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Abstract. We present improved algorithms for global reduction oper-
ations for message-passing systems. Each of p processors has a vector
of m data items, and we want to compute the element-wise “sum” un-
der a given, associative function of the p vectors. The result, which is
also a vector of m items, is to be stored at either a given root processor
(MPI_Reduce), or all p processors (MPI_Allreduce). A further constraint
is that for each data item and each processor the result must be computed
in the same order, and with the same bracketing. Both problems can be
solved in O(m + log, p) communication and computation time. Such re-
duction operations are part of MPI (the Message Passing Interface),
and the algorithms presented here achieve significant improvements over
currently implemented algorithms for the important case where p is not
a power of 2. Our algorithm requires [log, p] + 1 rounds - one round
off from optimal - for small vectors. For large vectors twice the number
of rounds is needed, but the communication and computation time is
less than 3mf and 3/2my, respectively, an improvement from 4mf and
2m~ achieved by previous algorithms (with the message transfer time
modeled as @+ mf, and reduction-operation execution time as m-y). For
p=3x2" and p = 9 x 2" and small m < b for some threshold b, and
p = ¢2" with small ¢, our algorithm achieves the optimal [log, p] num-
ber of rounds.
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1 Introduction and Related Work

Global reduction operations in three different flavors are included in MPI, the
Message Passing Interface [14]. The MPI_Reduce collective combines element-
wise the input vectors of each of p processes with the result vector stored only at
a given root process. In MPI_Allreduce, all processes receive the result. Finally,
in MPI_Reduce_scatter, the result vector is subdivided into p parts with given
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(not necessarily equal) numbers of elements, which are then scattered over the
processes. The global reduction operations are among the most used MPI col-
lectives. For instance, a 5-year automatic profiling [12, 13] of all users on a Cray
T3E has shown that 37% of the total MPI time was spent in MPI_Allreduce
and that 25 % of all execution time was spent in runs that involved a non-power-
of-two number of processes. Thus improvements to these collectives are almost
always worth the effort.

The p processes are numbered consecutively with ranks i =0,...,p — 1 (we
use MPI terminology). Each has an input vector m; of m units. Operations are
binary, associative, and possibly commutative. MPI poses other requirements
that are non-trivial in the presence of rounding errors:

1. For MPI_Allreduce all processes must receive the same result vector;

2. reduction must be performed in canonical order mg +my + -+ + mp_y (if
the operation is not commutative);

3. the same reduction order and bracketing for all elements of the result vector
is not strictly required, but should be strived for.

For non-commutative operations a+b may be different from b+a. In the presence
of rounding errors a + (b + ¢) may differ from (a + b) + ¢ (two different brack-
eting’s). The requirements ensure consistent results when performing reductions
on vectors of floating-point numbers.

We consider 1-ported systems, i.e. each process can send and receive a mes-
sage at the same time. We assume linear communication and computation costs,
i.e. the time for exchanging a message of m units is £ = a@ + mf and the time
for combining two m-vectors is t = m-y.

Consider first the MPI_Allreduce collective. For p = 2™ (power-of-2), butterfly-
like algorithms that for small m are latency-optimal, for large m bandwidth- and
work-optimal, with a smooth transition from latency dominated to bandwidth
dominated case as m increases have been known for a long time [5, 16]. For small
m the number of communication rounds is log, p (which is optimal [5]; this is
what we mean by latency-optimal) with mlog, p elements exchanged/combined
per process. For large m the number of communication rounds doubles be-
cause of the required, additional allgather phase, but the number of elements
exchanged/combined per process is reduced to 2(m — 1/p) (which is what we
mean by bandwidth- and work-optimal). These algorithms are simple to imple-
ment, and practical.

When p is not a power-of-two the situation is different. The optimal num-
ber of communication rounds for small m is [log, p], which is achieved by the
algorithms in [3,5]. However, these algorithms assume commutative reduction
operations, and furthermore the processes receive data in different order, such
that requirements 1 and 2 cannot be met. These algorithms are therefore not
suited for MPI. Also the bandwidth- and work-optimal algorithm for large m
in [5] suffers from this problem. A repair for (very) small p would be to collect
(allgather) the (parts of the) vectors to be combined on all processes, using for
instance the optimal (and very practical) allgather algorithm in [6], and then
perform the reduction sequentially in the same order on each process.
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Algorithms suitable for MPI (i.e., with respect to the requirements 1 to 3) are
based on the butterfly idea (for large m). The butterfly algorithm is executed on
the largest power-of-two p' < p processes, with an extra communication round
before and after the reduction to cater for the processes in excess of p'. Thus
the number of rounds is no longer optimal, and if done naively an extra 2m
is added to the amount of data communicated for some of the processes. Less
straightforward implementations of these ideas can be found in [13,15], which
perform well in practice.

The contributions of this paper are to the practically important non-powers-
of-two case. First, we give algorithms with a smooth transition from latency to
bandwidth dominated case based on a message threshold of b items. Second, we
show that for the general case the amount of data to be communicated in the
extra rounds can be reduced by more than a factor of 2 from 2m to less than
m (precisely to m/2"t! if p is factorized in p = ¢2" with ¢ an odd number).
Finally, for certain number of processes p = ¢2" with ¢ = 3 and ¢ = 9 we give
latency- and bandwidth optimal algorithms by combining the butterfly idea with
a ring-algorithm over small rings of 3 processes; in practice these ideas may also
yield good results for ¢ = 5,7,..., but this is system dependent and must be
determined experimentally.

The results carry over to MPI_Reduce with similar improvements for the non-
power-of-two case. In this paper we focus on MPI_Allreduce.

Other related work on reduction-to-all can be found in [1 3]. Collective algo-
rithms for wide-area clusters are developed in [7-9], further protocol tuning can
be found in [4,10,15], especially on shared memory systems in [11]. Compared
to [15], the algorithms of this paper furthermore give a smooth transition from
latency to bandwidth optimization and higher bandwidth and shorter latency if
the number of processes is not a power-of-two.

2 Allreduce for powers-of-two

Our algorithms consist of two phases. In the reduction phase reduction is per-
formed with the result scattered over subsets of the p processors. In the routing
phase, which is only necessary if m is larger than a threshold b, the result vec-
tor is computed by gathering the partial results over each subset of processes.
Essentially, only a different routing phase is needed to adapt the algorithm to
MPI Reduce or MPI_Reduce_scatter. For MPI_Allreduce and MPI Reduce the
routing phase is most easily implemented by reversing the communication pat-
tern of the reduction phase.

It is helpful first to recall briefly the hybrid butterfly algorithm as found in
e.g. [16]. For now p = 2™ and a message threshold b is given.

In the reduction phase a number of communication and computation rounds
is performed. Prior to round z,z = 0,...,n — 1 with m/2* > b each process i
possesses a vector of size m/2* containing a block of the partial result ((m;, +
Mig41) + -+ (Mig42: 2 + Mi 42:_1)) where iy is obtained by setting the least
significant z bits of ¢ to 0. In round z process i sends half of its partial result
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Process i:| // Reduction phase
m' <~ m // current data size
d + 1 // “distance”
while d < p do
// round
select 7 — 1 neighbors of 7 // Protocol decision
if m' > b then
exchange(m'/r) with r — 1 neighbors
Push neighbors and data sizes on stack
m' «—m'/r
else exchange(m') with r — 1 neighbors
local reduction of r (partial) vectors of size m’
d<dxr
end while
// Routing phase
while stack non-empty
pop neighbors and problem size off stack
exchange with neighbors
end while

Fig. 1. High-level sketch of the (butterfly) reduction algorithm. For p a power of
two a butterfly exchange step is used with » = 2. For other cases different ex-
change/elimination steps can be used as explained in Section 3.

to process i @ 2% (& denotes bitwise exclusive-or, so the operation corresponds
to flipping the zth bit of i), and receives the other half of this process’ partial
result. Both processes then performs a local reduction, which establishes the
above invariant above for round z + 1. If furthermore the processes are careful
about the order of the local reduction (informally, either from left to right or
from right to left), it can be maintained that the partial results on all processes
in a group have been computed in canonical order, with the same bracketing,
such that the requirements 1 to 3 are fulfilled. If in round z the size of the result
vector m/2* < b halving is not performed, in which case processes i and i & 27
will end up with the same partial result for the next and all succeeding rounds.
For the routing phase, nothing needs to be done for these rounds, whereas for
the preceding rounds where halving was done, the blocks must be combined.

A high-level sketch of the algorithm is given in Figure 1. In Figure 2 and
Figure 3 the execution is illustrated for p = 8. The longer boxes shows the
process groups for each round. The input buffer is divided into 8 segments A-H;
on process . The figure shows the buffer data after each round: X-Y;_; is the
result of the reduction of the segments X to Y from processes i to j.

Following this sketch it is easy to see that the reduction phase as claimed
takes n = log, p rounds. For m/p > b the amount of data sent and received per
process is ZZ;S m/2¥+1 = m(1—1/p). For m < b the routing phase is empty so
the optimal log, p rounds suffice. For m > b some allgather rounds are necessary,



More Efficient Reduction Algorithms 5

Latency optimized: And its message exchange pattern: Bandwidth optimized: Mixed protocol:
z=0 1 2 z=0 1 2 z=0 1.2 210 z=0 12 210
rank=02 4 — pistance 03) 024 42 024 42
A R G R] Gi
1 Number of pairs ! ! !
2 E in each block = 22 2 2 E E 2 E E
sAA 3 s AR G119 3|RIR g6
__ z=doubling level __ __ __ __
A .0 A (e B e
5|A Type of protocol: 5 5 |R G 5 |~ Gl
A = Allreduce
6 R = Reduce_scatter 6 g) 6 F
7IAAIJAl — G = Aligather 7 7 RIRIA |94l N4 g

Basic Protocol Entities
Allreduce-step with full buffer-exchange (in the first phase) and No-op-step (in the second phase):

E Send total buffer X receive and reduce it with own total buffer @ E Nothing to do
Al ~ Send total buffer receive and reduce it with own total buffer ® N Nothing to do

Reduce-scatter-step with buffer-halving (in the first phase) and All-Gather-step with buffer-doubling (in the second phase):
Send 2™ half of buffer >{ receive and reduce it with own 1%_half of own buffer @
Send 1%t_half of buffer

Send provisional result >( receive and store after own provisional result
d =

receive and reduce it with own 2" half of own buffer@

Send provisional result receive and store before own provisional result

Fig. 2. The butterfly reduction algorithm.
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Fig. 3. Intermediate results after each protocol step when the threshold b is reached
in round 3.

namely one for each reduction round in which m /2% > b. At most, the number
of rounds doubles.

3 The improvements: Odd number of processes

We now present our improvements to the butterfly scheme when p is not a power-
of-two. Let for now p = ¢2" where 2" is the largest power of two smaller than p
(and ¢ is odd).

For the general case we introduce a more communication efficient way to
include data from processes in excess of 2™ into the butterfly algorithm. We
call this step 3-2 elimination. Based on this we give two different algorithms
for the general case, both achieving the same bounds. For certain small values
of ¢ we show that a ring based algorithm can be used in some rounds of the
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3-2-(Triple)-elimination-step with buffer-halving (R) and corresponding Triple All-Gather step:

send 2n half reduce @ 1%t half
= Send 1t half Xreduce ® 2 half >( reduce @ 2 half
Send 2 half reduce @ 1¢t half, send result [now eliminated]

Send buffer (=15t part) recv. after own buffer
= Send buffer (=2 part) >< send own buffer recv. before

recv. as 1stpart, send recv'd data ><recv. after

3-2-(Triple)-elimination-step with full buffer-exchange (A) and corresponding Triple “No-op” step:

send buffer reduce @  (Py+(Ps+p,))
= Send buffer Xreduce @ (py*po) 7reduce @  (pg*t(P1+P,)
Send buffer reduce @ (p,+p,), send result [now eliminated]

No operation
= Send buffer \
receive buffer

Fig. 4. Overlapping elimination protocol for p = 15 and p = 13 using 3-2-elimination-
steps.

butterfly algorithm, and for certain values of ¢ results in the optimal number of
communication rounds.

3.1 The 3-2 elimination step

For m’ > b the 3-2 elimination step is used on a group of three processes py, p1,
and po, to absorb the vector of process ps into the partial results of process pg
and p;, which will survive for the following rounds. The step is as follows: process
p2 sends m' /2 (upper) elements to process p;, and simultaneously receives m’/2
(lower) elements from process p;. Process p; and py can then perform the reduc-
tion operation on their respective part of the vector. Next, process pg receives
the m'/2 (lower) elements of the partial result just computed from process po,
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X Send . .
@ - receive & reduce @  (po*p:) g = buffer \( p with the butterfly algorithm
~ Send / imi - i . .
buffer / [Now eliminated] receive (here with two steps) to its odd
factor.

Fig. 5. Non-Overlapping elimination protocol for p =
15 and p = 13 using 3-2- and 2-1-elimination-steps.

and sends m'/2 (upper) elements to process p;. Process pg and p; compute a
new partial result from the m'/2 elements received.

As can be seen process pg and p; can finish after two rounds, both with the
half of the elements of the result vector [m{ + (m} + mj)]. The total time for
process pg and p; is 2a + fm' +ym'.

Compare this to the trivial solution based on 2-1 elimination. First process
p2 sends all its m' elements to process p; (2-1 elimination), after which process
po and p; performs a butterfly exchange of m’'/2 elements. The time for this
solution is 2« 4+ 3/28m' + 3/2~vym/'.

For m' < b, the total buffers are exchanged and reduced, see the protocol
entities described in Fig. 4.

The 3-2 elimination step can be plugged into the general algorithm of Fig-
ure 1. For p = 2" + () with () < 2", the total number of elimination steps to be
performed is ). The problem is to schedule these in the butterfly algorithm in
such a way that the total number of rounds does not increase by more than 1
for a total of n + 1 = [log, p] rounds. Interestingly we have found two solutions
to this problem, which are illustrated in the next subsections.

3.2 Overlapping 3-2 Elimination Protocol

Figure 4 shows the protocol examples with 15 and 13 processes. In general, this
protocol schedules 3-2-elimination steps for a group of on 2% x 3 processes in each
round z for which the zth bit of p is 1. The 3-2-steps exchange two messages of
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the same size and are therefore drawn with double width. The first process is not
involved in the first message exchange, therefore this part is omitted from the
shape in the figure. After each 3-2-step, the third process is eliminated, which is
marked with dashed lines in the following rounds. The number of independent
pairs or triples in each box is 2%. As can be seen the protocol does not introduce
delays where some processes have to wait for other processes to complete their
3-2 elimination steps of previous rounds, but different groups of processes can
simultaneously be at different rounds. Note, that this protocol can be used in
general for any number of processes. If p includes a factor 2" then it starts with
n butterfly steps.

3.3 Non-overlapping Elimination Protocol

Figure 5 shows a different protocol that eliminates all excess processes at round
z = 1. With the combination of one 3-2-elimination-step and pairs of 2-1-
elimination-steps any odd number of processes p is thus reduced to its next
smaller power-of-two value. Note that for m > b in round z = 1 only m/2 data
are sent in the 2-1-elimination step (instead of m if the 2-1 elimination would
have been performed prior to round z = 0).

Both the overlapping and the non-overlapping protocol are exchanging the
same amount of data and number of messages. For small m < b the total time is
t = (14 [log, p])a +m(1 + [log, p])B + m[log, p]7y, where the extra round (the
a-term) stems from the need to send the final result to the eliminated processes.
For large m > b the total time is ¢t = 2[log, pla+2m(1.5—1/p")f+m(1.5-1/p")y
with p' = 2™ being the largest power of two smaller than p.

This protocol is designed only for odd numbers of processes. For any number
of processes it must be combined with the butterfly.

3.4 Small ring

Let now p = r72™. The idea here is to handle the reduction step for the r? factor
by a ring. For r — 1 rounds process i receives data from process (i — 1) mod r and
sends data to process (i + 1) mod r. For m > b each process sends/receives only
m/r elements per round, whereas for m < b each process sends its full input
vector along the ring. After the last step each process sequentially reduces the
elements received: the requirements 1 and 2 make it necessary to postpone the
local reductions until data from all processes have been received. For m > b each
process has m/r elements of the result vector mg + my + ... + m,_;. We note
that the butterfly exchange step can be viewed as a 2-ring; the ring algorithm is
thus a natural generalization of the butterfly algorithm.

For small m < b and if also » > 3 the optimal allgather algorithm of [6]
would actually be much preferable; however, the sequential reduction remains a
bottleneck, and this idea is therefore only attractive for small p (dependent on
the ratio of @ and 3 to 7).

Substituting the ring algorithm for the neighbor exchange step in the algo-
rithm of Figure 1, we can implement the complete reduction phase in (r—1)g+n
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p| m Ring, latency-opt. Elimination, lat.-opt. Ring, bandwidth-opt. Elimination, bw-opt.
3] S[2 +02 F002 =222 %3 +03 + 002 = 3.32 4 +0.13 0.0l = 4.14 4+ 020 F 0.0l = 4.21
M|2 4 2.0 4+ 0.20 = 4.20 *|3 + 3.0 4+ 0.20 = 6.20 4 4 1.33 4 0.07 = 5.40 4 4 2.00 4+ 0.10 = 6.10
L|2 4 20. +2.00 = 24.0 |3 + 30. + 2.00 = 35.0 4 4 13.3 4 0.67 = 18.0 *| 4 4 20.0 4+ 1.00 = 25.0
5| S[3 +04 +f004 =23.44 "4 + 04 + 0.03 = 4.43 7 +0.16 + 0.01 = 7.17 6 + 0.25 + 0.0l = 6.26
M|3 4 4.0 4+ 0.40 = 7.40 *|4 4 4.0 4+ 0.30 = 8.30 7 4+ 1.60 + 0.08 = 8.68 6 4+ 2.50 4+ 0.13 = 8.63
L|3 4 40. 4+ 4.00 = 47.0 |4 4 40. 4 3.00 = 47.0 7 4+ 16.0 4+ 0.80 = 23.8 *| 6 +25.0 + 1.25 = 32.3
7[ S[3 + 0.6 + 0.06 = 3.66 |4 + 0.4 + 0.03 = 4.43 9 + 0.17 + 0.01 = 9.18 6 + 0.25 + 0.0l = 6.26
M|3 4 6.0 + 0.60 = 9.60 |4 + 4.0 + 0.30 = 8.30 *| 9 + 1.71 + 0.09 = 10.8 6 + 2.50 + 0.13 = 8.63
L|3 4 60. +6.00 = 69.0 |4 4 40. + 3.00 = 47.0 9 4+ 17.1 4+ 0.86 = 27.0 *| 6 + 25.0 + 1.25 = 32.3
13 s[4 + 12 +0.12 =5.32 7|6 + 0.5 + 0.04 = 554 |16 + 0.19 + 0.01 = 16.2 8 + 0.28 + 0.01 = 8.29
M|4 412, +1.20 = 17.2 |5 4 5.0 4 0.40 = 10.4 *|{16 + 1.85 + 0.09 = 18.0 8 4+ 2.75 4+ 0.14 = 10.9
L|4 4+ 120. 4+ 12.0 = 136. |5 4 50. 4+ 4.00 = 59.0 |16 4 18.5 4 0.92 = 35.4 *| 8 + 27.5 + 1.38 = 36.9
15| S|4 + 1.4 + 0.14 = 5.54 *|5 + 0.6 + 0.04 — 5.54 *|18 + 0.19 + 0.01 = 18.2 8 + 0.28 + 0.01 = 8.29
M|4 4 14. 4 1.40 = 194 |5 + 5.0 4 0.40 = 10.4 *|{18 + 1.87 + 0.09 = 20.0 8 4+ 2.75 4+ 0.14 = 10.9
L|4 4 140. 4+ 14.0 = 158. |5 4 50. + 4.00 = 59.0 |18 4 18.7 4 0.93 = 37.6 8 4+ 27.5 4+ 1.38 = 36.9 *
23] S[6 + 2.2 + 022 = 7.42 |6 + 0.6 + 0.056 = 6.65 *|27 + 0.10 + 0.0l = 27.2 |10 + 0.29 + 0.01 = 10.3
M|5 4 22. 4 2.20 = 29.2 |6 4 6.0 4 0.50 = 12.5 *|27 + 1.91 + 0.10 = 29.0 |10 + 2.88 + 0.14 = 13.0
L|5 + 220. + 22.0 = 247. |6 + 60. + 5.00 = 71.0 |27 4 19.1 4 0.96 = 47.1 |10 + 28.8 + 1.44 = 40.2 *
XL|5 + 2200 + 220. = 2425 |6 + 600 + 50.0 = 656. |27 + 191. 4+ 9.60 = 228. *|10 + 288. + 14.4 = 312.
63| S|6 + 62 062 = 12.8 |7 +06 + 0.06 = 7.66 *|68 + 0.19 + 0.0l = 68.2 |12 F 0.29 + 0.01 = 12.3
M|6 +62. +6.20 = 742 |7 4+ 6.0 4 0.60 = 13.6 *|{68 + 1.97 4+ 0.10 = 70.1 [12 + 2.94 + 0.15 = 15.1
L|6 + 620. + 62.0 = 688. |7 4+ 60. + 6.00 = 73.0 |68 4 19.7 4 0.98 = 88.7 |12 + 20.4 + 1.47 = 42.9
XL|6 + 6200 + 620. = 6826 |7 + 600 + 60.0 = 667. |68 + 197. 4+ 9.80 = 275. *|12 + 204. + 14.7 = 321.
message size m: S: fm =0.la, ym = 0.01a; L: Bm = 10 a, ym = 1.00a;
M: Bm = 1.0a, ym = 0.10q; XL: fm = 100, ym = 10.0a;

Table 1. Execution time of the four protocols for odd numbers of processes (p) and
different message sizes. The time is displayed as multiples of the message transfer
latency a. In each line, the fastest protocol is marked (*).

rounds. This gives a theoretical improvement for r = 3 and ¢ = 1, 2 to the opti-
mal number of [log, p] rounds. The general algorithm would require [log, p] + 1
rounds, one more than optimal, whereas the algorithm with ring steps takes 1
round less. Let for example p = 12 = 3 x 22. The ring based algorithm needs
2 + 2 = 4 rounds, whereas the general algorithm would take [log, 12] + 1

4 4+ 1 = 5 rounds.

3.5 Comparison
The time needed for latency-optimized (exchange of full buffers) and bandwidth-

optimized (recursive buffer halving or exchange of 1/p of the buffer) protocols
are:

tring,latfopt. 63 |—10g2 p—| +/8m (p ) +7m( )
telim.,latfopt. = a([10g2 p-| + 1) +/8m(|—10g2 p—| + 1) +7m([10g2 p—|)
tring,bwfopt. = a([10g2 p-| +Dp— 1) +Bm(2(1 - l/p)) +’ym(1 - 1/p)
telim. ,bw—opt. = &(2[log, p]) +pm(2(1.5 - 1/p")) +ym(1.5 - 1/p")

with p' = 2U1°822] Table 1 compares the 4 algorithms for four cases based on
different rations fm/a and ym/«, and for several numbers of processes p. The
fastest protocol is marked in each line. Note, that this table does not necessar-
ily gives the optimal values for the elimination protocols because they may be
achieved by using some internal steps with buffer halving and the further steps
without buffer halving. One can see that each algorithm has a usage range, where
it is significantly faster than the other protocols.
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3.6 Putting the pieces together

The 3-2-elimination step and the ring exchange were two alternative exchange
patterns that could be plugged into the high-level algorithm of Figure 1 for
non-powers-of-two, see also Fig 6. The number of processes p = 2"¢1¢...qp is
factorized in a) 2" for the butterfly protocol, b) small odd numbers g1, ... g1
for the ring protocol, and c) finally an odd number ¢ for the 3-2-elimination or
2-1-elimination protocol. For given p it is of course essential that each process i
at each round z can determine efficiently (i.e., in constant time) what protocol
is to be used. This amounts to determining a) exchange step (butterfly, 3-2-
elimination, 2-1-elimination, ring), b) neighboring process(es), and ¢) whether
the process will be active for the following rounds. We did not give the details;
however, for all protocols outlined in the paper this is indeed the case, but as
shortcut, Table 1 is now used for the odd factors ¢; and vector size reduced by
1/2™ if the butterfly protocol uses buffer halving due to long vectors.

4 Conclusion and open problems

We presented an improved algorithm for the MPI_Allreduce collective for the
important case where the number of participating processes (p) is not a power of
two, i.e., p = 2"q with odd q and n > 0. For general non-powers-of-two and small
vectors, our algorithm requires [log, p] + 1 rounds - one round off from optimal.
For large vectors twice the number of rounds is needed, but the communication
and computation time is less than (1+1/2""")(2mB+m~), i.e., an improvement
from 2(2mf + mry) achieved by previous algorithms [15], e.g., with p = 24 or 40,
the execution time can be reduced by 47 %. For small vectors and small ¢ our
algorithm achieves the optimal [log, p] number of rounds.

The main open problem is whether a latency optimal allreduce algorithm
under the MPI constraint 1- 3 with [log, p] rounds is possible for any number
of processes. We are not aware of results to the contrary.
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