PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS 1

Automatic MPI Counter Profiling

Rolf Rabenseifner

Rechenzentrum Universitat Stuttgart, Germany

Abstract— This paper presents an automatic
counter instrumentation and profiling module
added to the MPI library on Cray T3E and SGI
Origin2000 systems. A detailed summary of the
hardware performance counters and the MPI calls
of any MPI production program is gathered during
execution and written in MPI_Finalize on a special
syslog file. The user can get the same information
in a different file. Statistical summaries are com-
puted weekly and monthly and the user specific
part is sent by mail to each user. The paper dis-
cusses scalability aspects of the new interface: How
to obtain the right amount of performance data to
the right person in time, and how to draw con-
clusions for the further optimization process, e.g.
with the trace-based profiling tool Vampir. The
paper describes two different software designs that
allow the integration of the profiling layer into a
Unix MPI library and into a dynamic shared object
MPI library without consuming the user’s PMPI
profiling interface. Experiences with this library
on the Cray T3E systems at HLRS Stuttgart and
TU Dresden and a summary of 6 month are pre-
sented in this paper. It is the first time that all
MPI applications on such a large system where au-
tomatically instrumented and profiled for such a
period. The statistics give new insight in how effi-
ciently the MPP system is really used by the MPI
applications. Moreover, it gives hints which appli-
cation and which MPI routine should be optimized.
After integrating the hardware performance coun-
ters into the MPI counter profiling, first results
with these counters are presented. The software is
portable to other systems.

Keywords— MPI, Counter Profiling, Instrumen-
tation, Hardware Performance Counters, Trace-
based Profiling, PerfAPI, PCL, Scalable User In-
terface.

Rolf Rabenseifner, High-Performance Computing-
Center Stuttgart (HLRS), Rechenzentrum Universitat
Stuttgart (RUS), University of Stuttgart, Germany,

http://www.hlrs.de/people/rabenseifner . Part of the work
was done while the author was a visiting research associate
at the Zentrum fiir Hochleistungsrechnen (ZHR), Technische
Universitdt Dresden, Germany (Center for High-Performance
Computing, Dresden University of Technology). E-mail:
rabenseifner@hlrs.de .

I. COUNTER-BASED PROFILING

ODAY, job accounting on MPP hardware

platforms does not provide enough informa-
tion about the computational efficiency or about
the efficiency of message passing (MPI) usage ei-
ther to the users or to the computing centers.
There is no information available about band-
width and latency or integer and floating point
operation rates achieved in real application runs.
Therefore, users and hotline centers have no re-
liable information base for technical and political
decisions with respect to programming and opti-
mization investment. Existing trace-based profil-
ing tools are too complicated for a first glance at
an application and can be used in small test-jobs
only, not in long-running production jobs.

To solve this problem, the High-Performance
Computing-Center (HLRS) at the University of
Stuttgart has combined the method of counter-
based profiling with the techniques of writing sys-
tem log-files. For each MPI routine, the number of
calls, the time spent in the routine and the num-
ber of transferred bytes are written at the end of
each parallel job to a syslog file at the computing
center and, optionally, to a user file. The integra-
tion of the PCL library|1] allows the automatic in-
strumentation with the microprocessor’s hardware
performance counters (e.g. floating point instruc-
tions) to receive information about the computa-
tional efficiency of each program.[14] With that,
the user has a criterion whether tuning the nu-
merical part or the communication part promises
greater benefit.

An analysis tool reads the syslog file and, on a
weekly basis, sends a summary to each user about
his jobs and writes a web-based summary for the
computing center. The results of the first half-
year on Cray T3E 900-512 at the HLRS are pre-

2 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

sented.[13] In a survey, our users showed that in
the past, the profiling information was used only
seldom for tuning the individual applications be-
cause the profiling tool was only available after the
application development was finished and produc-
tion was started. But 75% of those interviewed
believe that the profiling can help in the future to
improve their applications.|[16]

The profiling was implemented, tested and in-
stalled as default library on the T3E systems at
HLRS Stuttgart and TU Dresden, and it is now
ported to the Origin2000 at TU Dresden. The
counter-based profiling only has a minimal over-
head. The memory requirements on a T3E-900 are
200 kBytes. The counting requires 0.3 - 0.5 usec
per MPI call and writing the syslog file requires
about 0.1sec for each job. The overhead was
0.03% of the application CPU time in the first
half-year average in Stuttgart. Including the hard-
ware counters, the overhead is about 300 kBytes
memory, 2 pusec/call and about 0.1 - 0.2% (ex-
pected) in all.

The PCL library was developed by the
Forschungszentrum Jiilich. For integrating the
PCL library, the hardware counters’ reading rou-
tine of the PCL library on the T3E has been op-
timized from about 35 us to about 0.5 — 1.0 us by
removing the operating system calls.! This allows
differentiation between counting hardware events
inside and outside of the MPI routines. This is
important because otherwise some hardware coun-
ters (load, integer instruction, any instructions)
could not be used for measuring the user applica-
tion since the busy wait operations of MPI would
inflate their values.

Sections II and III describe the automatic MPI
counter profiling as part of a scalable user inter-
face. Section IV presents the software design for
systems that have implemented MPI as Unix li-
braries or as dynamic shared objects (DSO). Sec-
tion V lists which information is counted and Sec-
tion VI describes how the encountered informa-
tion is analyzed. Section VII shows the results
of the first half-year statistics. Sections VIII and

!Meanwhile, this system call is also removed in the new ver-
sion of PCL

IX present the integration of the hardware per-
formance counters and first statistical results. In
Section X, a user survey is summarized. Section
XTI discusses related work and Section XII give the
conclusions.

II. SCALABLE USER-INTERFACE

The user interface is designed so that the cost-
benefit ratio is scalable for the user. This means
that one is able to receive the most important in-
formation about an MPI application with an ef-
fort that is nearly zero, and if more information is
wanted, there are several levels of support:

Level 1: Reading the first lines of an e-mail yields
the MPI percentage, the instruction rate of all
completed hardware instructions, the floating
point instruction rate, and the level 2 cache
miss rate of the jobs in the last week, if they
have used the MPI default library.

Level 2: Reading the details of the e-mail yields
for each MPI routine a summary of the calling
count, execution time, and transferred bytes.
Additionally, an estimate of the transfer and
synchronization parts of the execution time is
given. For each hardware performance counter,
the total number of events and the rates are
printed for the application part and for all MPI
routines together.

Levels 1 and 2 could be implemented because the
instrumentation is added to the default MPI li-
brary and writes the counters via the syslogd dae-
mon to a syslog file.

Level 3: The user has to set a special environ-
ment variable in the MPI job before calling
mpirun. As a consequence, the user gets all
the information mentioned above (except the
synchronization part estimate) for each paral-
lel application run that uses the environment
variable. For the future it is planned to imple-
ment a Web interface for the database created
upon the syslog information. Then the user
can view each job without setting the environ-
ment variable, and for levels 1-3 the user does
not need to modify anything in the programs
or job commands.

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 3

Level 4: The application can call MPI_Pcontrol
to print out the state of the counters at any
location inside the application. This gives all
the information not only at the end of the ap-
plication run, but also at any time and on each
individual process (and not only the average of
all processes).

Level 5: Setting one more environment variable,
the user can choose other hardware perfor-
mance counters, e.g. the integer instruction
rate, level 1 data cache hits, and misses.

The levels 1 to 5 provide the information base to

decide whether other tools should be used. There-

fore, the next level is not part of the automatic

MPI profiling, but part of the scalability strategy:

Level 6: Using trace based tools, e.g. Vampir,
the user gets detailed insight into the compu-
tation and communication structure of the ap-
plication. Using the PCL library directly or
using other performance visualization tools can
give a detailed insight into the computation ef-
ficiency and any problems of the application.
PAT and Apprentice can also be used to lo-
cate and analyze the computational kernel of
the application.

One of the key issues for this design is that on aver-

age the instrumentation overhead is in the range

of a thousandth of the CPU time consumed by
the applications. The automatic MPI profiling
is a method to get enough information to decide
whether the application is running as expected,
one more chance to detect major bottlenecks and

a basis to decide whether trace based tools or di-

rect hardware counter instrumentation should be

applied.

III. CoMPARING COUNTER-BASED AND
TRACE-BASED METHODS

The major differences between the counter and
trace-based profiling can be seen by comparing the
following characteristics: Automatic counter-based
MPI profiling analyzes the whole MPI application.
The analysis of long-running production jobs is
not a problem. The extent of instrumentation
must be restricted in time and memory to about
a thousandth of the application because the tool

is used for all MPI application runs. Only a small
amount of data is written for each application run
on the system’s disk. The computing center and
the users can get an overview about all jobs par-
allelized with MPIL.

Trace-based profiling can normally be used to
analyze short test jobs only. The instrumentation
overhead can vary within the range of 5 to 10 per-
cent because the user decides whether or not the
tool is applied. FEach trace can produce a large
amount of data, written on the user’s disk. The
computing center does not get any information
and long running parallel jobs can not be viewed,
although these jobs are more important because
they consume most of the computing resources.

IV. SOFTWARE DESIGN

To use the instrumented MPI library as default
library, it is necessary to export the full MPI and
PMPI interface for Fortran and C, as described in
the MPI standard and implemented in the pub-
lic and vendor’s MPI libraries. This means that
it was not possible to consume the PMPI profil-
ing interface for the intended instrumentation, be-
cause otherwise the user is no longer able to use
the PMPI-interface for privat profiling, e.g. with
VAMPIRtrace [10]. Because the standard requires
that the MPI routines are implemented by rou-
tines and not by macros, it is not possible to mod-
ify the MPI calls by adding macros to the mpi.h
file. This method also cannot be used with For-
tran. Therefore, a method had to be used that
allowed two profiling layers. Because we do not
have the source code of our vendor’s MPI library
and as we want to keep the instrumentation in a
separate module, we have added this module to
the library with two different methods. The Fig-
ures 1 and 2 show the different software designs
for Unix libraries (archive libmpi.a) and dynamic
shared objects (DSO libmpi.so).

A. Additional Profiling Layer with MPI Uniz Li-
brary

For Unix libraries — see Fig. 1 —, the instrumen-
tation is implemented as one wrapper routine to
each MPI routine and added to the original MPI

4 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

with original MPI library

Application
Fortran / C
- MPI_SEND
s Fortran
gg WIADPETS MPI_Send
=5 existing
°= MPI library Ssao
sSl‘r/,,g“ Sag
Ubs?ftu "
Application
Fortran / C
~and |- MPI_SEND
Ftn. private
» er\ﬁl'?l : ff_?— |- MPI_Send
=8 0 iler
gg PMPI = |~ PMPI_SEND
58 WraD. BEIBWID. PMPI_Send
- existing ~
PMPI library Ssao
Strjng “~.~
Supey,
lleI/tuﬁon

with new counter instrumentation

Application
Fortran / C
|- MPI_SEND
Fortran -
WISDDETS MPI_Send
instrumented 2 .g
wrappers g
MPI_send <5
modified -
MR library
Application
Fortran / C
~and |- MPI_SEND
Ftn. private |
Wpie e [VPLSe
|- PMPI_SEND
PMPI [Emn. - o
Wrap. | wrp. PMPI_Send z2
instrumented 25
wrappers =2
PMPI_send
modified
PMPI library

e B B
MPI SYSLOG file

analysis program and cron jobs

/

Mail to each user

v

Web pages about the whole system

Fig. 1. The software design for MPI libraries (libmpi.a)

library, in which the original routines’ names are
modified with a binary-file editor.

The existing binary MPI libraries (libmpi.a
and libpmpi.a) were modified by substituting the
string of each MPI routine name by the same
name, except that the last upper case letter was
converted to lower case, e.g. MPI_Send was mod-
ified into MPl_send. The instrumentation is done
in small wrapper routines named with the official
MPI routine name (e.g. MPI_Send). They handle
the counters for each routine and call the original
MPI library routine, now named e.g. MPI_send.
Fig.1 shows this method. The method was devel-
oped for the MPI-GLUE project [12], in which it
was necessary to combine three different MPI im-
plementations (the metacomputing glue, the ven-
dors MPT library and a global MPI library) inside
of one executable.

In libpmpi.a the same was done with the
PMPIL_... interface, e.g. PMPI_Send was substi-
tuted by PMPI_send. The libpmpi.a consists of two
parts, a) the real PMPI library routines, and b)
the wrapper routines, e.g. the wrapper MPI_Send
calls PMPI_Send. Prior to the substitution the

wrapper routines must be extracted and after-
wards added again.

If the Fortran interface is also implemented as
wrapper routines, then these wrappers must be
handled in the same way as the PMPI wrap-
per routines. In our case only two Fortran rou-
tines (MPI_SEND and MPI_RECV) were not imple-
mented as wrappers. Therefore, they had to be
implemented additionally for the profiling inter-
face.

In the instrumented wrapper to MPI_Finalize the
counters are written to a special syslog file by the
syslog daemon. We use the instrumented MPT li-
braries as the default libraries. Therefore, all MPI
applications are profiled only after they have been
relinked since the installation of the instrumented
MPI libraries.

Additionally, there exists a user interface. By
setting an environment variable the user can
write a copy of the information written by
MPI_Finalize to a file or the standard output. With
MPI_Pcontrol he can write subtotals of one MPI
process or collectively of all MPT processes.

This interface was developed for a Cray T3E

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 5

with original MPI library

with new counter instrumentation

Application
Fortran / C
~and
Application private profiler MPI_Send &
Fortran / C mapi | |MPI mpi_send_
~and aliases ﬁ aliasés| pmp|_send & 2
Apr|vate profiler | mpi_send_ empty [instrumented pmpi_send_ e
mapl_ wrappers| |wrappers cE
aliases | pmpi_send = 2
38 BIEIS |- MPI_Send gl diopen & disym
Se Fortran | Mp B — pmpi_send
55 wrapper_|aliases | pMPI_Send pmpi_ pmpi_send_ -
PMPI_ implementation Fortran | 2 g
for C Sao wrapper \ Sz
ren e - - PMPI_Send oS
/I'bmam"'lg ~~a. | PMPIL_interface in 52
IL RN renamed MPI libral s
/IbMpI.'SSOO inty ry °

e A—
MPI SYSLOG file

analysis program and cron jobs

/

Mail to each user

v

Web pages about the whole system

Fig. 2. The software design for MPI dynamic shared objects (libmpi.so)

system and is described in [13]. On the T3E, the
profiling interface adds an overhead of 200 kbyte to
the executable (i.e. 0.15% of the available mem-
ory) , 0.385 usec to each call to an MPI routine,
and additional 0.190 usec if a message length in-
formation is counted, and about 0.1 sec once for
writing the statistics in MPI_Finalize. Compared
with the minimal MPI message latency on our sys-
tem (16 psec) and an average runtime of more than
1 hour, the profiling overhead is marginal. Over-
all in the first 6 months the overhead was about
0.03% of the CPU time of the profiled applica-
tions. This overhead was mainly produced by the
instrumented wrappers and only about 10 % of the
overhead was produced by writing the syslog file.

B. Dynamic Shared objects (DSO)

For DSOs — see Fig.2 —, the new MPI-DSO
libmpi.so contains only the instrumented wrappers
and an initialization routine that binds the (up to
this time) unresolved MPI references of the wrap-
per routines with dlopen and dlsym to the original
MPI-DSO at start-up time. For this, the original
MPI-DSO library was renamed libMpi.so. The dy-
namic linking at start-up time is necessary because
static linking is impossible since the entry-point
names of the instrumented wrapper routines and
of the original MPI library routines are identical.

This design requires that the original MPI routines
never internally call other MPI routines. This is
the case for the SGI MPI library. For applications
written in C, this design adds only one additional
subroutine call and the instrumentation.

For applications written in Fortran, the de-
sign depends on the implementation method of
the Fortran MPI language binding. If a For-
tran MPI routine is implemented as a Fortran-to-
C wrapper routine that calls its C counterpart,
then an empty wrapper for this Fortran inter-
face must be added to the new libmpi.so and the
dynamic linking establishes the following calling
stack: application — new empty Fortran wrap-
per — original Fortran-to-C wrapper — new in-
strumented C wrapper — original MPI C inter-
face. Compared with C, this case costs one ad-
ditional subroutine call. If a Fortran MPI rou-
tine is implemented directly, then the Fortran
wrapper in the new libmpi.so must be instru-
mented like the C wrapper, and there are no ad-
ditional costs. This case may be necessary for
routines with arguments that are externals or
for optimized MPI routines. Additional wrap-
pers must be included for the three special argu-
ment values MPI_.NULL_COPY_FN, MPI_DUP_FN
and MPI_NULLL_DELETE_FN in Fortran and C.
This design was developed for SGI IRIX 6.5 and

6 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

Nov 28 22:09:57 hwwt3e syslog: B <56770>

size =n = 4 uid=843 mpt.1.2.1.0 / avg. on each PE:
argv[0] = ./mpi_bench2

send 1344 calls 2.94e+00 sec cnt= 9.4e+08 1lng= 9.40e+08
recv 1344 calls 8.73e+00 sec cnt= 9.4e+08 1lng= 9.40e+08
barrier 149 calls 1.29e+01 sec

bcast 40 calls 5.36e+01 sec cnt= 4.3e+01 1lng= 3.44e+02
reduce 1682 calls 1.49e+01 sec cnt= 7.7e+07 1lng= 6.15e+08
comm_size 2 calls 6.21e-06 sec

comm_rank 2 calls 3.39e-06 sec

attr_get 1 calls 2.99e-06 sec

wtime 430 calls 3.11e-04 sec

init 1 calls 5.96e-03 sec

finalize 1 calls 2.07e-05 sec

time [sec] mpi= 9.32e+01 / all= 1.13e+02 = 8.3e-01
time * size mpi= 3.73e+02 / all= 4.51e+02

profiling overhead= 1.54e-01 sec = time_all* 1.4e-03

Fig. 3. Example of the output of one MPI job

described in [16]. The library is portable to any
system with fast subroutine calls and a fast local
clock routine.

V. WHAT 1S COUNTED

For each MPI job, i.e., for each application parti-
tion that uses MPI, the profiling counts:

o the number of processes in MPI_COMM_WORLD,

« the wall clock time of the application [sec],

« the wall clock time spent in all MPI calls in [sec]
and as percentage of the application time,

o for each of the 128 MPI-1.2 routines:

— the number of calls to the MPI routine,

— the sum of time spent in the MPI routine,

— the sum of the count arguments (if appropri-
ate) and

— the sum of the transferred bytes (if appropri-
ate),

« the user identifier (UID),

« all MPI environment switches, e.g., the variable
MPI_BUFFER_MAX defines the limit for using a
buffered protocol for standard mode sends,

o whether the MPI or the PMPI library is used,

o whether the Fortran or the C language bind-
ing is used (indirectly via the usage of argc in
MPI_Init),

o MPI implementation release name,

« the overhead added by the instrumentation in
[sec| and as percentage of the application time,
o the time and date of the call to MPI_Finalize.

Fig.3 shows an example of the output produced
by MPI_Finalize on the special syslog file.

VI. THE ANALYSIS

First, any user can get a copy of the information
on the syslog file for each MPI job. The comput-
ing center can also use the syslog file to analyze a
specific user job if the user calls the hotline. The
computing center uses an analysis program that
computes each week a summary for each user and
sends it as e-mail to the users. Fig.4 gives an im-
pression about the information sent to the users.
The marked lines show the critical values. In the
e-mail they are printed bold. Line (1) shows that
the user has used 2.2 % of the whole system in that
week. Line (2) shows the quotient of MPI to ap-
plication time that is in the example with 58.5 %
very bad. The reasons are visible in the lines (3)
- (6). They are marked because most of the MPI
time is spent in these MPI routines. Column 13
shows, that most of the MPI time is spent for wait-
ing (synchronization time). This means that the
application of this user is badly balanced. This en-
ables the user to decide whether he requires more
information or not, i.e. whether he should look

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 7

analyzed jobs (partitions started with mpirun or mptrun): 7

sum of used PEs: 232

average of PEs used by one job: 33.1
average of PEs (weighted by CPU time): 95.9
usage of different MPI routines: 20
sum of application CPU time: 6.76e+06 s = 1876.99 h
(1) sum of application CPU time / available CPU time = 2.186 %
sum of MPI time: 3.95e+06 s = 1098.16 h
(2) sum of MPI time / sum of CPU time = 58.506 %
overhead added by the profiling: 2.97e+02 s
overhead / sum of CPU time = 4.39e-05
used MPI language binding: C = 7 jobs
Fortran = 0 jobs
the following environment variables are used in ... jobs:
- MPIPROFOUT in 2 jobs
column 1 /l 21 31| 41 5 | 66 | 71 8 | 91101l 11 | 12 | 13
| | | | | | | | | | | |
MPI routine |number|calls | sum | CPU |[sum of|sum of|trans-|input for| estimated sum of
| of | per | of | time |COUNT |COUNT*|ferred|col.11-13|laten-|trans-|idle/
|calls | PE | CPU | per |argu- |P_SIZE|bytes |lat-|band|cy CPU|ferCPU|sync.
I I | time | call | ments|=trans| per |ency|wdth|time |time [time
| | | [sec] | [usec]| |ferred| call |[us]|[MB |[sec] |[sec] |[sec]
I I I I I | bytesl| I | /s]l I I
recv | 703e+5|303097 | 263e+1 | 371403e+7|292e+8| 415| 10| 300|703e+0|928e-1|184e+1
get_count |278e+5]119857 | 368e-1| 1] I I I I |368e-1| I
(3) ssend | 703e+5|303096 | 134e+4| 19072|403e+7|292e+8]| 415| 50| 300|352e+1|928e-1|134e+4
isend | 137e+6]591252|232e+2| 169]299e+9|243e10| 17734| 10| 100|137e+1|232e+2|-14e+2
irecv | 137e+6]591252|389¢e+1 | 28|677e10|542e11|394969| 10| 300|137e+1|233e+2|-21e+3
(4) waitall |138e+615927701403e+3| 2931|285e+6| I | 20| |275e+1] |400e+3
(5) reduce |346176| 1492|104e+4|301e+4|461e+8]|181e+9|524126| 51| 61177e-1]288e+2|101e+4
(6) allreduce |122e+5| 52559|114e+4| 93307 |122e+5|975e+5]| 8| 70l 61854e+0|155e-1|114e+4
comm_size | 464| 2|106e-5]| 2| I I | I [106e-5| |
comm_rank | 464] 2|685e-6| 1] I I I I |685e-61 I
cart_create | 232] 1|595e-2| 25649]| | I | I [595e-2| |
wtime |274e+5]118253|549e-1| 2| I I [I |549e-1]| I
init | 232] 11549e-2| 23671| I I | I |549e-2] |
finalize | 232] 1|762e-5] 33| I I I I | 762e-5]| I

Fig. 4. Example of a weekly user’s analysis

at the output of single MPI application runs or
whether he should use a trace-based profiling, e.g.
VAMPIRtrace.

For most point-to-point and collective opera-
tions, an estimate is added that divides the MPI
time into a latency time, a transfer time and a syn-
chronization time. The estimate for the latency
and transfer time is based on benchmark tests and
on the number of counted calls and transferred
bytes. The estimate for the synchronization time
is the difference of measured MPI time minus the
estimate for latency and transfer time.

For the sytems administrator, the analysis pro-
gram produces weekly and monthly web pages
with overviews about the system utilisation of the

MPI applications. The web pages include

« a short summary with the most important rates
(Fig5),

« plots as presented in the next section in the fig-
ures 6-10,

o statistical details in the form of Fig. 4 of all MPI
jobs, of those written in Fortran, and those writ-
ten in C, separated by the consumed CPU time
per job, and separated by the number of used
MPI processes,

« a copy of all user’s statistics,

« and special user’s statistics that summarize only
critical jobs, e.g. jobs with an MPI percentage
higher than 15 %.

8 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

cpu seconds
analyzed sec
analyzed sec

analyzed sec
analyzed sec
analyzed sec
analyzed sec

start of analysis Jul 12 20:40:03 1998
end of analysis Jan 16 18:22:19 1999
interval 187.9 days
cpu seconds 8.31e+09 sec
analyzed seconds 1.53e+09 sec = 18.4), of
MPI whole execution time 2.10e+08 sec = 13.7J of
- non-communication part 3.30e+05 sec = 0.0% of
— communication part:
-- latency portion 1.05e+07 sec = 0.7% of
-— transfer time 2.95e+07 sec = 1.9}, of
-- waiting/sync/idle 1.54e+08 sec = 10.1% of
- alltoallv,reduce_sc,scan 1.53e+07 s = 1.0% of
analyzed jobs 10289
nodes per job 32.4
nodes average 99.6 weighted by
used MPI routines 92
number of users 68

analyzed time

95.3 % of the appl. CPU time was consumed by the top 21 users
99.2 % of the appl. CPU time was consumed by the top 29 users

Fortran jobs:

- time / analyzed 80.4 %,

- jobs 4865 = 47.3 J of analyzed

- nodes per job 40.7

- nodes average 89.7 weighted by analyzed time

- used MPI routines 67

C & C++ jobs:

- time / analyzed 19.6 %

- jobs 5424 = 52.7 % of analyzed

- nodes per job 24.9

- nodes average 140.0 weighted by analyzed time

- used MPI routines 87

Fig. 5. Statistical overview of an analyzed time interval

VII. RESULTS FROM 6 MONTHS

In the interval reported in Fig.5 we have pro-
filed 68 users that have computed totally 425,288
hours on T3E processors. Based on an estimate
of the latency of each routine, the statistics show
that only a minimal portion of the MPI time is
caused by latencies. Based on this result, we de-
cided, not to install the mpich library as a second
alternative for our users although mpich achieves
a three times better latency than Cray’s mpt li-
brary.[4] Fig. 6 shows that 18.4 % of the CPU time
of the whole system was analyzed. The remain-
ing 81.6 % can be split in about 30% idle time,
and in about 50 % for MPI applications that do
not finish or do not call MPI_Finalize, or that were

not linked with the instrumented default MPT li-
brary, or applications that use PVM, HPF or the
native message passing library shmem as parallel
programming method. This means that about a
quarter of the accounted time was consumed by
jobs that were analyzed with this counter profil-
ing. Most of the MPI application time is spent
in jobs with a CPU time per job larger than 10°
sec (= 27.8 CPU hours). The figure shows also
that most of the time was computed with MPI
applications that use the Fortran language bind-
ing. Because we are using dedicated processors on
the system, all CPU times are measured with the
physical wall clock time. Instead of MPI_Wtime we
have used a vendor specific intrinsic.

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING

Jul 12 20:40:03 - Jan 16 18:22:19
00 T T T

c —
90 | Fort. — |

80
70
60
50
40

30

part of all available CPU time [%)]

20 |

10 ll R
0

<le5 >le5 any
CPU time per job [sec]

Fig. 6. MPI application time, Fortran and C

Jul 12 20:40:03 - Jan 16 18:22:19 Jul 12 20:40:03 - Jan 16 18:22:19
0 T T 0 T T

90

80

g

> T 70

£ m

2 S 60

2 [

[>

1SS g

< <

g b 40

.- =

£ g 30

g
20
10
0

<le5 >le5 any <le5 >le5 any
CPU time per job [sec] CPU time per job [sec]
Fig. 7. Comparison of Fortran and C application time

(left) and jobs (right picture)

Fig. 7 compares the parts of small and long jobs
and of Fortran and C jobs. In the left picture
the percentage is based on the total application
time of all MPI applications, in the right picture
it is based on the total number of MPI jobs. One
can see, that we have a lot of small jobs that con-
sume nearly no CPU time (these may be test runs
in the program development phase), and that 2/3
of these jobs are written in C, in contrary to the
long production jobs that are mainly written in
Fortran.

The solid line in Fig. 8 shows that most (38 %)
of the CPU time of MPI applications is spent in
jobs with 64 PEs (MPI processes). 11 - 14 % of the
CPU time is spent in each of the four categories
with 32, 65-127, 128 and 129-255 PEs, followed by
6 % with 33-63 PEs, 2% with 256 PEs and 1%
with 257-511 PEs and with 512 PEs. Weighted

1998 Jul 12 20:40:03 - 1999 Jan 16 18:22:19
40 — T T T T T T T T T T T

35 - application time —-=—
MPI time -e--

— jobs -+
S 30+
143
=}
L
= 25
@
£
z 20 |
[
I
=
g 15 -
S
s 10f

5|

.
— e e e e N Gt = 3
1 2 3 4 57 8 16 32 .. 64 .. 128 .. 256 .. 512

number of ﬁfocesses.per job

Fig. 8. Usage of different partition sizes

with the application CPU time on average each
job has used 99.6 PEs. The dash-dotted line shows
that the part of the CPU time of all analyzed MPI
applications that is spent in MPI routines is small
in all PE-categories. On average, the MPI time
is 13.7% of the analyzed application CPU time.
The dotted line shows the percentage of jobs in
each PE-category. It is dominated by test runs as
mentioned in the explanations to Fig. 7.

1998 Jul 12 20:40:03 - 1999 Jan 16 18:22:19

=

uid (made anonymous)

user time: <|>0.5% mpi overhead: <10%

user cpu time / available cpu time —— ==

user mpi time / available cpu time -
1000 * user mpi / user cpu time - | {_
. . . .

ONENOUINONOUTRNUIWOR OO ARNDONNWWW 00U
RO OOR LGNGO ~INCRODCUL~INOUTR AN
00O OOXOWNNOODIOOWYTI-NUTIOROOODUICIOS =
ANP~EN~NIOP~IGIROR R A~ A O~RGIRORRNFNO
T T T T T

e-06 1le-05 0.0001 0.001 0.01 0.1 1 10 100 1000

i

Fig. 9. Users’ profiles

The solid line in Fig.9 shows how much CPU
time each user has consumed as part of the total
time of the whole system in the analyzed time in-
terval. The users are sorted by this value. The
middle vertical bar marks 0.5 % of the total sys-
tem. Each of the top 12 users has consumed more
than 0.5 % of the total system. In total, these 12
users have consumed 15.1% of the system (the
other MPI users have consumed the remaining

10 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

3.3%; in total the MPI users used 18.4% of the
system, see Fig.5). For a sytem that is installed
and reserved for high-performance computing, it is
typical that only a few number of users dominate
the system.

The left dotted line shows the time, the user
applications have consumed in MPI routines. The
right dashed line shows the ratio of MPI time to
application time. The vertical bars mark a ration
of 10 and 25 %. Looking at the top 12 users, one
can see that 7 users have an MPI percentage less
than 10 %, 1 user is in the range 10- 25 %, 3 users
have an MPI percentage of about 30 % and 1 user
has about 50 %. The users with a very small MPI
ratio mostly use direct shmem communication in-
side of their MPI programs.

1998 Jul 12 20:40:03 - 1999 Jan 16 18:22:19

ther . .]
Il ltjh er I mpi time = transfer and synchronization time — |
aligatherv estimated transfer time (based on indep. benchmarks)
gather
mallgather
S Dbarrier
reduge_scatter [
2 alltoallv
o beast [
2 reduce -
1%3
allreduce -
g alltoall |
= prgbe r
'S waitall |-
2 L
S ssend
ésendrecy r
S wait -
(=%
send -
irecv -
isend
recv - Ll ‘ ‘ L. ‘ 1
0 2000 4000 6000 8000 10000 12000

transfer and whole execution time [h]

Fig. 10. MPI routines’ profiles

The solid line in Fig. 10 shows the total time
spent in the different MPI routines. The “other”
entry summarizes all MPI routines that consumed
less than 0.3 % of the total time spent in MPI rou-
tines, that was 58,260 hours. The picture shows
that more than 99 % of the MPI time is consumed
by only 19 different MPI routines. The other 73
used MPI routines consumed only 176 h, i.e. only
0.3% of the MPI time. The dotted line presents
an estimate of the underlaying transfer time. The
difference between both lines is an estimate of the
synchronization time. The estimate is the sum of
the number of calls multiplied with the latency of
the routine and the number of transferred bytes
divided by the bandwidth. The latency and band-
width estimates result from independent bench-

marks.

The lower part of the picture shows point-to-
point communication routines that have consumed
about 23,836 h with a transfer part of 8128 h
and a synchronization part of 15,708 h. The
upper part shows collective communication rou-
tines, that have consumed about 34,251 h with
a transfer part of 3,167 h and a synchroniza-
tion part of 31,085 h. This means that 72 % of
the transfer time is consumed with point-to-point
communication, the remaining 28 % are mainly
used in MPI_Alltoall and MPI_Allreduce. 66 %
of the synchronization idle time is wasted with
collective communication routines, mainly with
MPI_Allreduce, MPI_Bcast and MPI_Reduce_scatter.
A significant part is also wasted in MPI_Barrier,
MPI_Alltoall and MPI_Reduce. This indicates that
we need parallel I/O, because an often used pro-
gramming schema makes I/O in the root node and
then uses MPI_Bcast or point-to-point communica-
tion to distribute the data among the nodes.

Because some users have combined MPI pro-
gramming with direct shmem programming, the
above mentioned transfer times present only the
MPI based transfers and not the total transfer
time of the analyzed applications.

MPIT routines’ group in ...% of | weighted by

all jobs CPU time
blocking point to point 66.304 % 65.858 %
nonblocking pt-to-pt 29.264 % 22.007 %
persistent pt-to-pt 0.010 % 0.000 %
pack and unpack 2.352 % 0.118 %
collective communication 92.545 % 99.996 %
derived datatype 23.530 % 1.468 %
group and sub-communicator | 28.953 % 8.945 %
inter-communicator 0.029 % 0.009 %
attribute caching / inquiry 7.872 % 0.459 %
error handler handling 0.019 % 0.000 %
topology creation 13.568 % 15.685 %
wtime measurement 24.521 % 12.671 %

Fig. 11. Usage of the different MPI routines’ groups.

Figure 11 shows which MPI routines’ groups
are called in how many jobs. In the right col-
umn the percentage is computed by weighting
each job by its application CPU time. The rou-
tines MPI_Init, MPI_Finalize, MPl_Comm_size and
MPI_Comm_rank are not included in any of these

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 11

groups. The table shows that persistent communi-
cation, inter-communicator handling and individ-
ual error handling are not used on our system in
the analyzed time interval. Pack and unpack are
used very seldom. Derived datatypes, sub-groups
and sub-communicators, attribute caching and in-
quiry, topology functions and wtime measurement
are used mainly in applications that are still in the
development phase and only seldom in production
jobs. The right column presents the production
jobs. Nearly every production job uses collective
communication. But nonblocking point-to-point
communication is used only in jobs that consume
totaly 18.9 % of the analyzed CPU time.

Fig.12 and Fig.13 give the full information
about the usage of MPI on our T3E in the half-
year interval mentioned in Fig.5. For each MPI
routine that was used in that interval, one line
is printed in the table. The MPI routines are
grouped and each group is sorted by the accu-
mulated CPU time spent in each routine. The
columns 1, 2, 4, 6 and 7 summarize the orig-
inal data on the syslog file. Column 3 prints
the average number of calls in each PE, i.e. the
value in column 2 divided by the sum of used
PEs. In column 4, the CPU time means here
physical wall clock time, i.e. the sum of real
time spent in all calls to that MPI routine in
all PEs. Column 5 gives the CPU time per
call in micro-seconds, i.e. the value of column
4 divided by the value of column 2. Column
6 is the sum of the values of the count argu-
ment in each call. The COUNT argument is pro-
filed in: Send, Recv, Bsend, Ssend, Rsend, Isend,
Ibsend, Issend, Irsend, Irecv, Waitany, Testany,
Waitall, Testall, Send_init, Bsend_init, Ssend_init,
Rsend_init, Recv_init, Startall, Sendrecv_replace,
Type_contiguous, Type_vector, Type_hvector,
Type_indexed, Type_hindexed, Type_struct, Beast,
Alltoall, Allreduce, Scan. The INCOUNT argu-
ment is profiled in: Waitsome, Testsome, Pack.
The OUTCOUNT argument is profiled in: Un-
pack. The SENDCOUNT argument is profiled in:
Sendrecv, Gather, Gatherv, Allgather, Allgatherv,
Alltoall. The RECVCOUNT argument is profiled
in: Scatter, Scatterv. Column 7 is the sum of

the product COUNT*MPI_Pack_size(DATATYPE)
of the arguments COUNT and DATATYPE in each
call to that MPI routine. If there are two datatype
arguments then the datatype argument is used
that corresponds to the count argument used in
column 6. Exceptions are: This column rep-
resents the number of transferred bytes, except
in MPI_Recv and MPI_Irecv, because there the
COUNT denotes the length of the buffer and not
the message length. In the Fortran language
binding of MPI_Send and MPI_Recv the value of
MPI_Pack size(DATATYPE) is substituted by the
length of a numerical Fortran unit. In column 8§,
the average of the transferred bytes per call is com-
puted, i.e. the value of column 7 devided by the
value of column 2. The columns 9 and 10 are
an input for the estimate how the MPI time (col-
umn 4) is used, as latency (time needed to trans-
fer zero bytes), as data transfer time, or as syn-
chronization (idle) time. The values are the re-
sult of a benchmark with 2 (point-to-point) or 48
(collective) PEs. Column 9 represents the latency
value of the benchmark in micro-seconds. In col-
umn 10, the bandwidth value of the benchmark (in
MBytes/sec) is stored. The columns 11-13 give an
estimate, how the MPI time (column 4) is used:
as latency in column 11, as data transfer time in
column 12, or as synchronization (idle) time in col-
umn 13. The value in column 11 is the product
of the values in the columns 2 and 9. The value
in column 12 is the product of the values in the
columns 7 and 10. And the value in column 13
is the value of column 4 minus the values in the
columns 11 and 12. Exceptions are: The transfer
time values of Reduce_scatter, Alltoallv, Alltoall,
Recv and Irecv are only rough estimates. For Re-
duce_scatter and Alltoallv there does not exist a
transferred-bytes counter, therefore only a fixed,
rough latency estimate can be used. With every
call to Alltoall only the transferred bytes between
a pair of processes is counted, but not the number
of processes of the communicator. Therefore the
size of the whole partition (MPI_.COMM_WORLD)
is used instead of the size of the actually used com-
municator. With Recv and Irecv often the count
argument is larger than needed for the message

12 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

analyzed jobs (partitions started with mpirun or mptrun): 10289
sum of used PEs: 333323

average of PEs used by one job: 32.4

average of PEs (weighted by CPU time): 99.6

usage of different MPI routines: 92

sum of application CPU time: 1.53e+09 s = 425287.96 h

sum of application CPU time / available CPU time = 18.419 %
sum of MPI time: 2.10e+08 s = 58259.64 h

sum of MPI time / sum of application CPU time = 13.699 7
overhead added by the profiling: 4.56e+05 s = 126.77 h
overhead / sum of application CPU time = 2.98e-04

the following environment variables are used in ... jobs:
- MPIPROFOUT in 1260 jobs
- MPI_BUFFER_MAX in 1001 jobs
- MPI_BUFFER_TOTAL in 1 jobs
- MPI_SM_POOL in 469 jobs

- MPI_SM_TRANSFER in 21 jobs
the PMPI interface was used in 36 jobs

column 1 |l 2| 3 | 4 | 5 | 6 1 7 1 8 | 9110 11 | 12 | 13
MPI routine |number|calls | sum | CPU |sum of|sum of|trans-|input for| estimated sum of

| of | per | of | time |COUNT |COUNT*|ferred|col.11-13|laten-|trans-|idle/

|calls | PE | CPU | per |argu- |P_SIZE|bytes |lat-|band|cy CPU|ferCPU|sync.

| | | time | call | ments|=trans| per |ency|wdth|time |time [time

| | | [sec] |[usec]| |ferred| call |[us]|[MB |[sec] |[sec] |[sec]

| | | | | | bytes| I | /s I I
recv | 544e+8|163091|271e+5]| 498|695e13|556e14|102e+4| 10| 300|543e+3|841e+4|181e+5
wait |217e+9]650230| 150e+5| 69| I I | 161 | 344e+4 | [116e+5
ssend |421e+7| 12636]149e+5| 3537|265e11|212e12| 50449| 50| 300|209e+3|662e+3|140e+5
waitall |290e+8| 86974 |775e+4| 267 |626e+8| I | 20l | 580e+3 1 |717e+4
isend | 130e+91390022|622e+4 | 48|553e11]408e12| 3142| 10| 100]130e+4|390e+4|102e+4
send | 670e+81200887 | 427e+4 | 641496e111397e12| 5925| 10| 100|650e+3|373e+4|-10e+4
sendrecv [111e+8| 33222|391e+4| 353|125e11|998e11| 9010| 20| 140]|221e+3|680e+3|301e+4
irecv | 151e+9]452074|333e+4| 22[140e12|108e13| 7185| 10| 300|149e+4|344e+4|-16e+5
probe | 150e+6| 451|331e+4| 22052] I I I 8| [120e+11 |331e+4
bsend |387e+7| 11624]|170e+3| 441161e101129e11| 3331| 23| 100/891e+2|123e+3|-42e+3
waitany [292e+5| 871124e+3| 4255|482e+6| I | 20l [583e+0]| [123e+3
test |181e+8| 54218|110e+3| 6l | I I | [110e+3]| I
iprobe |797e+7| 23906|630e+2| 8l I I I I |630e+2] I
get_count | 784e+7| 23535|878e+1| 1] I I | I [878e+1| |
buffer_detach |348e+6| 1044|780e+0] 2] | | | | | 780e+0| |
buffer_attach | 348e+6| 1044|266e+0]| 1] | | | | | 266e+0 | |
ibsend | 747194 | 21209e+0]| 280|189e+7|189e+7| 2530| 23| 100]|172e-11180e-1|174e+0
waitsome | 1093 0]631e-1] 57731| 10900]| I | 20| [219e-4] |631e-1
testsome | 146e+4| 4|545e-1| 371800e+4 | | | | |545e-11
sendrecv_replace | 16| 0]277e-5]| 173]1160000|160000| 10000| 20| 140|320e-6|109e-5|136e-5
start I 16| 01480e-61 30| I I I I [480e-6| [
request_free | 14| 0|115e-6| 8l | | | | |115e-6]1 |
issend | 4] 0l101e-61 25| 40000 40000| 10000| 50| 3001200e-6|127e-6|-23e-5
startall I 4] 01968e-7| 24| 4| I I I [968e-7| |
send_init I 4] 0]812e-7| 20| 40000| 40000| 100001 I |812e-71
ssend_init | 2| 0]548e-7| 27| 20000| 20000| 10000]| I | 548e-7 | I
bsend_init I 2| 01460e-7| 23| 20000| 20000| 100001 I | 460e-7 | I
rsend_init | 2| 0]416e-7| 21| 20000| 20000| 10000]| I |416e-71 I
type_commit [109e+5| 33|382e+0]| 35] I I I I [382e+0 | I
type_struct |102e+5] 30(346e+0| 34[230e+6| | | | |346e+0| |
type_indexed 1451961 | 11129e+0| 286|361e+6|576e+8|127502| I [129e+0]| [
type_free [106e+5| 32|129e+0]| 12] | I | I [129e+0| |
type_vector | 229528 | 11107e-1]| 46|313e+4|454e+5]| 198 | | |107e-1] |
type_size [717e+4] 22|266e-2| ol | I | I [266e-2| I
address [117e+5] 35[189e-2]| ol I I I I [189e-2] I
type_contiguous | 10003 0]475e-4| 5]293e+4|197e+5| 1965]| I |475e-4|
type_hvector | 1536 0/139e-4| 9| 34640|821e+4| 5348] I [139e-4/| I
type_extent | 1536 0/252e-5| 2| | I I | [252e-5| I

Notation: e.g. 670e+8 = 670.0e+8 = 6.70e+10 = 67,000,000,000

Fig. 12. Statistical details for the whole time interval (part 1)

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING

13

column 1 I 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 10| 11 | 12 | 13
MPI routine |number|calls | sum | CPU |sum of|sum of|trans-|input for| estimated sum of

| of | per | of | time |COUNT |COUNT*|ferred|col.11-13|laten-|trans-|idle/

|calls | PE | CPU | per |argu- |P_SIZE|bytes |lat-|band|cy CPU|ferCPU|sync.

I I | time | call | ments|=trans| per |encyl|wdth|time |time [time

| | | [sec] |[usec]| |ferred| call |[us]|[MB |[sec] |[sec]l |[sec]

I I | I I | bytesl| I | /s]l I I
unpack |385e+7| 11551|403e+1] 11265e+8|212e+9| 55| I [403e+1| I
pack |385e+7| 11551|334e+1]| 1|265e+8]212e+9] 55| I |334e+1]| I
pack_size [170390] 1|384e-4| 0l I | | | | 384e-4| |
allreduce |213e+8| 63861|375e+5| 1761|654e+9|904e10| 425| 70| 6|148e+4|143e+4|346e+5
bcast [119e+7| 3581|247e+5| 20716|251e10|206e11| 17267| 35| 40|414e+2|490e+3|242e+5
alltoall |425e+6| 1277|151e+5| 35534|741e11|595e12|140e+4| 350| 50|613e+2|512e+4|994e+4

+ column 6 and 7 (cnt,lng) on the alltoall line present an estimation of the whole length of

+ transfered data. The value is computed be
+ MPI_ALLTOALL with the size of MPI_COMM_WORLD
reduce_scatter |674e+6| 1722|119e+5]
+ due to the lack of the value in col.7, only

barrier |601e+7| 18022]|111e+5]|
reduce |927e+6| 2781|110e+5]|
allgather |586e+6| 1757|471e+4|
alltoallv |106e+7| 3184|343e+4|

+ due to the lack of the value in col.7, only

multiplying the cnt and 1lng of each call to
, instead of the actually used communicator.

20774| I I | 500] |287e+3| [116e+5
a fixed, rough latency estimate can be used for col.11+13
1852 | | | 30l | 180e+3]| | 109e+5
11864|141e10|925e€10| 9982| 51| 61470e+2|147e+4|948e+4
8046|239e+9|193e10| 3292| 110| 32|644e+2|574e+2|459%e+4
3229 I | | 500 |529e+3| [290e+4

a fixed, rough latency estimate can be used for col.11+13

gather |119e+7| 3565|232e+4| 1951|468e+9|365e10| 3070| 75| 160]/888e+2|217e+2|221e+4
allgatherv |834e+5]| 250|149e+4| 17893|602e+8|454e+9| 5437| 110| 32]|918e+1|135e+2|147e+4
scatter | 363623 | 1|146e+1| 4011|230e+8|175e+9|481522| 125| 166]455e-1]101e+1]407e+0
scatterv | 94813] 0]|566e+0| 5970|633e+7|745e+7| 78593| 125| 166|119e-1|428e-1|511e+0
gatherv | 35874]| 0]185e+0| 5170|704e+7|770e+71214561| 75| 160|269e-2|459e-1|137e+0
scan | 59391] 0]153e+0| 2583|144e+7|146e+7| 24505| 60| 4]356e-2|347e+0|-20e+1
op_create | 8393| 0|317e-4| 4| | | | | [317e-4| |
op_free | 4054| 0]142e-4| 4] I I I | [142e-4| |
comm_create | 97751 0/100e+3|102e+4| | | | | |100e+3]| |
comm_split | 69193 0/188e+0| 2718 I I I I [188e+0| I
comm_dup | 94267 01349e-1| 370 | | | | [349e-1| |
comm_rank | 768e+4 | 23|176e-11 2| | | | | |176e-11

comm_size |444e+4 | 13|104e-1| 2] | | | | |104e-1|

group_excl | 293711 01233e-2] 791 I I I | |233e-2] I
comm_free |103118| 0]222e-2| 22| | | | | |222e-2| |
group_incl | 38412| 0/788e-3| 21| I I I I | 788e-3| I
comm_group | 79674| 0[709e-3| 9| | | | | [709e-3| |
group_free | 69096 | 0/387e-3| 6l | | | | |387e-3]| |
group_range_incl | 29968 0/363e-3| 12] | I | | [363e-3|

comm_compare | 11552] 0|560e-4| 5] | | | | |560e-4| |
group_size | 4697| 0/964e-5]| 2| I I | | |964e-5| |
group_rank | 640 | 0]172e-5] 3] | | | | |172e-5] |
comm_test_inter | 144 | 0/889e-6| 6| | | | | | 889e-6|
group_translate_ranks | 84| 01602e-61 71 I I | | [602e-6| I
attr_get 1196225 | 1]820e-3]| 4| | | | | [820e-3| |
attr_put | 52070] 0]410e-3]| 8| | | | | |410e-3]| |
keyval_create | 976l 0]452e-5| 5] | | | | |452e-5]| |
attr_delete | 14| 0]137e-6]| 10] | | | | |137e-6] |
cart_create | 61052] 0|774e+0| 12679] | | | | | 774e+0] |
cart_rank | 138e+5| 41242e-1]| 2| | I I | |242e-11 I
graph_create | 5247| 0l214e-1| 4074| I I | | [214e-1| I
cart_shift |125353] 01165e-2| 13| | I I I |165e-2] I
cart_coords |224853| 1/108e-2]| 5| | | | | |108e-2] |
dims_create | 7545]| 0]219e-3| 29| | | | | |219e-3]| |
cart_get | 2517| 0/521e-4| 21| I I | I [521e-4| |

init |333290| 1]146e+2| 43741]| | | | [|146e+2] |
finalize 1333265 1/131e+2| 39370] | I | I [131e+2] I
wtime |108e+8| 32305]|929e+1| 1] | | | | |929e+1 | I
get_processor_name | 26146 0]580e-1| 2218]| | | | | |580e-1| |
initialized | 29955] 01565e-4| 2] I I I I |565e-4| I
wtick | 1670] 0]205e-5| 1] | | | | | 205e-5] |
pcontrol | 1807 01920e-61 1] I I I | |920e-61 I
errhandler_set | 12| 0/364e-7| 3| | | | | | 364e-71| |

Fig. 13. Statistical detail

s for the whole time interval (part 2)

14 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

that is received. Therefore for each job the sum
of the length of all sent messages is computed and
used as a maximum for the transferred bytes of
Recv and Irecv. The idle time estimate in column
13 may be negative if the estimated latency and
bandwidth in the columns 9 and 10 are too small,
or at non-blocking routines, if the transfer time is
hidden.

VIII. AppING HARDWARE PERFORMANCE
COUNTERS

Each micro-processor has implemented some (2-
4) hardware performance counters that are able
to count one type of event among a given larger
set of hardware events, e.g. completed instruc-
tions, floating point instructions, loads, stores or
cache misses. The PCL library [1| developed by
the Forschungszentrum Jiilich is a common inter-
face for currently 6 different micro-processors and
access methods of the operating systems. PerfAPI
9] is a standardization effort of The Parallel Tools
Consortium [19] to achieve a common interface to
access the hardware performance counters.

To use these counters to measure the applica-
tions’ efficiency, it is necessary to separate the
hardware events generated by the application code
and by the MPI library routines. This is not neces-
sary for events that are generated very seldom by
the MPI routines, such as floating point instruc-
tions, but the separation is absolutely necessary
for events that are often generated by MPI, such
as those load instructions used in the busy-wait
implementation of MPI_Receive. To separate MPI
and application events, it is necessary to have an
extremely fast access to the hardware counters and
to minimize data cache misses inside the instru-
mented wrappers (e.g. by minimizing any access
to global variables).

Typically the operating system exports one of
two different interface types: a) the hardware
counters can be read like a clock, i.e. they are
not reset after reading, and b) they can be read
out, i.e. they are always reset to zero after read-
ing them. For both interfaces, the instrumented
wrappers have to implement one integer operation
for each hardware counter before calling the orig-

inal MPI routine and another one after returning
from it:

In case a) events_in_mpi —= counter must be is-
sued before each MPI call and events_in_mpi +=
counter after its return and events_in_application =
—counter at the beginning and events_in_application
+= (counter — events_in_mpi) at the end of the
whole application.

In case b) events_in_application += counter must be
issued before each MPI call and events_in_mpi +=
counter after its return and counter = events_in_mpi
= events_in_application = 0 at the beginning and
events_in_application += counter at the end of the
whole application. This means that the major
requirement of a common low-level interface to
access the micro-processors’ hardware counters is
that the two operations plus and minus must exist
in the form

for (i=0; i<number_of_hardware_counters; i++)

local_event_counter[i] += hardware_counter|i|

(1)
and also the information must be available
whether this is a read or read out.

Unfortunately, neither the PCL library nor the
PerfAPI interface design meet this requirement.
E.g., the PCL library only has a read out in-
terface, which adds additional operations, cache
misses and resets of the hardware counter if the
hardware supports the read interface. Addition-
ally, PCL only has a high level interface that im-
plements a matrix operation on the set of hard-
ware counters and that implies at least an addi-
tional load/store for each counter. This matrix
operation implements the mapping of the coun-
ters defined by PCL to any hardware counter or
any difference or sum of several hardware counters.
The matrix operation would be done twice for each
MPI wrapper call, if PCL were used, instead of
only once at the end of the application, which
happens if the method (1) is used and the ma-
trix operation is done only once before writing the
results of events_in_mpi and events_in_application to
the syslog-file. To integrate the hardware perfor-
mance counters into the automatic MPI profiling,
we have added an interface to the PCL library for
the Cray T3E that is similar to the required inter-

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING

15

1999 Jan 31 01:54:33 - 1999 Mar 20 23:36:55

user mpi time / available cpu time -
user cpu time / available cpu time ——
user mpi time / user cpu time [%)] ----
floating point instructions / sec user time
all instructions / sec user time ——

.5%

mpi percentage:

<10%

uid (made anonymous)

0.01% 0.1% 1% 10%

1% 10% 100% 1M 10M 100M 1000M

Fig. 14. Users’ profiles, sorted by CPU time (upper part) and by instruction rate (lower part) — description see Sec. IX

face (1). With this and by removing all unneces-
sary operating system calls, the time to access the
hardware performace counters could be reduced
from 35 s to about 0.5-1.0 us.?

IX. FIRST RESULTS WITH HARDWARE
COUNTERS

Fig. 14 shows the users’ profiles in the first seven
weeks we used the hardware performance coun-
ters. Each row represents one user. The upper
and lower part plot the same information, but dif-
ferently sorted. The upper part is sorted by the
CPU time consumed by each user, and the lower
part by the total instruction rate. Each part com-
bines three different plots:

The solid line in the left diagram represents the
CPU time each user has consumed as part of the
total time of the whole system in the analyzed time
interval. The users are sorted by this value. The
vertical bar marks 0.5 % of the total system. The
figure represents the top 16 users of the HLRS that
have used the new MPI library which was now in-
strumented with the hardware counters. In total,
the 16 users have consumed 24.3 % of the whole
system. The left dashed line shows the percentage

2Meanwhile, this system call is also removed in the new ver-
sion of PCL

of the time the user applications have consumed
in MPI routines.

The diagram in the middle shows the ratio of
MPI time to application time. The vertical bars
mark a ratio of 10 and 30 %. The MPI percentage
varies between 0.3 % and 46.8 %. On average, the
MPI percentage was 5.2 %.

The diagram on the right shows the floating
point instruction rate (dotted line) and the total
instruction rate (solid line). The numbers are av-
erages referring to one processor. On a T3E, each
floating point instruction can execute one or two
floating point operations. The floating point op-
eration rate cannot be measured, but lies between
the floating point instruction rate and twice the
floating point rate. About half of the users’ appli-
cation runs could be used to analyse the hardware
counters. The other jobs could not read the coun-
ters because the application was not yet relinked
with the new library or else the partition was
moved to other processors during execution. The
floating point instruction rate of these 16 users
varies between 9 and 333 MFL_instructions/sec
(MFLips); weighted with the CPU time, the aver-
age is 138 MFLips, which implies that the MFLOP
rate is between 138 and 276 MFLOPS, i.e. be-
tween 15 and 30 % of the peak performance of 900
MFLOPS. The vertical bars mark 100, 200 and

16 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

450 MFLips. The total instruction rate of the
application code, except the MPI routines (solid
line), is computed by dividing the number of in-
structions in the whole application minus the num-
ber of instructions executed in the MPI routines
by the whole execution time. The total instruction
rate varies between 53 and 647 M_instructions/sec.

The upper part of the picture helps to review
the efficiency of the most relevant users. The lower
part of the picture gives an insight into the cor-
relation of MPI percentage and instruction rate.
The numbers presented for each user (i.e. the MPI
percentage, the floating point instruction rate and
the total instruction rate) are a major information
base for decisions with respect to programming
and optimization investment since these numbers
give a good overview of the achieved efficiency in
computation and communication. The analysis
tool sends these numbers and additional details
to each user in a weekly mail.

X. USER FEEDBACK

The first feedback we received from our users by
calling our MPI hotline to get help in optimizing
their MPI programs after they noticed in the pro-
filing e-mail that their MPI percentage was worse
than expected. For a detailed feedback from our
users we made a survey with 20 questions; finally,
we received results from 28 of our users.[15] Major
results of the survey are:

o The automatic profiling was regarded as useful
in most answers.

« In the past, automatic profiling was only occa-
sionally used for optimization because it came
too late for most users, i.e. the application de-
velopment was already completed and the pro-
grams are used in production.

e 75% of those interviewed believe that the
counter profiling can help to improve their ap-
plications in the future.

e Our weekly mail should be improved, too.

o We should provide the users with reference val-
ues. This would simplify the decision as to
whether one should focus on further optimiza-
tion.

o The analysis of the instruction rates of the appli-
cations’ numerics and the MPI timings of the ap-
plications’ communication are similarly impor-
tant for the users.

For this survey, we have chosen customers who
had computed at least four parallel jobs between
February and April 99 and who already had re-
ceived weekly mails from the automatic counter
profiling system. The survey was taken by phone.
Out of the 28 customers, 26 users are familiar with
the automatic profiling. Out of these 26 users,
9 users always read the weekly mail, 9 users only
sometimes, and 7 users rarely. Additional an-
swers have shown that this depends on whether
the users are testing their applications or, whether
they have production jobs. This means that the
level 1 and 2 of the profiling system is well ac-
cepted, which is also expressed by the average rank
of 1.9 chosen by the 26 customers in the range of
1=very useful to 6=not useful. The third level
was used by 8 users. The fourth level was used by
one person. The fifth level never was used (per-
haps because of the default that shows the total
instruction rate and the floating point instruction
rate). But the answers to the question whether in-
struction rates or MPI timings are more important
were: MPI timings are more important (37 %),
both equal important (53 %) and instruction rates
are more important (10 %). The counter profiling
is used to get information about the behavior of
the users’ programs (18 answers) and for optimiz-
ing the programs (11 answers). 4 users said that
the profiling had really helped to improve their
programs, 2 persons indicated that the MPI pro-
filing was available too late, i.e. after they had fin-
ished the development. For the future, 21 users be-
lieve that the profiling will or may help to improve
their programs. Additional optimization and anal-
yses tools were used by 11 customers, i.e. only
about 42 % have stepped to level 6. But only one
user said that the MPI profiling had helped for the
decision to use additional tools and 4 users told us
that the profiling was available too late so that it
could not help make this decision. On our sys-
tem, mainly Vampir and Apprentice are used as
additional optimization tools.

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 17

The last questions examined aspects of the in-
teraction of the computing center with its cus-
tomers. We also asked whether our customers —
they all have publicly funded computing time on
our systems — feel disturbed because the comput-
ing center also might look at the profiling infor-
mation. Nobody was upset about this. Should
the computing center use the overview and select
optimal applications to learn about the optimiza-
tion strategies used by the developers? 19 users
would appreciate this, 5 don’t care and 2 would
be bothered. Should the computing center use
the profiling information to contact the user with
applications that could be inefficient? To our sur-
prise, 22 users would like this, 2 don’t care and
2 would be bothered.

Major wishes mentioned by the users are:
To obtain reference values for the instruction
rates, e.g. the minimum, maximum and aver-
age achieved by the other users; the layout of the
weekly mail should be improved and should sup-
port html-based and ASCII-based mail readers;
and it would be nice if the per-job information
could be acquired from a database with a web in-
terface.

XI. RELATED AND FUTURE WORK

Riek et al.[17] give a comprehensive overview
about monitoring and profiling systems. The
hardware counters are accessed by using the PCL
library.[1] The PerfAPI project [9] is a standard-
ization effort for accessing of the hardware perfor-
mance counters. Trace-based profiling and anal-
ysis systems are described in the references [2],
3], [5], [10], [11]. HP[6] has developed a lo-
cal, user callable MPI counter profiling. Li and
Zhang|7| combine counter profiling and a virtual
clock approach to minimize the intrusiveness of
the instrumentation. The new syslog-based MPI-
counter-profiling closes a gap between the exist-
ing system-accounting analysis tools and the user-
MPI-profiling tools. The system accounting gives
an overview over the whole system, mainly about
the usage of CPU and I/O resources, but does
not report any details about specific MPI routines.
In all cases, the existing MPI instrumentation li-

braries and profiling tools must be enabled by the
user and they report only to the user. The key is-
sue for syslog-based MPI-counter-profiling is, that
the overhead of the instrumentation must be re-
duced to a minimum in contrast to the typical
overhead of trace-based instrumentation. The us-
age of a portable instrumentation in contrast to
proprietary profiling, as e.g. in [6], simplifies also
the comparison of the usage of MPI on differ-
ent systems. The scalability of the user interface
has an analogy in the level-structured approach
to learning, described in Shneiderman’s[18] Prin-
ciple 1. The optimization of a user application
according to the levels of the profiling interface is
described in the reference [16].

In the future we plan to generate global half-
year statistics that include hardware counters.
Also, it is planned to implement a user interface,
which allows to read the data on the syslog file
directly via a web interface. This reduces costs in
level 3 to few clicks in the web browser. Based on
the technology of TOPAS[8], the hardware counter
profiling can be extended from the MPI applica-
tions to all applications. Besides the port to other
platforms, we plan to add additional counters that
allow to count the point-to-point and collective
communication calls separated by the two’s log-
arithm of the transferred bytes. This would add
about 30 kbytes to the memory needs of the pro-
filing module, but only a few instructions to the
instrumentation of each routine (the two’s loga-
rithm can be computed mainly in 4 instructions).
The results of this instrumentation can be used
to optimize the default switch points between the
different protocols used for standard mode mes-
sage sending. The problem of correct profiling of
checkpointed jobs, or jobs that are moved to an-
other partition while the application is running,
must be solved also.

XII. CONCLUSION

This project shows that combining the methods
of counter profiling, job accounting and accessing
the hardware performance counters can give more
insight into the users’ applications than achiev-
able by previously used tools with similar costs.

18 PUBLISHED IN PROC., 42ND CUG CONFERENCE, CUG SUMMIT 2000, MAY 22-26, NOORWIJK, THE NETHERLANDS

The paper has shown two different methods to in-
tegrate an additional profiling level into existing
MPI archives and dynamic shared objects without
losing the standardized MPI profiling interface for
other profiling tools. The automatic MPI profiling
is a method to get enough information to decide
whether the application is running as expected,
one more chance to detect major bottlenecks and
a basis to decide whether trace based tools should
be used to optimize the communication pattern or
whether direct hardware counter instrumentation
should be applied to optimize the computational
part.

On our Cray T3E 900-512 about a quarter of
the accounted time was consumed by MPI jobs
that were analyzed by this counter profiling. It is
possible to analyze the usage of all MPI routines
without adding a significant overhead to the con-
sumed CPU time. The statistical analysis gives
an overview, how MPI is used on the system.
In six months on our T3E 900-512 it has turned
out, that mainly the MPI Fortran language bind-
ing is used in production. Most data transfer is
done with point-to-point communication, but non-
blocking are used probably too seldom. Most syn-
chronization time is consumed with collective rou-
tines. Most CPU time spent in MPI routines is
consumend by 19 different MPI routines. In pro-
gram development more than 50 % of the existing
128 MPI Fortran routines and more than 65 % of
the MPI C routines are used. Because the counter
profiling adds only a few data for each job to the
special syslog file, the log files consume in com-
pressed form only about 400 kbytes each month.
We are mailing each week the individual users’
statistics to each user. This is an effictive basis
for the user to decide with which methods he can
optimize his MPI application. The statistics can
be used for well-directed advice. The automatic
mailing reduces the inhibition level of using pro-
filing tools. In the analyzed time interval 12 % of
the jobs were profiled by the users by setting the
environment variable to write the counter infor-
mation directly to a user’s file. But only 0.3%
of the jobs were instrumented with more sophis-
ticated and complex methods like VAMPIRtrace.

The MPI counter profiling is added to the current
MPI release on our T3E 900-512 and installed as
the default library. The instrumentation method
is portable and can be ported to each system on
which an additional routine call and two calls to
the local clock do not add a significant overhead
to MPI. The results have indicated, that the im-
plementation and usage of the MPI-2 I/O chapter
is more important for us than optimizing any of
the existing MPI-1 routines. The current work
can give more insight about the communication
pattern used with MPI communication.

ACKNOWLEDGMENTS

The author would like to acknowledge his col-
leagues at ZHR and HLRS and all the people
that supported this project with suggestions and
helpful discussions. He would like to thank es-
pecially K. Feind who gave the impetus for this
work, Th. Beisel for proposing new ideas to the
current work, U. Abele, H. Ohno, R. Supper and
M. Wierse for giving me a lot of insight into
details of the Cray operating system, M. Heine
and E. Salo for the hints on SGI's MPI/DSO,
R. Berrendorf and H. Ziegler for his support
of the PCL library, W.E. Nagel for productive
discussions and for the invitation to Dresden,
and R. Riihle for giving major resources for this
project.

REFERENCES

[1] R. Berrendorfand H. Ziegler, PCL — The Performance
Counter Library: A Common Interface to Access
Hardware Performance Counters on Microprocessors,
internal report FZJ-ZAM-IB-9816, Forschungszen-
trum Jiilich, Oct. 1998.
www.fz-juelich.de/zam/docs/autoren98 /berrendorf3.html

[2] M. Heath and J. Etheridge, Visualizing Performance
of Parallel Programs, technical report TM-11813, Oak
Ridge National Laboratory, TN, May 1991.

[3] M. T. Heath, Recent Developments and Case Studies
in Performance Visualization using ParaGraph, Pro-
ceedings of the Workshop Performance Measurement
and Visualization of Parallel Systems, G. Haring and
G. Kotsis (ed.), Moravany, Czechoslovakia, Oct. 1992,
pp 175-200.

[4] L.S. Hebert, W. G. Seefeld and A. Skjellum, MPICH
on Cray T3E, Proceedings of the Message Pass-
ing Interface Developer’s and User’s Conference 1999
(MPIDC’99), Atlanta, USA, March 1999, pp 69-76.

ROLF RABENSEIFNER: AUTOMATIC MPI COUNTER PROFILING 19

[5] V. Herrarte and E. Lusk, Studying Parallel Program
Behavior with Upshot, Argonne National Laboratory,
technical report ANL-91/15, Aug. 1991

[6] HP MPI User’s Guide, 4.1 Using counter instrumen-
tation, HP, B6011-90001, Third Ed., June 1998.

[7] K-C. Li and K. Zhang, Supporting Scalable Perfor-
mance Monitoring and Analysis of Parallel Programs,
The Journal of Supercomputing, 13, pp 5-31, 1999.

[8] B. Mohr, TOPAS - Automatic Performance
Statistics Collection on the CRAY TS8E, Pro-
ceedings of the 5th European SGI/Cray MPP
Workshop, Sept. 9-10, 1999. www.cineca.it/mpp-
workshop/abstract /bmohr.htm and
www.fz-juelich.de/zam/docs/autoren99/mohr.html

[9] P. J. Mucci, S. Browne, G. Ho and C. Deane,

PerfAPI - Performance Data Standard and APL

http://icl.cs.utk.edu/projects/papi/

W.E. Nagel et al., VAMPIR: Visualization and

Analysis of MPI Resources, Supercomputer 63,

Volume XII, Number 1, Jan. 1996, pp 69-80,

and technical report KFA-ZAM-IB-9528, www.fz-

juelich.de/zam/docs/printable/ib/ib-95/ib-9528.ps

W.E. Nagel and A. Arnold, Performance Visualiza-

tion of Parallel Programs: The PARwvis Environment,

technical report, Forschungszentrum Jilich, 1995.

www.fz-juelich.de/zam/PT /ReDec/Soft Tools/ PARtools/

PARvis.html

[12] R. Rabenseifner, MPI-GLUE: Interoperable High-
Performance MPI Combining Different Vendor’s MPI
Worlds, Proceedings of the Euro-Par’98, 4th Interna-
tional Euro-Par Conference, D. Pritchard, J. Reeve
(ed.), Southampton, UK, Sept. 1998, LNCS 1470, pp
563-569.

[13] R. Rabenseifner, Automatic MPI Counter Profiling of

All Users: First Results on a CRAY T3E 900-512,

Proceedings of the Message Passing Interface Devel-

oper’s and User’s Conference 1999 (MPIDC’99), At-

lanta, USA, March 1999, pp 77-85.

www.hlrs.de/people/rabenseifner /publ/publications.html

R. Rabenseifner, Automatic Profiling of MPI Ap-

plications with Hardware Performance Counters, in

J. Dongarra et al. (eds.), Recent Advances in Par-

allel Virtual Machine and Message Passing Inter-

face, Proceedings of the 6th PVM/MPI European

Users’ Group Meeting, EuroPVM/MPI’99, Barcelona,

Spain, Sept. 26-29, 1999, LNCS 1697, pp 35-42.

www.hlrs.de/people/rabenseifner /publ/publications.html

R. Rabenseifner, Umfrage zum automatischen

MPI Counter Profiling auf der T3E, only online:

www.hlrs.de/mpi/umfrage_results.html

R. Rabenseifner, S. Seidl and W. E. Nagel, Ef-

fective Performance Problem Detection of MPI

Programs on MPP Systems: From the Global

View to the Detail, Parallel Computing 99

(ParCo99), Delft, the Netherlands, August 1999.

www.hlrs.de/people/rabenseifner /publ/publications.html

[15]

[16]

[17] M. van Riek, B. Tourancheau and X.-F. Vigouroux,
Monitoring of Distributed Memory Multicomputer
Programs, University of Tennessee, technical report
(CS-93-204, and Center for Research on Parallel Com-
putation, Rice University, Houston Texas, technical
report CRPC-TR93441, 1993.
http://www.netlib.org/tennessee/ut-cs-93-204.ps and
ftp:/ /softlib.rice.edu/pub/CRPC-

TRs/reports/ CRPC-TR93441.ps.gz

B. Shneiderman, Designing the User Interface: Strate-
gies for Effective Human-Computer-Interaction, 3rd
ed., Addison-Wesley, March 1998.

[19] The Parallel Tools Consortium — www.ptools.org

[18]

Rolf Rabenseifner studied mathe-
matics and physics at the University of
Stuttgart. Since 1984, he has worked
at the High-Performance Computing-
Center Stuttgart (HLRS). He led the
projects DFN-RPC, a remote proce-
dure call tool, and MPI-GLUE, the first
metacomputing MPI combining differ-
ent vendor’s MPIs without loosing the
full MPI interface. In his dissertation, he developed a con-
trolled logical clock as global time for trace-based profiling
of parallel and distributed applications. Since 1996, he
has been a member of the MPI-2 Forum. From January
to April 1999, he was an invited reseacher at the Center
for High-Performance Computing at Dresden University of
Technology. Currently, he is responsible for message pass-
ing programming models at the HLRS and he is involved
in MPI-1/O, MPI profiling, benchmarking and teaching
projects.

