running on a node, especially for hybrid

• All cases:

– Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

Slide 63 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Avoiding locality problems

• How can we make sure that memory ends up where it is close to
the CPU that uses it?

– See the following slides

• How can we make sure that it stays that way throughout program
execution?

– See end of section

Slide 64 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

– Except if there is not enough local memory available

– this might be a problem, see later

– Some OSs allow to influence placement in more direct ways
• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"

• Example:

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Im
porta

nt

Slide 65 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Most simple case: explicit initialization

integer,parameter ::

N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

Slide 66 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA problems beyond first touch

• OS uses part of main memory for
disk buffer (FS) cache

– If FS cache fills part of memory,
apps will probably allocate from
foreign domains

– � non-local access!

– Locality problem even on hybrid
and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies

– Drop FS cache pages after user job has run (admin’s job)
• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)

– Flush buffer cache after I/O if necessary (“sync” is not sufficient!)

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)
d
a

ta
(1

)

Slide 67 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA problems beyond first touch

• Real-world example: ccNUMA vs. UMA and the Linux buffer cache

• Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB
main memory

• Run 4 concurrent
array copy loops
(512 MB each)
after writing a large
file

• Report perfor-
mance vs. file size

• Drop FS cache after
each data point

Slide 68 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S): mpirun –np 2 –pin “1 3” ./a.out

• Intranode (2S): mpirun –np 2 –pin “2 3” ./a.out

• Internode: mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then

MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)

MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)

else

MPI_RECV(…)

MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Slide 69 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

3,24

0,55

0,31

0

0,5

1

1,5

2

2,5

3

3,5

L
a
te

n
c
y
 [
µ
s
]

IB internode IB intranode 2S IB intranode 1S

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Slide 70 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of
one socket

Between two nodes
via InfiniBand

Between two sockets
of one node

Slide 71 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

• What about OpenMP overhead?

• Simple streaming benchmark:

• Report performance for different N

• Choose NITER so that accurate time measurement is possible

• Triad results lead to a deep understanding of multicore architecture
and OpenMP performance overhead

for(int j=0; j < NITER; j++){

#pragma omp parallel for

for(i=0; i < N; ++i)

a[i]=b[i]+c[i]*d[i];

if(OBSCURE)

dummy(a,b,c,d);

}

Slide 72 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start);

 for(j=0; j<niter; j++){

 if(size > CACHE_SIZE>>5) {

#pragma omp parallel for

#pragma vector always

#pragma vector aligned

#pragma vector nontemporal

 for(i=0; i<size; ++i)

 a[i]=b[i]+c[i]*d[i];

 } else {

#pragma omp parallel for

#pragma vector always

#pragma vector aligned

 for(i=0; i<size; ++i)

 a[i]=b[i]+c[i]*d[i];

 }

 if(a[5]<0.0)

 cout << a[3] << b[5] << c[10] << d[6];

 }

timing(&wct_end, &cput_end);

Large-N version (NT)

Small-N version (noNT)

// size = multiple of 8

int vector_size(int n){

return int(pow(1.3,n))&(-8);

}

#pragma omp parallel private(j)

{

}

Slide 73 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Single thread on AMD Interlagos chip

OMP overhead

and/or lower
optimization w/
OpenMP active

L1 cache L2 cache memoryL3 cache

Team restart is
expensive!

���� use only
outer parallel
from now on!

Slide 74 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Intra-chip scaling on Interlagos chip

L2 bottleneck

Aggregate L2,
exclusive L3

sync overhead

Memory BW
saturated @ 4
threads

Per-module
L2 caches

Slide 75 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Nontemporal stores on Interlagos chip

slow L3

NT stores hazardous
if data in cache

25% speedup for
vector triad in
memory via NT
stores

Slide 76 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Topology dependence on Interlagos chip

sync overhead nearly
topology-independent
@ constant thread count

more aggregate
L3 with more

chips
bandwidth
scalability across
memory interfaces

Slide 77 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The parallel vector triad benchmark
Inter-chip scaling on Interlagos node

sync overhead grows
with core/chip count

bandwidth scalability
across memory
interfaces

Slide 78 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Most of the OpenMP overhead is barrier sync!
But how much is it exactly, and does it depend on the topology?

Overhead in cycles:

4 Threads Q9550 i7 920 (shared L3)

(pthreads_barrier_wait) 42533 9820

omp barrier (icc 11.0) 977 814

gcc 4.4.3 41154 8075

pthreads/gcc � OS kernel call

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Nehalem 2 Threads Shared SMT
threads

shared L3 different socket

(pthreads_barrier_wait) 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

P C
P C

C
C

P C
P C

C
C

C

P C
P C

C
C

P C
P C

C
C

C

M
e
m

o
ry

M
e
m

o
ry

• SMT can be a performance problem for synchronizing threads

• Topology has an influence on overhead!

Slide 79 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls

– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments

– Intel compilers > V9.1 (KMP_AFFINITY environment variable)

– Pathscale

– SGI Altix dplace (works with logical CPU numbers!)

– Generic Linux: taskset, numactl, likwid-pin (see below)

• Affinity awareness in MPI libraries

– SGI MPT

– OpenMPI

– Intel MPI

– …

Widely usable example: Using PLPA
under Linux!

Seen on SUN Ranger slides

Slide 80 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

• Portable Linux Processor Affinity

• Wrapper library for sched_*affinity() functions

– Robust against changes in kernel API

• Example for pure OpenMP: Pinning of threads

#include <plpa.h>

...

#pragma omp parallel

{

#pragma omp critical

{

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);

}

plpa_cpu_set_t msk;

PLPA_CPU_ZERO(&msk);

int cpu = omp_get_thread_num();

PLPA_CPU_SET(cpu,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning
available?

Which CPU
to run on?

Pin “me”

Care about correct
core numbering!
0…N-1 is not always
contiguous! If
required, reorder by
a map:
cpu = map[cpu];

Slide 81 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Process/Thread Binding With PLPA

• Example for pure MPI: Process pinning

– Bind MPI processes to cores in a cluster
of 2x2-core machines

• Hybrid case:

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

int mask = (rank % 4);

PLPA_CPU_SET(mask,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0,

sizeof(cpu_set_t), &msk);

P0
C

P1
C

C C

MI

Memory

P2
C

P3
C

C C

MI

Memory

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

#pragma omp parallel

{

plpa_cpu_set_t msk;

PLPA_CPU_ZERO(&msk);

int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();

PLPA_CPU_SET(cpu,&msk);

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Slide 82 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?

• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid

Slide 83 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Likwid Tool Suite

• Command line tools for Linux:

– works with standard linux 2.6 kernel

– supports Intel and AMD CPUs

– Supports all compilers whose OpenMP implementation is based on
pthreads

• Current tools:

– likwid-topology: Print thread and cache topology
(similar to lstopo from the hwloc package)

– likwid-pin: Pin threaded application without touching code

– likwid-perfctr: Measure performance counters

– likwid-perfscope: Performance oscilloscope w/ real-time display

– likwid-powermeter: Current power consumption of chip (alpha stage)

– likwid-features: View and enable/disable hardware prefetchers

– likwid-bench: Low-level bandwidth benchmark generator tool

– likwid-mpirun: mpirun wrapper script for easy LIKWID integration

Slide 84 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-topology – Topology information

• Based on cpuid information

• Functionality:

– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:

– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem, Westmere, Sandy Bridge (alpha)

– AMD K10 (Quadcore and Hexacore)

– AMD K8

Slide 85 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Output of likwid-topology

CPU name: Intel Core i7 processor

CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2

Cores per socket: 4

Threads per core: 2

HWThread Thread Core Socket

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 2 0

5 1 2 0

6 0 3 0

7 1 3 0

8 0 0 1

9 1 0 1

10 0 1 1

11 1 1 1

12 0 2 1

13 1 2 1

14 0 3 1

15 1 3 1

Slide 86 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-topology continued

• … and also try the ultra-cool -g option!

Socket 0: (0 1 2 3 4 5 6 7)

Socket 1: (8 9 10 11 12 13 14 15)

Cache Topology

Level: 1

Size: 32 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2

Size: 256 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3

Size: 8 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)

Slide 87 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI

combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted set of

cores

• Supports logical core numbering inside node, socket, core

• Usage examples:
– env OMP_NUM_THREADS=6 likwid-pin -c 0,2,4-6 ./myApp parameters

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

– env OMP_NUM_THREADS=2 mpirun –npernode 2 \

likwid-pin -s 0x3 -c 0,1 ./myApp parameters

Slide 88 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (round-robin across
sockets, physical cores first)

Slide 89 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per
node

One MPI process per
socket

OpenMP threads
pinned “round robin”
across cores in
node

Two MPI processes
per socket

env OMP_NUM_THREADS=8 mpirun -pernode \

likwid-pin -c 0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \

likwid-pin -c L:0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \

likwid-pin -c L:0,1 ./a.out

Slide 90 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Case study: 3D Jacobi Solver
Basic implementation (2 arrays; no blocking etc…)

do k = 1 , Nk

do j = 1 , Nj

do i = 1 , Ni

y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+ x(i+1,j,k) + x(i,j-1,k)

+x(i,j+1,k)+ x(i,j,k-1) + x(i,j,k+1))

enddo

enddo

enddo

MPI Parallelization by

• Domain Decomposition

• Halo cells

• Data Exchange through cyclic SendReceive operation

Performance metric:
Million Lattice Site Updates per second (MLUPs)

Equivalent MFLOPs:
8 FLOP/LUP * MLUPs

—
skip

ped —

Slide 91 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI/OpenMP Parallelization – 3D Jacobi

i

j

k

1,1,0

0,0,1

1,0,0

0,0,0

1,1,1

• Cubic 3D computational domain with periodic BCs in all directions

• Use single-node IB/GE cluster with one dual-core chip per node

• Homogeneous distribution of workload, e.g. on 8 procs

pure MPI:

000001

010011

100101

110111

hybrid:

000

100

110

010

1,0,1

—
skip

ped —

Slide 92 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Performance Data for 3D MPI/hybrid Jacobi

Strong scaling, N3 = 4803

IB

GE

FullHybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

Performance model

T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE) = 100 MByte/s

Performance estimate (GE) for n nodes:
P(n) = N3 / ((TCOMP/n) + TCOMM(n))

Vdata = Data volume of
halo exchange

—
skip

ped —

Slide 93 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Example: Sparse MVM
JDS parallel sparse matrix-vector multiply – storage scheme

…

column index

ro
w

 i
n

d
e

x
1 2 3 4 …

1

2

3

4

…

4 3 2 21 3 36711 7 26 4 651 … col_idx[]9 9

val[]

1 11 21 … jd_ptr[] 2 16 4 953 1087 … perm[]

• val[] stores all the nonzeroes (length

Nnz)

• col_idx[] stores the column index of

each nonzero (length Nnz)

• jd_ptr[] stores the starting index of
each new jagged diagonal in val[]

• perm[] holds the permutation map

(length Nr)

(JDS = Jagged Diagonal Storage)

—
skip

ped —

Slide 94 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM – Kernel Code
OpenMP parallelization

• Implement c(:) = m(:,:) * b(:)

• Operation count = 2Nnz

do diag=1, zmax

diagLen = jd_ptr(diag+1) - jd_ptr(diag)

offset = jd_ptr(diag) – 1

!$OMP PARALLEL DO

do i=1, diagLen

c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))

enddo

!$OMP END PARALLEL DO

enddo

• Long inner loop (max. Nr): OpenMP parallelization / vectorization

• Short outer loop (number of jagged diagonals)

• Multiple accesses to each element of result vector c[]

– optimization potential!

• Stride-1 access to matrix data in val[]

• Indexed (indirect) access to RHS vector b[]

—
skip

ped —

Slide 95 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
MPI parallelization

Row-wise distribution

P2

P0

P

P

1

3

Each processor: local JDS (shift&order)

P0

P

P

1

3

P2

Avoid mixing of local and
non-local diagonals:

1. Shift within local subblock

2. Fill local subblock with non-
local elements from the right

P0

P

P

1

3

P2

—
skip

ped —

Slide 96 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
Parallel MVM implementations: MPP

Start: isend/irecv

Release local diags

Compute MVM with
diags released

Test:irecv

Release diags ?

irecv ?

1

2

3

4

5

6

MPI

• One MPI process per processor

• Non-blocking MPI communication

• Potential overlap of communication and
computation

– However, MPI progress is only
possible inside MPI calls on many
implementations

• SMP Clusters: Intra-node and inter-
node MPI

—
skip

ped —

Slide 97 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
Parallel MVM implementations: Hybrid

1

2

3

4

5

6

ThreadsM ThreadsM

1

2

34

5

6

LOCK: Rel. list

LOCK: Rel. list

OMP END PARALLEL

OMP PARALLEL

MPI MPI

VECTOR mode TASK mode
VECTOR mode:

• Automatic parallel. of inner
i loop (data parallel)

• Single threaded MPI calls

TASK mode:

• Functional parallelism:
Simulate asynchronous
data transfer! (OpenMP)

• Release list - LOCK

• Single threaded MPI calls

• Optional: Comm. Thread
executes configurable
fraction of work
(load = 0...1)

—
skip

ped —

Slide 98 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM:
Performance and scalability on two different platforms

GBE

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Opteron 270 2 GHz

P
C

Chipset

Memory

P
C

C

P
C

P
C

CSDR IB

Xeon 5160 3 GHz

no NUMA
placement!

hybrid
advantage

71·106

nonzeroes

—
skip

ped —

Slide 99 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI/OpenMP hybrid “how-to”: Take-home messages

• Do not use hybrid if the pure MPI code scales ok

• Be aware of intranode MPI behavior

• Always observe the topology dependence of

– Intranode MPI

– OpenMP overheads

• Enforce proper thread/process to core binding, using appropriate
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct
page placement

• Finally: Always compare the best pure MPI code with the best
OpenMP code!

Slide 100 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 101 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware
(cluster of SMP nodes)

• Several mismatch problems

� following slides

• Benefit through hybrid programming

� Opportunities, see next section

• Quantitative implications

� depends on you application

Examples: No.1 No.2

Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%

Total +20% –15%

In most
cases:
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 102 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?

Slide 103 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

C

C

C

C C

CC

C

D

D

D

D D

DD

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

GG

G G

G

G

G

H

HH

H H

H

H

H

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

28 x inter-node connections per node

0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

AA

AA

AA

AA

JJ

JJ

JJ

JJ

Never tru
st the default !!!

Slide 104 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

Bad affinity of cores to thread ranks

4 x inter-socket connection per node

—
skip

ped —

Slide 105 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:

• Cartesian application with 5 x 16 = 80 sub-domains

• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks

Slide 106 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Problem

– Does application topology inside of SMP parallelization
fit on inner hardware topology of each SMP node?

Solutions:

– Domain decomposition inside of each thread-parallel
MPI process, and

– first touch strategy with OpenMP

Successful examples:

– Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing
on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA
data traffic through
domain decomposition
inside of each
MPI process

—
skip

ped —

Slide 107 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example:

• Same Cartesian application aspect ratio: 5 x 16

• On system with 10 x dual socket x quad-core

• 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

3 x inter-node connections per node, but ~ 4 x more traffic

2 x inter-socket connection per node

Affinity of cores to thread ranks !!!

—
skip

ped —

Slide 108 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Numerical Optimization inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Optimizing the
numerical
performance

—
skip

ped —

Slide 109 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI
process per SMP node:

Problem

– Where are your processes
and threads really located?

Solutions:

– Depends on your platform,

– e.g., with numactl

hybrid MPI+OpenMP

pure MPI

&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI

pro-

cess

0

MPI

pro-

cess

1

� Case study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

Further questions:

– Where is the NIC1) located?

– Which cores share caches?

1) NIC = Network Interface Card

—
skip

ped —

Slide 110 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:

– If several MPI process on each SMP node
� unnecessary intra-node communication

Solution:

– Only one MPI process per SMP node

Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than
inter-node bandwidth
� problem may be small

– MPI implementation may cause
unnecessary data copying
� waste of memory bandwidth

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

Slide 111 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sleeping threads and network saturation
with

Problem 1:

– Can the master thread
saturate the network?

Solution:
– If not, use mixed model
– i.e., several MPI

processes per SMP node

Problem 2:

– Sleeping threads are
wasting CPU time

Solution:
– Overlapping of

computation and
communication

Problem 1&2 together:
– Producing more idle time

through lousy bandwidth
of master thread

for (iteration ….)

{

#pragma omp parallel
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sl
ee

pin
g

sl
ee

pin
g

Slide 112 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP: Additional Overhead & Pitfalls

• Using OpenMP

� may prohibit compiler optimization

� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g. with the masteronly scheme:

• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries? � Are they prepared for hybrid?

See, e.g., the necessary –O4 flag
with mpxlf_r on IBM Power6 systems

Slide 113 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

Three problems:

• the application problem:

– one must separate application into:
• code that can run before the halo data is received

• code that needs halo data

�very hard to do !!!

• the thread-rank problem:

– comm. / comp. via
thread-rank

– cannot use
work-sharing directives

�loss of major
OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

….

}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 114 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

Subteams

• Important proposal
for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel

{

#pragma omp single onthreads(0)

{

MPI_Send/Recv….

}

#pragma omp for onthreads(1 : omp_get_numthreads()-1)

for (……..)

{ /* work without halo information */

} /* barrier at the end is only inside of the subteam */

…

#pragma omp barrier

#pragma omp for

for (……..)

{ /* work based on halo information */

}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:

Toward Enhancing OpenMP’s
Work-Sharing Directives.

In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

Not yet part of
the OpenMP

standard

—
skip

ped —

Slide 115 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

Different strategies
to simplify the
load balancing

Slide 116 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
n

n
e

le
d

 &
 r

e
s

e
rv

e
d

is
 f

a
s

te
r

m
a

s
te

ro
n

ly
is

 f
a

s
te

rp
e
rf

o
rm

a
n

c
e
 r

a
ti

o

(r

)

Slide 117 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 118 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Case study: Communication and Computation in
Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after
sending) can be overlapped with data independent MPI
communication using OpenMP tasks.

IN
D

E
P

E
N

D
E

N
T

IN
D

E
P

E
N

D
E

N
T

S
E

M
I-IN

D
E

P
E

N
D

E
N

T

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skip

ped —

Slide 119 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED

• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skip

ped —

Slide 120 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining
particles (above) and adding sent
particles into array (right) & sending
or receiving of shifted particles can
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skip

ped —

Slide 121 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator

(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands
CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of
Alice Koniges, NERSC, LBNL

—
skip

ped —

Slide 122 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP/DSM

• Distributed shared memory (DSM) //

• Distributed virtual shared memory (DVSM) //

• Shared virtual memory (SVM)

• Principles

– emulates a shared memory

– on distributed memory hardware

• Implementations

– e.g., Intel® Cluster OpenMP

OpenMP only

Slide 123 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol

Basic idea:

• Between OpenMP barriers, data exchange is not necessary, i.e.,
visibility of data modifications to other threads only after synchronization.

• When a page of sharable memory is not up-to-date,
it becomes protected.

• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,
which requests info from remote nodes and updates the page.

• Protection is removed from page.

• Instruction causing the fault is re-started,
this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel

—
skip

ped —

Slide 124 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Comparison:
MPI based parallelization ���� DSM

• MPI based:

– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):

– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages

� Not all of this data may be needed

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries
of a domain decomposition

� probably more data must be transferred than
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication
may be

10 times slower
than with MPI

Slide 125 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

0

2

4

6

8

10

12

14

16

18

se
ri
a
l 1 2 3 4 6 8

1
0

threads

S
p

e
e

d
u

p 1000x1000

250x250

80x80

20x20

ideal speedup

—
skip

ped —

Slide 126 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Heat example: Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7

se
ri
a
l

1
/2 1 2 3 4 5 6 7 8

nodes

S
p

e
e
d

u
p

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node

6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node

6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node

3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node

1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node

250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs
with 3000x3000

Efficiency only with small
communication foot-print

Terrible with non-default schedule

—
skip

ped —

Slide 127 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Back to the mixed model – an Example

• Topology-problem solved:
Only horizontal inter-node comm.

• Still intra-node communication

• Several threads per SMP node are
communicating in parallel:
� network saturation is possible

• Additional OpenMP overhead

• With Masteronly style:
75% of the threads sleep while
master thread communicates

• With Overlapping Comm.& Comp.:
Master thread should be only
partially reserved for communication
– otherwise too expensive

• MPI library must support

– Multiple threads

– Two fabrics (shmem + internode)

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

Slide 128 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons

Slide 129 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid
parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 130 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Nested Parallelism

• Example NPB: BT-MZ (Block tridiagonal simulated CFD application)

– Outer loop:

• limited number of zones ���� limited parallelism

• zones with different workload ���� speedup <

– Inner loop:

• OpenMP parallelized (static schedule)

• Not suitable for distributed memory parallelization

• Principles:

– Limited parallelism on outer level

– Additional inner level of parallelism

– Inner level not suitable for MPI

– Inner level may be suitable for static OpenMP worksharing

Sum of workload of all zones
Max workload of a zone

Slide 131 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Load-Balancing
(on same or different level of parallelism)

• OpenMP enables

– Cheap dynamic and guided load-balancing

– Just a parallelization option (clause on omp for / do directive)

– Without additional software effort

– Without explicit data movement

• On MPI level

– Dynamic load balancing requires
moving of parts of the data structure through the network

– Significant runtime overhead

– Complicated software / therefore not implemented

• MPI & OpenMP

– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}

Slide 132 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Memory consumption

• Shared nothing

– Heroic theory

– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:

– Duplicated data may be reduced by factor n

Slide 133 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Using more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of
Alice Koniges, NERSC, LBLN

Always same
number of cores

Slide 134 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Memory consumption (continued)

• Future:
With 100+ cores per chip the memory per core is limited.

– Data reduction through usage of shared memory
may be a key issue

– Domain decomposition on each hardware level

• Maximizes

– Data locality

– Cache reuse

• Minimizes

– ccNUMA accesses

– Message passing

– No halos between domains inside of SMP node

• Minimizes

– Memory consumption

Slide 135 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How many threads per MPI process?

• SMP node = with m sockets and n cores/socket

• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused?

– Too few threads
� too much memory consumption (see previous slides)

• Optimum

– somewhere between 1 and m x n threads per MPI process,

– Typically:
• Optimum = n, i.e., 1 MPI process per socket

• Sometimes = n/2 i.e., 2 MPI processes per socket

• Seldom = 2n, i.e., each MPI process on 2 sockets

Slide 136 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Opportunities, if MPI speedup is limited due to
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of
each MPI process

� If multigrid algorithm only inside of MPI processes

� If separate preconditioning inside of MPI nodes and between
MPI nodes

� If MPI domain decomposition is based on physical zones

Slide 137 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 138 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary: Opportunities of hybrid parallelization
(MPI & OpenMP)

• Nested Parallelism

� Outer loop with MPI / inner loop with OpenMP

• Load-Balancing

� Using OpenMP dynamic and guided worksharing

• Memory consumption

� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem

� Significantly reduced number of MPI processes

• Reduced MPI scaling problems

� Significantly reduced number of MPI processes

Slide 139 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 140 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI rules with OpenMP /
Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls

not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls

– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,
but only one at a time

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,
with no restrictions

• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],

int thread_level_required,

int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);

int MPI_Is_main_thread(int * flag);

Slide 141 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!

• The additional barrier implies also the necessary cache flush!

Slide 142 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

… the barrier is necessary –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

—
skip

ped —

Slide 143 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch3:sock supports MPI_THREAD_MULTIPLE

ch:nemesis has “Initial Thread-support”

ch3:nemesis (default) has MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE

MPI_THREAD_FUNNELED

Full MPI_THREAD_MULTIPLE (with libmtmpi)

Not thread-safe?

Full MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPIch-1.2.7p1

MPIch2-1.0.8

MPIch2-1.1.0a2

Intel MPI 3.1

SciCortex MPI

HP MPI-2.2.7

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplementation

• Testsuites for thread-safety may still discover bugs in the
MPI libraries

Courtesy of Rainer Keller, HLRS and ORNL

—
skip

ped —

Slide 144 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:

– Support for full MPI_THREAD_MULTIPLE

– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:

– Progress threads to asynchronously transfer/receive data per
network BTL.

• Additional Feature:

– Compiling with debugging support, but without threads will
check for recursive locking

Courtesy of Rainer Keller, HLRS and ORNL

—
skip

ped —

Slide 145 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 146 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 1/3

• Intel ThreadChecker operates in a similar fashion to helgrind,

• Compile with –tcheck, then run program using tcheck_cl:

Application finished

|ID|Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|

| |scriptio|ity |o|t[Best| |ess[Bes|ess[Bes|

| |n |Name |u|] | |t] |t] |

| | | |n| | | | |

| | | |t| | | | |

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

| |Write da| | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.|

| |ta-race | | |e.c":2|a prior memory write of |c":31 |c":31 |

| | | | |5 |global_variable at | | |

| | | | | |"pthread_race.c":31 (output | | |

| | | | | |dependence) | | |

Courtesy of Rainer Keller, HLRS and ORNL

With new Intel Inspector XE 2011:
Command line interface must be
used within mpirun / mpiexec

Slide 147 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 2/3

• One may output to HTML:

tcheck_cl --format HTML --report pthread_race.html pthread_race

Courtesy of Rainer Keller, HLRS and ORNL

—
skip

ped —

Slide 148 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 3/3

• Then run with:
mpirun --mca tcp,sm,self -np 2 tcheck_cl \

--reinstrument -u full --format html \

--cache_dir '/tmp/my_username_$$__tc_cl_cache' \

--report 'tc_mpi_test_suite_$$' \

--options 'file=tc_my_executable_%H_%I, \

pad=128, delay=2, stall=2' -- \

./my_executable my_arg1 my_arg2 …

configure --enable-mpi-threads

--enable-debug

--enable-mca-no-build=memory-ptmalloc2

CC=icc F77=ifort FC=ifort

CFLAGS=‘-debug all –inline-debug-info tcheck’

CXXFLAGS=‘-debug all –inline-debug-info tcheck’

FFLAGS=‘-debug all –tcheck’ LDFLAGS=‘tcheck’

• If one wants to compile with threaded Open MPI (option for IB):

Courtesy of Rainer Keller, HLRS and ORNL

—
skip

ped —

Slide 149 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Performance Tools Support for Hybrid Code

• Paraver examples have already
been shown, tracing is done with
linking against (closed-source)
omptrace or ompitrace

• For Vampir/Vampirtrace performance analysis:
./configure –enable-omp

–enable-hyb

–with-mpi-dir=/opt/OpenMPI/1.3-icc

CC=icc F77=ifort FC=ifort

(Attention: does not wrap MPI_Init_thread!)

Courtesy of Rainer Keller, HLRS and ORNL

Slide 150 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”

Indication of
non-optimal load

balance

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Slide 151 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”, Solution

Better load balancing
with dynamic
loop schedule

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Slide 152 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

– Pure MPI – multi-core aware (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators (Gabriele Jost)

• Summary

Slide 153 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure MPI – multi-core aware

• Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further
partitioning:

1 sub-domain /
socket

1 / core

Cache
optimization:

Blocking inside of
each core,

block size relates
to cache size.

1-3 cache levels.

Example on 10 nodes, each with 4 sockets, each with 6 cores.

Slide 154 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?

• Cartesian grids:

– Several levels of subdivide

– Ranking of MPI_COMM_WORLD – three choices:

a) Sequential ranks through original data structure

+ locating these ranks correctly on the hardware

� can be achieved with one-level DD on finest grid
+ special startup (mpiexec) with optimized rank-mapping

b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

� requires optimized MPI_CART_CREATE,
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

• Unstructured grids:

� next slide

Implementation hints
to previous slide

—
skip

ped —

Slide 155 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?

• Unstructured grids:

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
� unbalanced communication

� demonstrated on next (skipped) slide

• Bottom-up: Low level DD
+ higher level recombination

� based on DD of the grid of subdomains

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run
(with only a few iterations)

• Optimized rank mapping to the hardware before production run

• E.g., with CrayPAT + CrayApprentice

Slide 156 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Top-down – several levels of (Par)Metis

Steps:

– Load-balancing (e.g., with
ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on
balancing of the outer boundary

� processes can get a lot of
neighbors with inter-node
communication

� unbalanced communication

—
skip

ped —

Slide 157 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Bottom-up –
Multi-level DD through recombination

1. Core-level DD: partitioning of application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

• Problem:
Recombination
must not
calculate patches
that are smaller
or larger than the
average

• In this example
the load-balancer
must combine
always

� 6 cores, and

� 4 numa-
domains (i.e.,
sockets or
dies)

• Advantage:

Communication
is balanced!

Graph of
all sub-

domains
(core-
sized)

Divided
into sub-
graphs
for each
socket

Slide 158 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Profiling solution

• First run with profiling

– Analysis of the communication pattern

• Optimization step

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD
to the hardware grid (physical cores / sockets / SMP nodes)

• Restart of the application with this optimized locating of the ranks on the
hardware grid

• Example: CrayPat and CrayApprentice

—
skip

ped —

Slide 159 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The vendors
should deliver
scalable MPI

libraries for their
largest systems!

Scalability of MPI to hundreds of thousands …

Scalability of pure MPI

• As long as the application does not use

– MPI_ALLTOALL

– MPI_<collectives>V (i.e., with length arrays)

and application

– distributes all data arrays

one can expect:

– Significant, but still scalable memory overhead for halo cells.

– MPI library is internally scalable:
• E.g., mapping ranks ���� hardware grid

– Centralized storing in shared memory (OS level)

– In each MPI process, only used neighbor ranks are stored (cached) in
process-local memory.

• Tree based algorithm with O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles!

Slide 160 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels)
are done:

• Cache-blocking is an additional DD into data blocks

– that fit to 2nd or 3rd level cache.

– It is done inside of each MPI process (on each core).

– Outer loops run from block to block

– Inner loops inside of each block

– Cartesian example: 3-dim loop is split into
do i_block=1,ni,stride_i

do j_block=1,nj,stride_j
do k_block=1,nk,stride_k

do i=i_block,min(i_block+stride_i-1, ni)
do j=j_block,min(j_block+stride_j-1, nj)

do k=k_block,min(k_block+stride_k-1, nk)
a(i,j,k) = f(b(i±0,1,2, j±0,1,2, k±0,1,2))

… … … end do
end do

Access to 13-point stencil

Slide 161 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on Cost-Benefit Calculation

Costs

• for optimization effort

– e.g., additional OpenMP parallelization

– e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

• from reduced CPU utilization

– e.g., Example 1:
100,000 € hardware costs of the cluster
x 20% used by this application over whole lifetime of the cluster
x 7% performance win through the optimization
= 1,400 € ���� total loss = 13,600 €

– e.g., Example 2:
10 Mio € system x 5% used x 8% performance win
= 40,000 € ���� total win = 25,000 €

Slide 162 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means

– expressing locality.

• If the application has no locality,

– Then the parallelization needs not to model locality

� UPC with its round robin data distribution may fit

• If the application has locality,

– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:

– A(17,15)[3]
= element A(17,13) in the distributed array A in process with rank 3

—
skip

ped —

Slide 163 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Future shrinking of memory per core implies

– Communication time becomes a bottleneck

� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.

– But it is hard for the compiler to access data such early that the
transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.

– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers

– Typical packing strategies do not work for PGAS on compiler level

– Only with MPI, or with explicit application programming with PGAS

—
skip

ped —

Slide 164 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Point-to-point neighbor communication

– PGAS or MPI nonblocking may fit
if message size makes sense for overlapping.

• Collective communication

– Library routines are best optimized

– Non-blocking collectives (comes with MPI-3.0)
versus calling MPI from additional communication thread

– Only blocking collectives in PGAS library?

—
skip

ped —

Slide 165 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC (many nodes x many cores)

– Most parallelization may still use MPI

– Parts are optimized with PGAS, e.g., for better latency hiding

– PGAS efficiency is less portable than MPI

– #ifdef … PGAS

– Requires mixed programming PGAS & MPI
� will be addressed by MPI-3.0

—
skip

ped —

Slide 166 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

– Pure MPI – multi-core aware (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators (Gabriele Jost)

• Summary

Slide 167 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Hybrid Programming and Accelerators

• Under Discussion OpenMP support for Accelerators in 4.0

- To be announced at SC12

- Multiple devices of the same type (homogeneous)

- Device type known at compile time

- Automatic run-time and programmed user-control device
selection

- Structured and unstructured block data placement

- Data regions and mirror directives

- Synchronous and asynchronous data-movement

- Accelerator style parallel launch with multiple 'threads' of
execution on the device: eg accelerator parallel regions

- Dispatch-style parallel launch(offload) to a single thread of
execution on the device; eg accelerator tasks

Slide 168 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

OpenMP Accelerator Memory Model

• Current Memory Model:

• Relaxed-Consisteny Shared-Memory

• All threads have access to the memory

• Data-sharing attributes: shared, private

• Proposed Additions to Memory Model

• Separate Host and Accelerator Memory

• Data Movement Host<->Accelerator indicated by compiler
directives

• Updates to different memories indicated by compiler directives

• #pragma omp acc_data [clause]

• acc_shared

• acc_copyout, acc_copyin

Slide 169 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

OpenMP Accelerator Execution Model

• Current OpenMP Execution Model:

• Execution starts single threaded

• Fork-Join Threads at OpenMP parallel regions

• Work-sharing indicated via compiler directives

• Proposed additions to the Execution Model:

• Explicit accelerator regions or tasks are generated at beginning of
accelerator regions

• #pragma acc_region [clause]

• Purpose: Define code that is to be run on accelerator

• acc_copyin (list)

• acc_copyout (list)

#pragma omp acc_loop [clause]

Slide 170 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Other Compiler Directive Based APIs

• OpenACC:

• Support of separate host and device memory: copy-in, copy-out, etc.

• Support to execute compute kernels on the accelerator device

• Fine grained control of execution on accelerator: num_gangs,
num_workers, vector length, etc

• http://www.openacc-standard.org

• PGI Compiler Directives:

• Similar to OpenMP (see example)

• Compiler Directives for Many Core Architectures:

• Generate tasks for parts of the code to be off-loaded to many core
nodes

Slide 171 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Example: Jacobi Iteration OpenMP directives

!$OMP PARALLEL DO PRIVATE(i,j,k)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = &

(data(i,j,k,old) + + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data2(i,j,k+1,old) - &

edge(i,j,k)) / 6.0

END DO

END DO

END DO

Slide 172 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Test Case: Hybrid Jacobi using PGI directives

• PGI (http://www.pgroup.com) provides compiler directives for accelerators

– Website for some documentation

• PGI active member of OpenMP Language committee

– Use PGI Directives

• OpenMP Language committee at this time closely follows path set by PGI

• Original Hybrid MPI/OpenMP implementation provided by courtesy of
EPCC (Edingburgh Parallel Computing Center) (http://www.epcc.ed.ac.uk)

Slide 173 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Test System

• TACC's Dell XD Visualization Cluster Longhorn
(http://www.tacc.utexas.edu/user-services/user-guides/longhorn-
user-guide)

• 240 nodes containing 48GB of RAM,

• 8 Intel Nehalem cores (@ 2.5 GHz), and 2 NVIDIA Quadro FX
5800 GPUs per node

• Test System: Longhorn at TACC

• pgf90 11.5

• -fastsse -ta=nvidia,time -Minfo=vect,accel -Mcuda=cuda3.2

Slide 174 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Unoptimized

!$omp acc_region
DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = &

(data(i,j,k,old) + + &

data(i,j-1,k,old) +

data(i,j+1,k,old) + &

data(i,j,k-1,old) +

data2(i,j,k+1,old) - &

edge(i,j,k)) / 6.0

END DO

END DO

END DO

!$omp end acc_region

jacobistep:
59, Loop carried dependence of 'data' prevents

parallelization
Loop carried backward dependence of 'data'

prevents vectorization
60, Loop carried dependence of 'data' prevents

parallelization
Loop carried backward dependence of 'data'

prevents vectorization
61, Loop carried dependence of 'data' prevents

parallelization
Loop carried backward dependence of 'data'

prevents vectorization
Accelerator kernel generated
59, !$acc do seq
60, !$acc do seq
61, !$acc do seq

Non-stride-1 accesses for array 'data'
Non-stride-1 accesses for array 'edge'

No performance increase when using accelerator

Slide 175 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Optimized for parallelization:

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) =

&(temp2(i-1,j,k)

+ temp2(i+1,j,k) + &

& ……

edge(i,j,k)) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

244, Loop is parallelizable
245, Loop is parallelizable
246, Loop is parallelizable

Accelerator kernel generated
244, !$acc do parallel, vector(4) ! blockidx%y threadidx%z
245, !$acc do parallel, vector(4) ! blockidx%x threadidx%y
246, !$acc do vector(16) ! threadidx%x

Cached references to size [18x6x6] block of 'temp2'

copy to temporary array to expose
non-overlap

Slide 176 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Optimized for parallelization alternative: Compiler directives

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

!$acc do parallel,independent

DO k = 1, Z, 1

!$acc do parallel,independent

DO j = 1, Y, 1

!$acc do parallel independent

DO i = 1, X, 1

data(i,j,k,new) = &

(data(i-1,j,k,old) + data(i+1,j,k,old) + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data(i,j,k+1,old) - &

edge(i,j,k)) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

Indicate non-overlap using
“independent” clause

Slide 177 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Optimized for parallelization alternative: Compiler directives

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

!$acc do parallel,independent

DO k = 1, Z, 1

!$acc do parallel,independent

DO j = 1, Y, 1

!$acc do parallel independent

DO i = 1, X, 1

data(i,j,k,new) = &

(data(i-1,j,k,old) + data(i+1,j,k,old) + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &

data(i,j,k-1,old) + data(i,j,k+1,old) - &

edge(i,j,k)) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

Accelerator kernel generated

238, !$acc do parallel, vector(2) ! blockidx%y threadidx%z
240, !$acc do parallel, vector(8) ! blockidx%x threadidx%y
242, !$acc do vector(8) ! threadidx%x

Non-stride-1 accesses for array 'data'
252, Generating !$acc update host(data(0:x+1,0:y+1,0:z+1,:new))
255, Generating !$acc update device(data(0:x+1,0:y+1,0:z+1,:old))
259, Loop is parallelizable
261, Loop is parallelizable
263, Loop is parallelizable

Accelerator kernel generated
259, !$acc do parallel, vector(2) ! blockidx%y threadidx%z
261, !$acc do parallel, vector(8) ! blockidx%x threadidx%y
263, !$acc do vector(8) ! threadidx%x

Slide 178 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Using different Devices

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) =

&(temp2(i-1,j,k)

+ temp2(i+1,j,k) + &

& ……

edge(i,j,k)) / 6.0

END DO

END DO

END DO

!$acc end region

!$acc end data region

if (first) then

macc = MOD(rank,2)+1

call acc_set_device_num

(macc,acc_device_type)

endif

Use different devices for different MPI processes

Slide 179 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Version 1 (cont): ….and data movement

module glob

real (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: data

real (kind(1.0e0)), dimension(:,:,:), allocatable,pinned :: edge

logical first

!$acc mirror(data,edge)

end module glob

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = (temp2(i-1,j,k) + temp2(i+1,j,k) + … edge (I,j,k))/6.

END DO

END DO

END DO

!$acc end region

!$acc end data region

Slide 180 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Compare PGI, openACC and OpenMP extensions

module glob

real (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: data

real (kind(1.0e0)), dimension(:,:,:), allocatable,pinned :: edge

logical first

!$acc mirror(data,edge)

end module glob

!$acc data region local(temp2)

updatein(data(0:X+1,0:Y+1,0:Z+1,old))

updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region

temp2 = data (:,:,:,old)

DO k = 1, Z, 1

DO j = 1, Y, 1

DO i = 1, X, 1

data(i,j,k,new) = (temp2(i-1,j,k) + temp2(i+1,j,k) + … edge (I,j,k))/6.

END DO

END DO

END DO

!$acc end region

!$acc end data region

planned for OpenMP

OpenMP: planned OpenACC: copyin clause

OpenMP and OpenACC

OpenMP and OpenACC

OpenACC provides more detailed control of
how the kernel should be executed

Slide 181 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUPERsmith

Concluding Remarks

Still many open questions:
• Multi-core vs accelerator: General purpose vs specialized,

e.g.:
- GPU runs kernels independently
- GPU accelerator has large team of threads
- GPU thread counts exceed number of cores
- GPU uses scheduling algorithm to hide memory latency,

synchronize threads into groups.
- Stream processing

• How do we address parallelism within accelerator?
• Other types of co-processors?
• Which of the differences should be exposed via OpenMP?

Slide 182 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 183 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Acknowledgements

• We want to thank

– Gerhard Wellein, RRZE

– Alice Koniges, NERSC, LBNL

– Rainer Keller, HLRS and ORNL

– Jim Cownie, Intel

– SCALASCA/KOJAK project at JSC, Research Center Jülich

– HPCMO Program and the Engineer Research and
Development Center Major Shared Resource Center,
Vicksburg, MS (http://www.erdc.hpc.mil/index)

Slide 184 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – hybrid MPI+OpenMP

MPI + OpenMP

• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)

– SP-MZ � small improvement

– Usability on higher number of cores

• Advantages

– Memory consumption

– Load balancing

– Two levels of parallelism
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

• Huge amount of pitfalls

• Optimum: Somewhere in the area of 1 MPI process per NUMA domain

Maybe the most important advantage!

Slide 185 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – the bad news

MPI+OpenMP: There is a huge amount of pitfalls

• Pitfalls of MPI

• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch

– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP

– E.g., topology and mapping problems

– Many mismatch problems

• Tools are available

– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style

• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library

– Loss of OpenMP worksharing support � using OpenMP tasks
as workaround

—
skip

ped —

Slide 186 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – good and bad

• Optimization

– 1 MPI process 1 MPI process
per core ……………………………………..… per SMP node

^– somewhere between
may be the optimum

• Efficiency of MPI+OpenMP is not for free:

The efficiency strongly depends on
the amount of work in the source code development

mismatch
problem

—
skip

ped —

Slide 187 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – Alternatives

Pure MPI

+ Ease of use

– Topology and mapping problems may need to be solved
(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP

+ Good candidate for perfectly load-balanced applications

Pure OpenMP

+ Ease of use

– Limited to problems with tiny communication footprint

– source code modifications are necessary
(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool

Slide 188 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary

• This tutorial tried to

– help to negotiate obstacles with hybrid parallelization,

– give hints for the design of a hybrid parallelization,

– and technical hints for the implementation � “How To”,

– show tools if the application does not work as designed.

• This tutorial was not an introduction into other parallelization models:

– Partitioned Global Address Space (PGAS) languages
(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium,

and X10).

– High Performance Fortran (HPF)

� Many rocks in the cluster-of-SMP-sea do not vanish
into thin air by using new parallelization models

� Area of interesting research in next years

Slide 189 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conclusions

• Future hardware will be more complicated
– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex

• Medium number of cores � more simple
(if #cores / SMP-node will not shrink)

• MPI+OpenMP ���� work horse on large systems

• Pure MPI � still on smaller cluster

• OpenMP � on large ccNUMA nodes
(not ClusterOpenMP)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you

Slide 190 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Appendix

• Abstract

• Authors

• References (with direct relation to the content of this tutorial)

• Further references

Slide 191 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Abstract

Half-Day Tutorial (Level: 20% Introductory, 50% Intermediate, 30% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany
Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Supersmith, Maximum Performance Software, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC
clusters with single/multi-socket and multi-core SMP nodes, but also “constellation” type systems with
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the
node interconnect with the shared memory parallelization inside of each node.

This tutorial analyzes the strengths and weaknesses of several parallel programming models on
clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given
special consideration. This includes a discussion on planned future OpenMP support for accelerators.
Various hybrid MPI+OpenMP approaches are compared with pure MPI, and benchmark results on
different platforms are presented. Numerous case studies demonstrate the performance-related
aspects of hybrid MPI/OpenMP programming, and application categories that can take advantage of
this model are identified. Tools for hybrid programming such as thread/process placement support
and performance analysis are presented in a "how-to" section.

Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-hybrid.html

Slide 192 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of

Stuttgart. Since 1984, he has worked at the High-Performance Computing-

Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure

call tool, and MPI-GLUE, the first metacomputing MPI combining different

vendor's MPIs without loosing the full MPI interface. In his dissertation, he

developed a controlled logical clock as global time for trace-based profiling of

parallel and distributed applications. Since 1996, he has been a member of

the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the

MPI-3 Forum. From January to April 1999, he was an invited researcher at the

Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application

Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in

the HPC Challenge Benchmark Suite. In recent projects, he studied parallel

I/O, parallel programming models for clusters of SMP nodes, and optimization

of MPI collective routines. In workshops and summer schools, he teaches

parallel programming models in many universities and labs in Germany, and

in Jan. 2012, he was appointed as GCS' PATC director.

Slide 193 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Georg Hager

Georg Hager holds a PhD in computational physics from
the University of Greifswald. He has been working with high performance
systems since 1995, and is now a senior research scientist in the HPC
group at Erlangen Regional Computing Center (RRZE). His daily work
encompasses all aspects of HPC user support and training, assessment
of novel system and processor architectures, and supervision of student
projects and theses. Recent research includes architecture-specific
optimization for current microprocessors, performance modeling on
processor and system levels, and the efficient use of hybrid parallel
systems. His textbook “Introduction to High Performance Computing for
Scientists and Engineers” is recommended reading for many HPC-related
courses and lectures worldwide. A full list of publications, talks, and other
things he is interested in can be found in his blog:
http://blogs.fau.de/hager.

Slide 194 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Gabriele Jost

Gabriele Jost obtained her doctorate in Applied Mathematics from the

University of Göttingen, Germany. For more than a decade she worked

for various vendors (Suprenum GmbH, Thinking Machines Corporation,

and NEC) of high performance parallel computers in the areas of

vectorization, parallelization, performance analysis and optimization of

scientific and engineering applications.

In 2005 she moved from California to the Pacific Northwest and joined

Sun Microsystems as a staff engineer in the Compiler Performance

Engineering team, analyzing compiler generated code and providing

feedback and suggestions for improvement to the compiler group. She

then decided to explore the world beyond scientific computing and joined

Oracle as a Principal Engineer working on performance analysis for

application server software. That was fun, but she realized that her real

passions remains in area of performance analysis and evaluation of

programming paradigms for high performance computing and joined the

Texas Advanced Computing Center (TACC), working on all sorts of

exciting projects related to large scale parallel processing for scientific

computing. In 2011, she joined Advanced Micro Devices (AMD) as a

design engineer in the Systems Performance Optimization group.

Slide 195 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Slide 196 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

Slide 197 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

Slide 198 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References

• Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, ISBN 978-1439811924.

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
The MIT Press, 2008.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing
Lusk, Rajeev Thakur and Jesper Larsson Traeff:
MPI on a Million Processors.
EuroPVM/MPI 2009, Springer.

• Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

• H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of
Different Programming Models Upon Performance and Memory Usage on Cray XT5
Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 199 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References

• J. Treibig, G. Hager and G. Wellein:
LIKWID: A lightweight performance-oriented tool suite for x86 multicore
environments.
Proc. of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010.
Preprint: http://arxiv.org/abs/1004.4431

• H. Stengel:
Parallel programming on hybrid hardware: Models and applications.
Master’s thesis, Ohm University of Applied Sciences/RRZE, Nuremberg, 2010.
http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

Slide 200 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,
Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

Slide 201 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Holger Brunst and Bernd Mohr,
Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Slide 202 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Slide 203 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Slide 204 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

Slide 205 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

Slide 206 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Content
slide

• Introduction / Motivation . 1

• Programming models on clusters of SMP nodes . . 6

– Major programming models 7

– Pure MPI 9

– Hybrid Masteronly Style 10

– Overlapping Communication and Computation 11

– Pure OpenMP 12

• Case Studies / pure MPI vs. hybrid MPI+OpenMP . 13

– The Multi-Zone NAS Parallel Benchmarks 14

– Benchmark Architectures 21

– Dell Linux Cluster Lonestar 22

– NUMA Control (numactl) 24

– On Cray XE6 Hermit (AMD Interlagos) 33

– On Cray XE6 Hector (AMD Magny Cours) 37

– On a IBM Power6 system 45

– Conclusions 48

• Practical “How-To” on hybrid programming 50

– How to compile, link and run 52

– Running the code efficiently? 58

– A short introduction to ccNUMA 60

– ccNUMA Memory Locality Problems / First Touch 62

– ccNUMA problems beyond first touch 66

– Bandwidth and latency 68

slide

– Parallel vector triad benchmark 71

– OpenMP overhead 78

– Thread/Process Affinity (“Pinning”) 79

– LIKWID 82

– Example: 3D Jacobi Solver 90

– Example: Sparse Matrix-Vector-Multiply with JDS 93

– Hybrid MPI/OpenMP “how-to”: Take-home mess. 99

• Mismatch Problems . 100

– Topology problem 102

– Mapping problem with mixed model 109

– Unnecessary intra-node communication 110

– Sleeping threads and network saturation problem 111

– Additional OpenMP overhead 112

– Overlapping communication and computation 113

– Communication overhead with DSM 122

– Back to the mixed model 127

– No silver bullet 128

• Opportunities: Application categories that can 129
benefit from hybrid parallelization

– Nested Parallelism 130

– Load-Balancing 131

– Memory consumption 132

Slide 207 / 189 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Content

– Opportunities, if MPI speedup is limited due 136
to algorithmic problem

– To overcome MPI scaling problems 137

– Summary 138

• Thread-safety quality of MPI libraries. 139

– MPI rules with OpenMP 140

– Thread support of MPI libraries 143

– Thread Support within OpenMPI 144

• Tools for debugging and profiling MPI+OpenMP . . 145

– Intel ThreadChecker 146

– Performance Tools Support for Hybrid Code 148

• Other options on clusters of SMP nodes 152

– Pure MPI – multi-core aware 153

– Hierarchical domain decomposition 154

– Scalability of MPI to hundreds of thousands 159

– Remarks on Cache Optimization 160

– Remarks on Cost-Benefit Calculation 161

– Remarks on MPI and PGAS (UPC & CAF) 162

– Hybrid Programming and Accelerators 166

• Summary . 182

– Acknowledgements 183

– Summaries 184

– Conclusions 189

• Appendix . 190

– Abstract 191

– Authors 192

– References (with direct relation to the
content of this tutorial) 195

– Further references 199

• Content . 206

