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Abstra
t. We present improved algorithms for global redu
tion oper-ations for message-passing systems. Ea
h of p pro
essors has a ve
torof m data items, and we want to 
ompute the element-wise \sum" un-der a given, asso
iative fun
tion of the p ve
tors. The result, whi
h isalso a ve
tor of m items, is to be stored at either a given root pro
essor(MPI Redu
e), or all p pro
essors (MPI Allredu
e). A further 
onstraintis that for ea
h data item and ea
h pro
essor the result must be 
omputedin the same order, and with the same bra
keting. Both problems 
an besolved in O(m+ log2 p) 
ommuni
ation and 
omputation time. Su
h re-du
tion operations are part of MPI (the Message Passing Interfa
e),and the algorithms presented here a
hieve signi�
ant improvements over
urrently implemented algorithms for the important 
ase where p is nota power of 2. Our algorithm requires dlog2 pe + 1 rounds - one roundo� from optimal - for small ve
tors. For large ve
tors twi
e the numberof rounds is needed, but the 
ommuni
ation and 
omputation time isless than 3m� and 3=2m
, respe
tively, an improvement from 4m� and2m
 a
hieved by previous algorithms (with the message transfer timemodeled as �+m�, and redu
tion-operation exe
ution time as m
). Forp = 3 � 2n and p = 9 � 2n and small m � b for some threshold b, andp = q2n with small q, our algorithm a
hieves the optimal dlog2 pe num-ber of rounds.Keywords. Message Passing, MPI, Colle
tive Operations, Redu
tion.1 Introdu
tion and Related WorkGlobal redu
tion operations in three di�erent 
avors are in
luded in MPI, theMessage Passing Interfa
e [14℄. The MPI Redu
e 
olle
tive 
ombines element-wise the input ve
tors of ea
h of p pro
esses with the result ve
tor stored only ata given root pro
ess. In MPI Allredu
e, all pro
esses re
eive the result. Finally,in MPI Redu
e s
atter, the result ve
tor is subdivided into p parts with given
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essarily equal) numbers of elements, whi
h are then s
attered over thepro
esses. The global redu
tion operations are among the most used MPI 
ol-le
tives. For instan
e, a 5-year automati
 pro�ling [12, 13℄ of all users on a CrayT3E has shown that 37% of the total MPI time was spent in MPI Allredu
eand that 25% of all exe
ution time was spent in runs that involved a non-power-of-two number of pro
esses. Thus improvements to these 
olle
tives are almostalways worth the e�ort.The p pro
esses are numbered 
onse
utively with ranks i = 0; : : : ; p� 1 (weuse MPI terminology). Ea
h has an input ve
tor mi of m units. Operations arebinary, asso
iative, and possibly 
ommutative. MPI poses other requirementsthat are non-trivial in the presen
e of rounding errors:1. For MPI Allredu
e all pro
esses must re
eive the same result ve
tor;2. redu
tion must be performed in 
anoni
al order m0 +m1 + � � � +mp�1 (ifthe operation is not 
ommutative);3. the same redu
tion order and bra
keting for all elements of the result ve
toris not stri
tly required, but should be strived for.For non-
ommutative operations a+bmay be di�erent from b+a. In the presen
eof rounding errors a + (b + 
) may di�er from (a + b) + 
 (two di�erent bra
k-eting's). The requirements ensure 
onsistent results when performing redu
tionson ve
tors of 
oating-point numbers.We 
onsider 1-ported systems, i. e. ea
h pro
ess 
an send and re
eive a mes-sage at the same time. We assume linear 
ommuni
ation and 
omputation 
osts,i.e. the time for ex
hanging a message of m units is t = � +m� and the timefor 
ombining two m-ve
tors is t = m
.Consider �rst the MPI Allredu
e 
olle
tive. For p = 2n (power-of-2), butter
y-like algorithms that for small m are laten
y-optimal, for large m bandwidth- andwork-optimal, with a smooth transition from laten
y dominated to bandwidthdominated 
ase as m in
reases have been known for a long time [5, 16℄. For smallm the number of 
ommuni
ation rounds is log2 p (whi
h is optimal [5℄; this iswhat we mean by laten
y-optimal) with m log2 p elements ex
hanged/
ombinedper pro
ess. For large m the number of 
ommuni
ation rounds doubles be-
ause of the required, additional allgather phase, but the number of elementsex
hanged/
ombined per pro
ess is redu
ed to 2(m � 1=p) (whi
h is what wemean by bandwidth- and work-optimal). These algorithms are simple to imple-ment and pra
ti
al.When p is not a power-of-two the situation is di�erent. The optimal num-ber of 
ommuni
ation rounds for small m is dlog2 pe, whi
h is a
hieved by thealgorithms in [3, 5℄. However, these algorithms assume 
ommutative redu
tionoperations, and furthermore the pro
esses re
eive data in di�erent order, su
hthat requirements 1 and 2 
annot be met. These algorithms are therefore notsuited for MPI. Also the bandwidth- and work-optimal algorithm for large min [5℄ su�ers from this problem. A repair for (very) small p would be to 
olle
t(allgather) the (parts of the) ve
tors to be 
ombined on all pro
esses, using forinstan
e the optimal (and very pra
ti
al) allgather algorithm in [6℄, and thenperform the redu
tion sequentially in the same order on ea
h pro
ess.
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tion Algorithms 3Algorithms suitable for MPI (i.e., with respe
t to the requirements 1 to 3) arebased on the butter
y idea (for large m). The butter
y algorithm is exe
uted onthe largest power-of-two p0 < p pro
esses, with an extra 
ommuni
ation roundbefore and after the redu
tion to 
ater for the pro
esses in ex
ess of p0. Thusthe number of rounds is no longer optimal, and if done naively an extra 2mis added to the amount of data 
ommuni
ated for some of the pro
esses. Lessstraightforward implementations of these ideas 
an be found in [13, 15℄, whi
hperform well in pra
ti
e.The 
ontributions of this paper are to the pra
ti
ally important non-powers-of-two 
ase. First, we give algorithms with a smooth transition from laten
y tobandwidth dominated 
ase based on a message threshold of b items. Se
ond, weshow that for the general 
ase the amount of data to be 
ommuni
ated in theextra rounds 
an be redu
ed by more than a fa
tor of 2 from 2m to less thanm (pre
isely to m=2n+1 if p is fa
torized in p = q2n with q an odd number).Finally, for 
ertain number of pro
esses p = q2n with q = 3 and q = 9 we givelaten
y- and bandwidth optimal algorithms by 
ombining the butter
y idea witha ring-algorithm over small rings of 3 pro
esses; in pra
ti
e these ideas may alsoyield good results for q = 5; 7; : : :, but this is system dependent and must bedetermined experimentally.The results 
arry over to MPI Redu
e with similar improvements for the non-power-of-two 
ase. In this paper we fo
us on MPI Allredu
e.Other related work on redu
tion-to-all 
an be found in [1{3℄. Colle
tive algo-rithms for wide-area 
lusters are developed in [7{9℄, further proto
ol tuning 
anbe found in [4, 10, 15℄, espe
ially on shared memory systems in [11℄. Comparedto [15℄, the algorithms of this paper furthermore give a smooth transition fromlaten
y to bandwidth optimization and higher bandwidth and shorter laten
y ifthe number of pro
esses is not a power-of-two.2 Allredu
e for powers-of-twoOur algorithms 
onsist of two phases. In the redu
tion phase redu
tion is per-formed with the result s
attered over subsets of the p pro
essors. In the routingphase, whi
h is only ne
essary if m is larger than a threshold b, the result ve
-tor is 
omputed by gathering the partial results over ea
h subset of pro
esses.Essentially, only a di�erent routing phase is needed to adapt the algorithm toMPI Redu
e or MPI Redu
e s
atter. For MPI Allredu
e and MPI Redu
e therouting phase is most easily implemented by reversing the 
ommuni
ation pat-tern of the redu
tion phase.It is helpful �rst to re
all brie
y the hybrid butter
y algorithm as found ine.g. [16℄. For now p = 2n and a message threshold b is given.In the redu
tion phase a number of 
ommuni
ation and 
omputation roundsis performed. Prior to round z; z = 0; : : : ; n � 1 with m=2z > b ea
h pro
ess ipossesses a ve
tor of size m=2z 
ontaining a blo
k of the partial result ((mi0 +mi0+1) + � � �+ (mi0+2z�2 +mi0+2z�1)) where i0 is obtained by setting the leastsigni�
ant z bits of i to 0. In round z pro
ess i sends half of its partial result
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ess i: // Redu
tion phasem0  m // 
urrent data sized 1 // \distan
e"while d < p do// roundsele
t r � 1 neighbors of i // Proto
ol de
isionif m0 > b thenex
hange(m0=r) with r� 1 neighborsPush neighbors and data sizes on sta
km0  m0=relse ex
hange(m0) with r � 1 neighborslo
al redu
tion of r (partial) ve
tors of size m0d d� rend while// Routing phasewhile sta
k non-emptypop neighbors and problem size o� sta
kex
hange with neighborsend whileFig. 1. High-level sket
h of the (butter
y) redu
tion algorithm. For p a power oftwo a butter
y ex
hange step is used with r = 2. For other 
ases di�erent ex-
hange/elimination steps 
an be used as explained in Se
tion 3.to pro
ess i � 2z (� denotes bitwise ex
lusive-or, so the operation 
orrespondsto 
ipping the zth bit of i), and re
eives the other half of this pro
ess' partialresult. Both pro
esses then performs a lo
al redu
tion, whi
h establishes theabove invariant above for round z + 1. If furthermore the pro
esses are 
arefulabout the order of the lo
al redu
tion (informally, either from left to right orfrom right to left), it 
an be maintained that the partial results on all pro
essesin a group have been 
omputed in 
anoni
al order, with the same bra
keting,su
h that the requirements 1 to 3 are ful�lled. If in round z the size of the resultve
tor m=2z � b halving is not performed, in whi
h 
ase pro
esses i and i� 2zwill end up with the same partial result for the next and all su

eeding rounds.For the routing phase, nothing needs to be done for these rounds, whereas forthe pre
eding rounds where halving was done, the blo
ks must be 
ombined.A high-level sket
h of the algorithm is given in Figure 1. In Figure 2 andFigure 3 the exe
ution is illustrated for p = 8. The longer boxes shows thepro
ess groups for ea
h round. The input bu�er is divided into 8 segments A-Hion pro
ess i. The �gure shows the bu�er data after ea
h round: X-Yi�j is theresult of the redu
tion of the segments X to Y from pro
esses i to j.Following this sket
h it is easy to see that the redu
tion phase as 
laimedtakes n = log2 p rounds. For m=p � b the amount of data sent and re
eived perpro
ess isPn�1k=0 m=2k+1 = m(1�1=p). For m � b the routing phase is empty sothe optimal log2 p rounds suÆ
e. For m > b some allgather rounds are ne
essary,
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Fig. 2. The butter
y redu
tion algorithm.
Fig. 3. Intermediate results after ea
h proto
ol step when the threshold b is rea
hedin round 3.namely one for ea
h redu
tion round in whi
h m=2k > b. At most, the numberof rounds doubles.3 The improvements: Odd number of pro
essesWe now present our improvements to the butter
y s
heme when p is not a power-of-two. Let for now p = q2n where 2n is the largest power of two smaller than p(and q is odd).For the general 
ase we introdu
e a more 
ommuni
ation eÆ
ient way toin
lude data from pro
esses in ex
ess of 2n into the butter
y algorithm. We
all this step 3-2 elimination. Based on this we give two di�erent algorithmsfor the general 
ase, both a
hieving the same bounds. For 
ertain small valuesof q we show that a ring based algorithm 
an be used in some rounds of the
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Fig. 4. Overlapping elimination proto
ol for p = 15 and p = 13 using 3-2-elimination-steps.butter
y algorithm, and for 
ertain values of q results in the optimal number of
ommuni
ation rounds.3.1 The 3-2 elimination stepFor m0 > b the 3-2 elimination step is used on a group of three pro
esses p0; p1,and p2, to absorb the ve
tor of pro
ess p2 into the partial results of pro
ess p0and p1, whi
h will survive for the following rounds. The step is as follows: pro
essp2 sends m0=2 (upper) elements to pro
ess p1, and simultaneously re
eives m0=2(lower) elements from pro
ess p1. Pro
ess p1 and p2 
an then perform the redu
-tion operation on their respe
tive part of the ve
tor. Next, pro
ess p0 re
eivesthe m0=2 (lower) elements of the partial result just 
omputed from pro
ess p2,
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Fig. 5. Non-Overlapping elimination proto
ol for p =15 and p = 13 using 3-2- and 2-1-elimination-steps.
Fig. 6. Plugging in any algo-rithm for odd number (here3) of pro
esses after redu
ingp with the butter
y algorithm(here with two steps) to its oddfa
tor.

and sends m0=2 (upper) elements to pro
ess p1. Pro
ess p0 and p1 
ompute anew partial result from the m0=2 elements re
eived.As 
an be seen pro
ess p0 and p1 
an �nish after two rounds, both with thehalf of the elements of the result ve
tor [m00 + (m01 +m02)℄. The total time forpro
ess p0 and p1 is 2�+ �m0 + 
m0.Compare this to the trivial solution based on 2-1 elimination. First pro
essp2 sends all its m0 elements to pro
ess p1 (2-1 elimination), after whi
h pro
essp0 and p1 performs a butter
y ex
hange of m0=2 elements. The time for thissolution is 2�+ 3=2�m0 + 3=2
m0.For m0 � b, the total bu�ers are ex
hanged and redu
ed, see the proto
olentities des
ribed in Fig. 4.The 3-2 elimination step 
an be plugged into the general algorithm of Fig-ure 1. For p = 2n +Q with Q < 2n, the total number of elimination steps to beperformed is Q. The problem is to s
hedule these in the butter
y algorithm insu
h a way that the total number of rounds does not in
rease by more than 1for a total of n+1 = dlog2 pe rounds. Interestingly we have found two solutionsto this problem, whi
h are illustrated in the next subse
tions.3.2 Overlapping 3-2 Elimination Proto
olFigure 4 shows the proto
ol examples with 15 and 13 pro
esses. In general, thisproto
ol s
hedules 3-2-elimination steps for a group of on 2z�3 pro
esses in ea
hround z for whi
h the zth bit of p is 1. The 3-2-steps ex
hange two messages of



8 Rolf Rabenseifner and Jesper Larsson Tr�a�the same size and are therefore drawn with double width. The �rst pro
ess is notinvolved in the �rst message ex
hange, therefore this part is omitted from theshape in the �gure. After ea
h 3-2-step, the third pro
ess is eliminated, whi
h ismarked with dashed lines in the following rounds. The number of independentpairs or triples in ea
h box is 2z. As 
an be seen the proto
ol does not introdu
edelays where some pro
esses have to wait for other pro
esses to 
omplete their3-2 elimination steps of previous rounds, but di�erent groups of pro
esses 
ansimultaneously be at di�erent rounds. Note, that this proto
ol 
an be used ingeneral for any number of pro
esses. If p in
ludes a fa
tor 2n then it starts withn butter
y steps.3.3 Non-overlapping Elimination Proto
olFigure 5 shows a di�erent proto
ol that eliminates all ex
ess pro
esses at roundz = 1. With the 
ombination of one 3-2-elimination-step and pairs of 2-1-elimination-steps any odd number of pro
esses p is thus redu
ed to its nextsmaller power-of-two value. Note that for m > b in round z = 1 only m=2 dataare sent in the 2-1-elimination step (instead of m if the 2-1 elimination wouldhave been performed prior to round z = 0).Both the overlapping and the non-overlapping proto
ol are ex
hanging thesame amount of data and number of messages. For small m � b the total time ist = (1+ dlog2 pe)�+m(1+ dlog2 pe)�+mdlog2 pe
, where the extra round (the�-term) stems from the need to send the �nal result to the eliminated pro
esses.For largem > b the total time is t = 2dlog2 pe�+2m(1:5�1=p0)�+m(1:5�1=p0)
with p0 = 2n being the largest power of two smaller than p.This proto
ol is designed only for odd numbers of pro
esses. For any numberof pro
esses it must be 
ombined with the butter
y.3.4 Small ringLet now p = rq2n. The idea here is to handle the redu
tion step for the rq fa
torby a ring. For r�1 rounds pro
ess i re
eives data from pro
ess (i�1) mod r andsends data to pro
ess (i+1) mod r. For m > b ea
h pro
ess sends/re
eives onlym=r elements per round, whereas for m � b ea
h pro
ess sends its full inputve
tor along the ring. After the last step ea
h pro
ess sequentially redu
es theelements re
eived: the requirements 1 and 2 make it ne
essary to postpone thelo
al redu
tions until data from all pro
esses have been re
eived. For m > b ea
hpro
ess has m=r elements of the result ve
tor m0 +m1 + : : : +mr�1. We notethat the butter
y ex
hange step 
an be viewed as a 2-ring; the ring algorithm isthus a natural generalization of the butter
y algorithm.For small m < b and if also r > 3 the optimal allgather algorithm of [6℄would a
tually be mu
h preferable; however, the sequential redu
tion remains abottlene
k, and this idea is therefore only attra
tive for small p (dependent onthe ratio of � and � to 
).Substituting the ring algorithm for the neighbor ex
hange step in the algo-rithm of Figure 1, we 
an implement the 
omplete redu
tion phase in (r�1)q+n
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y-opt. Elimination, lat.-opt. Ring, bandwidth-opt. Elimination, bw-opt.3 S 2 + 0.2 + 0.02 = 2.22 * 3 + 0.3 + 0.02 = 3.32 4 + 0.13 + 0.01 = 4.14 4 + 0.20 + 0.01 = 4.21M 2 + 2.0 + 0.20 = 4.20 * 3 + 3.0 + 0.20 = 6.20 4 + 1.33 + 0.07 = 5.40 4 + 2.00 + 0.10 = 6.10L 2 + 20. + 2.00 = 24.0 3 + 30. + 2.00 = 35.0 4 + 13.3 + 0.67 = 18.0 * 4 + 20.0 + 1.00 = 25.05 S 3 + 0.4 + 0.04 = 3.44 * 4 + 0.4 + 0.03 = 4.43 7 + 0.16 + 0.01 = 7.17 6 + 0.25 + 0.01 = 6.26M 3 + 4.0 + 0.40 = 7.40 * 4 + 4.0 + 0.30 = 8.30 7 + 1.60 + 0.08 = 8.68 6 + 2.50 + 0.13 = 8.63L 3 + 40. + 4.00 = 47.0 4 + 40. + 3.00 = 47.0 7 + 16.0 + 0.80 = 23.8 * 6 + 25.0 + 1.25 = 32.37 S 3 + 0.6 + 0.06 = 3.66 * 4 + 0.4 + 0.03 = 4.43 9 + 0.17 + 0.01 = 9.18 6 + 0.25 + 0.01 = 6.26M 3 + 6.0 + 0.60 = 9.60 4 + 4.0 + 0.30 = 8.30 * 9 + 1.71 + 0.09 = 10.8 6 + 2.50 + 0.13 = 8.63L 3 + 60. + 6.00 = 69.0 4 + 40. + 3.00 = 47.0 9 + 17.1 + 0.86 = 27.0 * 6 + 25.0 + 1.25 = 32.313 S 4 + 1.2 + 0.12 = 5.32 * 5 + 0.5 + 0.04 = 5.54 16 + 0.19 + 0.01 = 16.2 8 + 0.28 + 0.01 = 8.29M 4 + 12. + 1.20 = 17.2 5 + 5.0 + 0.40 = 10.4 * 16 + 1.85 + 0.09 = 18.0 8 + 2.75 + 0.14 = 10.9L 4 + 120. + 12.0 = 136. 5 + 50. + 4.00 = 59.0 16 + 18.5 + 0.92 = 35.4 * 8 + 27.5 + 1.38 = 36.915 S 4 + 1.4 + 0.14 = 5.54 * 5 + 0.5 + 0.04 = 5.54 * 18 + 0.19 + 0.01 = 18.2 8 + 0.28 + 0.01 = 8.29M 4 + 14. + 1.40 = 19.4 5 + 5.0 + 0.40 = 10.4 * 18 + 1.87 + 0.09 = 20.0 8 + 2.75 + 0.14 = 10.9L 4 + 140. + 14.0 = 158. 5 + 50. + 4.00 = 59.0 18 + 18.7 + 0.93 = 37.6 8 + 27.5 + 1.38 = 36.9 *23 S 5 + 2.2 + 0.22 = 7.42 6 + 0.6 + 0.05 = 6.65 * 27 + 0.19 + 0.01 = 27.2 10 + 0.29 + 0.01 = 10.3M 5 + 22. + 2.20 = 29.2 6 + 6.0 + 0.50 = 12.5 * 27 + 1.91 + 0.10 = 29.0 10 + 2.88 + 0.14 = 13.0L 5 + 220. + 22.0 = 247. 6 + 60. + 5.00 = 71.0 27 + 19.1 + 0.96 = 47.1 10 + 28.8 + 1.44 = 40.2 *XL 5 + 2200 + 220. = 2425 6 + 600 + 50.0 = 656. 27 + 191. + 9.60 = 228. * 10 + 288. + 14.4 = 312.63 S 6 + 6.2 + 0.62 = 12.8 7 + 0.6 + 0.06 = 7.66 * 68 + 0.19 + 0.01 = 68.2 12 + 0.29 + 0.01 = 12.3M 6 + 62. + 6.20 = 74.2 7 + 6.0 + 0.60 = 13.6 * 68 + 1.97 + 0.10 = 70.1 12 + 2.94 + 0.15 = 15.1L 6 + 620. + 62.0 = 688. 7 + 60. + 6.00 = 73.0 68 + 19.7 + 0.98 = 88.7 12 + 29.4 + 1.47 = 42.9XL 6 + 6200 + 620. = 6826 7 + 600 + 60.0 = 667. 68 + 197. + 9.80 = 275. * 12 + 294. + 14.7 = 321.message size m: S: �m = 0:1�, 
m = 0:01�; L: �m = 10 �, 
m = 1:00�;M: �m = 1:0�, 
m = 0:10�; XL: �m = 100�, 
m = 10:0�;Table 1. Exe
ution time of the four proto
ols for odd numbers of pro
esses (p) anddi�erent message sizes. The time is displayed as multiples of the message transferlaten
y �. In ea
h line, the fastest proto
ol is marked (*).rounds. This gives a theoreti
al improvement for r = 3 and q = 1; 2 to the opti-mal number of dlog2 pe rounds. The general algorithm would require dlog2 pe+1rounds, one more than optimal, whereas the algorithm with ring steps takes 1round less. Let for example p = 12 = 3 � 22. The ring based algorithm needs2 + 2 = 4 rounds, whereas the general algorithm would take dlog2 12e + 1 =4 + 1 = 5 rounds.3.5 ComparisonThe time needed for laten
y-optimized (ex
hange of full bu�ers) and bandwidth-optimized (re
ursive bu�er halving or ex
hange of 1=p of the bu�er) proto
olsare: tring;lat�opt: = �dlog2 pe +�m(p� 1) +
m(p� 1)telim:;lat�opt: = �(dlog2 pe+ 1) +�m(dlog2 pe+ 1) +
m(dlog2 pe)tring;bw�opt: = �(dlog2 pe+ p� 1) +�m(2(1� 1=p)) +
m(1� 1=p)telim:;bw�opt: = �(2dlog2 pe) +�m(2(1:5� 1=p0)) +
m(1:5� 1=p0)with p0 = 2blog2 p
. Table 1 
ompares the 4 algorithms for four 
ases based ondi�erent rations �m=� and 
m=�, and for several numbers of pro
esses p. Thefastest proto
ol is marked in ea
h line. Note, that this table does not ne
essar-ily gives the optimal values for the elimination proto
ols be
ause they may bea
hieved by using some internal steps with bu�er halving and the further stepswithout bu�er halving. One 
an see that ea
h algorithm has a usage range, whereit is signi�
antly faster than the other proto
ols.
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es togetherThe 3-2-elimination step and the ring ex
hange were two alternative ex
hangepatterns that 
ould be plugged into the high-level algorithm of Figure 1 fornon-powers-of-two, see also Fig 6. The number of pro
esses p = 2nq1q2:::qh isfa
torized in a) 2n for the butter
y proto
ol, b) small odd numbers q1, ... qh�1for the ring proto
ol, and 
) �nally an odd number qh for the 3-2-elimination or2-1-elimination proto
ol. For given p it is of 
ourse essential that ea
h pro
ess iat ea
h round z 
an determine eÆ
iently (i.e., in 
onstant time) what proto
olis to be used. This amounts to determining a) ex
hange step (butter
y, 3-2-elimination, 2-1-elimination, ring), b) neighboring pro
ess(es), and 
) whetherthe pro
ess will be a
tive for the following rounds. We did not give the details;however, for all proto
ols outlined in the paper this is indeed the 
ase, but asshort
ut, Table 1 is now used for the odd fa
tors qi and ve
tor size redu
ed by1=2n if the butter
y proto
ol uses bu�er halving due to long ve
tors.4 Con
lusion and open problemsWe presented an improved algorithm for the MPI Allredu
e 
olle
tive for theimportant 
ase where the number of parti
ipating pro
esses (p) is not a power oftwo, i.e., p = 2nq with odd q and n � 0. For general non-powers-of-two and smallve
tors, our algorithm requires dlog2 pe+1 rounds - one round o� from optimal.For large ve
tors twi
e the number of rounds is needed, but the 
ommuni
ationand 
omputation time is less than (1+1=2n+1)(2m�+m
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