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Abstract. A 5-year-profiling in production mode at the University of
Stuttgart has shown that more than 40% of the execution time of Mes-
sage Passing Interface (MPI) routines is spent in the collective commu-
nication routines MPI_Allreduce and MPI_Reduce. Although MPI im-
plementations are now available for about 10 years and all vendors are
committed to this Message Passing Interface standard, the vendors’ and
publicly available reduction algorithms could be accelerated with new al-
gorithms by a factor between 3 (IBM, sum) and 100 (Cray T3E, maxloc)
for long vectors. This paper presents five algorithms optimized for dif-
ferent choices of vector size and number of processes. The focus is on
bandwidth dominated protocols for power-of-two and non-power-of-two
number of processes, optimizing the load balance in communication and
computation.
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1 Introduction and Related Work

MPI_Reduce combines the elements provided in the input vector (buffer) of each
process using an operation (e.g. sum, maximum), and returns the combined
values in the output buffer of a chosen process named root. MPI_Allreduce is
the same as MPI_Reduce, except that the result appears in the receive buffer
of all processes. MPI_Allreduce is one of the most important MPI routines and
most vendors are using algorithms that can be improved by a factor of more than
2 for long vectors. Most current implementations are optimized only for short
vectors. A 5-year-profiling [11] of most MPI based applications (in production
mode) of all users of the Cray T3E 900 at our university has shown, that 8.54 %
of the execution time is spent in MPI routines. 37.0 % of the MPI time is spent in
MPI_Allreduce and 3.7 % in MPI_Reduce. The 5-year-profiling has also shown,
that 25% of all execution time was spent with a non-power-of-two number of
processes. Therefore, a second focus is the optimization for non-power-of-two
numbers of processes.

Early work on collective communication implements the reduction operation
as an inverse broadcast and do not try to optimize the protocols based on dif-
ferent buffer sizes [1]. Other work already handle allreduce as a combination of
basic routines, e.g., [2] already proposed the combine-to-all (allreduce) as a com-
bination of distributed combine (reduce_scatter) and collect (allgather). Collective
algorithms for wide-area cluster are developed in [5, 7, 8], further protocol tuning
can be found in [3,4,9,12], and automatic tuning in [13]. The main focus of the
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work presented in this paper is to optimize the algorithms for different numbers
of processes (non-power-of-two and power-of-two) and for different buffer sizes
by using special reduce_scatter protocols without the performance penalties on
normal rank-ordered scattering. The allgather protocol is chosen according the
the characteristics of the reduce_scatter part to achieve an optimal bandwidth
for any number of processes and buffer size.

2 Allreduce and Reduce Algorithms

2.1 Cost Model

To compare the algorithms, theoretical cost estimation and benchmark results

are used. The cost estimation is based on the same flat model used by R. Thakur

and B. Gropp in [12]. Each process has an input vector with n bytes, p is the

number of MPI processes, v the computation cost per vector byte executing

one operation with two operands locally on any process. The total reduction

effort is (p — 1)ny. The total computation time with optimal load balance on
p—1

p processes is therefore =ony, i.e., less than n+y, which is independent of the

number of processes! The communication time is modeled as « 4+ nf3, where « is
the latency (or startup time) per message, and ( is the transfer time per byte,
and n the message size in bytes. It is assumed further that all processes can send
and receive one message at the same time with this cost model. In reality, most
networks are faster, if the processes communicate in parallel, but pairwise only
in one direction (uni-directional between two processes), e.g., in the classical
binary tree algorithms. Therefore aun; + nBun; is modeling the uni-directional
communication, and « + n is used with the bi-directional communication. The
ratios are abbreviated with fo = auni/a and fg = Buni/5. These factors are
normally in the range 0.5 (simplex network) to 1.0 (full duplex network).

2.2 Principles

A classical implementation of MPI_Allreduce is the combination of MPI_Reduce
(to a root process) followed by MPI Bcast sending the result from root to all
processes. This implies a bottle-neck on the root process. Also classical is the
binary tree implementation of MPI_Reduce, which is a good algorithm for short
vectors, but that causes a heavy load imbalance because in each step the num-
ber of active processes is halved. The optimized algorithms are based on a few
principles:

Recursive vector halving: For long-vector reduction, the vector can be split
into two parts and one half is reduced by the process itself and the other half is
sent to a neighbor process for reduction. In the next step, again the buffers are
halved, and so on.

Recursive vector doubling: To return the total result in the result vector,
the split result vectors must be combined recursively. MPI_Allreduce can be
implemented as a reduce-scatter (using recursive vector halving) followed by an
allgather (using recursive vector doubling).

Recursive distance doubling: In step 1, each process transfers data at dis-
tance 1 (process PO with P1, P2-P3, P4-P5, ...); in step 2, the distance is

doubled, i.e., PO-P2 and P1-P3, P4-P6 and P5-P7; and so on until distance %.
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Recursive distance halving: Same procedure, but starting with distance p/2,
i.e.,, PO-P%, P1-P(§ + 1), ..., and ending with distance 1, i.e., PO-P1, ... .
Recursive vector and distance doubling and halving can be combined for
different purposes, but always additional overhead causes load imbalance if the
number of processes is not a power of two. Two principles can reduce the over-
head in this case.
Binary blocks: The number of processes can be expressed as a sum of power-of-
two values, i.e., all processes are located in subsets with power-of-two processes.
Each subset is used to execute parts of the reduction protocol in a block. Over-
head occurs in the combining of the blocks in some step of the protocol.
Ring algorithms: A reduce_scatter can be implemented by p — 1 ring exchange
steps with increasing strides. Each process computes all reduction operations for
its own chunk of the result vector. In step 7 (i=1..p-1) each process sends the
input vector chunk needed by rank+1 to that process and receives from rank —1
the data needed to reduce its own chunk. The allreduce can be completed by an
allgather that is also implemented with ring exchange steps, but with constant
stride 1. Each process sends its chunk of the result vector around the ring to the
right (rank + 1) until its left neighbor ((rank + p — 1) mod p) has received it
after p — 1 steps. The following sections describe the algorithms in detail.

2.3 Binary Tree

Reduce: The classical binary tree always exchanges full vectors, uses recursive
distance doubling, but with incomplete protocol, because in each step, half of
the processes finish their work. It takes [lgp]| steps and the time taken by this
algorithm is Tred,tree = Hg p—| (auni + nﬁuni + n’)/))

For short vectors, this algorithm is optimal (compared to the following algo-
rithms) due to its smallest latency term [lgp]auyun;.
Allreduce: The reduce algorithm is followed by a binary tree based broadcast.
The total execution time is Tou tree = [18 D] (20uni + 2n8yni + n7Y)).

2.4 Recursive Doubling

Allreduce: This algorithm is an optimization especially for short vectors. In
each step of the recursive distance doubling, both processes in a pair exchange
the input vector (in step 1) or its intermediate result vector (in steps 2 ... [lgp])
with its partner process and both processes are computing the same reduction
redundantly. After [lgp] steps, the identical result vector is available in all pro-
cesses. It needs Tyy,r.qa. = [lg p]|(a+nB+ny))+(if non-power-of-two cvyni+n8un:)
This algorithm is in most cases optimal for short vectors.

2.5 Recursive Halving and Doubling

This algorithm is a combination of a reducescatter implemented with recur-
sive vector halving and distance doubling! followed by a allgather implemented

! A distance doubling (starting with distance 1) is used in contrary to the re-
duce_scatter algorithm in [12] that must use a distance halving (i.e., starting with
distance W) to guarantee a rank-ordered scatter. In our algorithm, any order
of the scattered data is allowed, and therefore, the longest vectors can be exchanged
with the nearest neighbor, which is an additional advantage on systems with a hier-
archical network structure.
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Fig. 1. Recursive Halving and Doubling. The figure shows the intermediate results
after each buffer exchange (followed by a reduction operation in the 1°* part). The
dotted frames show the overhead caused by a non-power-of-two number of processes.

by a recursive vector doubling combined with recursive distance halving (for
allreduce), or followed by gather implemented with a binary tree (for reduce).

In a first step, the number of processes p is reduced to a power-of-two value:
p' = 2Ugr] = p —p is the number of processes that must be removed in this
first step. The first 2r processes send pairwise from each even rank to the odd
(rank 4+ 1) the second half of the input vector and from each odd rank to the
even (rank — 1) the first half of the input vector. All 2r processes compute the
reduction on their half.

Fig. 1 shows the protocol with an example on 13 processes. The input vec-
tors and all reduction results will be divided into p’ parts (A, B,..., H) by this
algorithm, and therefore it is denoted with A—H,,n%. After the first reduction,
process PO has computed A-Dg_1, denoting the reduction result of the first
half of the vector (A-D) from the processes 0-1. P1 has computed E-Hy_1, P2
A-Ds_3, ... . The first step is finished by sending those results from each odd
process (1 ... 2r — 1) to rank — 1 into the second part of the buffer.

Now, the first r even processes and the p — 2r last processes are renumbered
from 0 to p’ — 1. This first step needs (1 + fo)a + Hf%n,@ + %nfy and is not
necessary, if the number of processes p was already a power-of-two.

Now, we start with the first step of recursive vector halving and distance
doubling, i.e., the even / odd ranked processes are sending the second / first half
of their buffer to rank’ +1 / rank’ — 1. Then the reduction is computed between
the local buffer and the received buffer. This step costs o + 3(ng8 + nvy).

In the next lg p’ — 1 steps, the buffers are recursively halved and the distance
doubled. Now, each of the p’ processes has I% of the total reduction result vector,

i.e., the reduce_scatter has scattered the result vector to the p’ processes. All
recursive steps cost lgp'a + (1 — %)(n,@ + n7y). The second part implements an

allgather or gather to complete the allreduce or reduce operation.

Allreduce: Now, the contrary protocol is needed: Recursive vector doubling
and distance halving, i.e., in the first step the process pairs exchange 1% of the

buffer to achieve 1% of the result vector, and in the next step 1% is exchanged to
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Fig. 2. Binary Blocks.

get I%, and so on. A-B, A-D ... in Fig.1 denote the already stored portion of
the result vector. After each communication exchange step, the result buffer is
doubled and after lgp’ steps, the p’ processes have received the total reduction
result. This allgather part costs lgp'a + (1 — I%)(nﬂ)

If the number of processes is non-number-of-two, then the total result vector
must be sent to the r removed processes. This causes the additional overhead
a + nf. The total implementation needs
o Tl hed,n=2eer = 21gpa + 203 + vy — = (2nf + ny)

~ 2lgpa + 2nfB + ny if p is power-of-two,
o Tutthied npzere = (2189 + 2+ fa)at (3+ Prhet)nf + Sny — J (200 + n)
~ (3+2|lgp))a+ 4nB + 3ny if p is non-power-of-two (with p’ = 2llep]),
This protocol is good for long vectors and power-of-two processes. For non-
power-of-two processes, the transfer overhead is doubled and the computation

overhead is enlarged by % The binary blocks protocol (see below) can reduce
this overhead in many cases.

Reduce: The same protocol is used, but the pairwise exchange with sendrecv
is substituted by single message passing. In the first step, each process with the
bit with the value p’/2 in its new rank identical to that bit in root rank must
receive a result buffer segment and the other processes must send their segment.
In the next step only the receiving processes continue and the bit is shifted 1
position right (i.e., p’/4). And so on. The time needed for this gather operation
is lgp/auni + (1 - %)nﬂunz
In the case that the original root process is one of the removed processes,

then the role of this process and its partner in the first step are exchanged
after the first reduction in the reduce_scatter protocol. This causes no additional
overhead. The total implementation needs
L red,h&d,n=2¢rpr = lgp(l + fa)a + (1 + fﬁ)nﬁ + ny — %(TL(B + ﬂunz) + TW)

~ 2lgpa + 2nB + ny if p is power-of-two,
o Tredn&ednz2esr = 1gp' (1 + fo)a+ (1 + fo)o+ (1 + w% + fa)nfB + §ny —

L((1+ foInf + )

~ (2 +2|lgp|)e + 3nB + 3ny if p is non-power-of-two (with p’ = 2118P)).
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2.6 Binary Blocks

Further optimization for non-power-of-two number of processes can be achieved
with the algorithm shown in Fig. 2.

Here, the maximum difference between the ratio of the number of proccesses
of two successive blocks, especially in the low range of exponents, determines
the imbalance.

Allreduce: The 2" part is an allgather implemented with buffer doubling and
distance halving in each block as in the algorithm in the previous section. The
input must be provided in the processes of the smaller blocks always with pairs
of messages from processes of the next larger block.

Reduce: If the root is outside of the largest block, then the intermediate result
segment of rank 0 is sent to root and root plays the role of rank 0. A binary tree
is used to gather the result segments into the root process.

For power-of-two number of processes, the binary block algorithms are iden-
tical to the halving and doubling algorithm in the previous section.

2.7 Ring

While the algorithms in

the last two sections R e oo binary iree
are optimal for power-of- haiing + doudiing
two process numbers and 512 break-even points : size=1k and 2k and min( (swze/256)5"‘5,.
long vectors, for medium 256 nEEN

non-power-of-two number

of processes and long
vectors there exist an-
other good algorithm. It
uses the pairwise ex-
change algorithm for re-
duce_scatter and ring al-
gorithm for allgather (for
allreduce), as described 8 32 256 1k 8k 32k 256k 1M
in [12], and for reduce, all buffersize foytes]

processes send their re- Fig.3. The fastest protocol for Allreduce(double,

sult segment directly to sum) on a Cray T3E 900.

root. Both algorithms are

good in bandwidth usage for non-power-of-two number of processes, but the la-
tency scales with the number of processes. Therefore this algorithm can be used
only for a small number of processes. Independent of whether p is power-of-two or
not, the total implementation needs T4 ring = 2(p—1)oz—|—2nﬂ—|—n*y—%(2n,8+n7)
for allreduce, and Tred ring = (P — 1)(@ + @uni) + n(8 + Buni) + ny — %(n(ﬂ +
Buni) + ny) for reduce.
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3 Choosing the Fastest Algorithm

Based on the number of processes and the vector (input buffer) length, the
reduction routine must decide which algorithm should be used. Fig. 3 shows the
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Fig. 4. Ratio of bandwidth of the fastest protocol (without recursive doubling) on a
IBM SP at SDSC and 1 MPI process per CPU (left) and per SMP node (right)

fastest protocol on a Cray T3E 900 with 540 PEs. For buffer sizes less than or
equal to 32 byte, recursive doubling is the best, for buffer sizes less than or equal
to 1 KB, mainly vendor’s algorithm (for power-of-two) and binary tree (for non-
power-of-two) are the best but there is not a big difference to recursive doubling.
For longer buffer sizes, the ring is good for some buffer sizes and some #processes
less than 32 PEs. A detailed decision is done for each #processes value, e.g., for
15 processes, ring is used if length > 64 KB. In general, on a Cray T3E 900, the
binary block algorithm is faster if fexpo,max < lg(%;tjze)/z.o — 2.5 and wvector
size > 16 KB and more than 32 processes are used. In a few cases, e.g., 33 PEs
and less then 32 KB, halvingéddoubling is the fastest algorithm.

Fig. 4 shows that with the pure MPI programming model (i.e., 1 MPI process
per CPU) on the IBM SP, the benefit is about 1.5x for buffer sizes 8-64 KB, and
2x—5x for larger buffers. With the hybrid programming model (1 MPI process
per SMP node), only for buffer sizes 4-128 KB and more than 4 nodes, the benefit
is about 1.5x—3x.

4 Conclusions and Future Work

Although principal work on optimizing collective routines is quite old [2], there
is a lack of fast implementations for allreduce and reduce in MPI libraries for
a wide range of number of processes and buffer sizes. Based on the author’s
algorithm from 1997 [10], an efficient algorithm for power-of-two and non-power-
of-two number of processes is presented in this paper. Medium non-power-of-
two number of processes could be additionally optimized with a special ring
algorithm. The halving&doubling is already included into MPICH-2 and it is
planned to include the other bandwidth-optimized algorithms [10,12]. Future
work will further optimize latency and bandwidth for any number of processes
by combining the principles used in Sect. 2.3-2.7 into one algorithm and selecting
on each recursion level instead of selecting one of those algorithms for all levels.



8

Rolf Rabenseifner

Acknowledgments

The author would like to acknowledge his colleagues and all the people that supported
this project with suggestions and helpful discussions. He would especially like to thank
Rajeev Thakur and Jesper Larsson Traff for the helpful discussion on optimized reduc-
tion algorithm and Gerhard Wellein, Thomas Ludwig, Ana Kovatcheva, Rajeev Thakur
for their benchmarking support.

References

1.

10.

11.

12.

13.

V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M.
Snir, CCL: A portable and tunable collective communication library for scalable
parallel computers, in IEEE Transactions on Parallel and Distributed Systems,
Vol. 6, No. 2, Feb. 1995, pp 154-164.

M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Gejin, and J. Watts, Inter-
processor collective communication library (InterCom), in Proceedings of Super-
computing '94, Nov. 1994.

Edward K. Blum, Xin Wang, and Patrick Leung, Architectures and message-passing
algorithms for cluster computing: Design and performance, in Parallel Computing
26 (2000) 313-332.

J. Bruck, C.-T'. Ho, S. Kipnis, E. Upfal, and D. Weathersby, Efficient algorithms for
all-to-all communications in multiport message-passing systems, in IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 8, No. 11, Nov. 1997, pp 1143-1156.
E. Gabriel, M. Resch, and R. Riihle, Implementing MPI with optimized algorithms
for metacomputing, in Proceedings of the MPIDC’99, Atlanta, USA, March 1999,
pp 31-41.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Rel. 1.1, June 1995, www.mpi-forum.org.

N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan,
Ezxploiting hierarchy in parallel computer networks to optimize collective operation
performance, in Proceedings of the 14th International Parallel and Distributed
Processing Symposium (IPDPS ’00), 2000, pp 377-384.

Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, Raoul A. F.
Bhoedjang, MPI’s reduction operations in clustered wide area systems, in Pro-
ceedings of the Message Passing Interface Developer’s and User’s Conference 1999
(MPIDC’99), Atlanta, USA, March 1999, pp 43-52.

Man D. Knies, F. Ray Barriuso, William J. Harrod, George B. Adams III, SLICC:
A low latency interface for collective communications, in Proceedings of the 1994
conference on Supercomputing, Washington, D.C., Nov. 14-18, 1994, pp 89-96.
Rolf Rabenseifner, A new optimized MPI reduce and allreduce algorithm, Nov. 1997.
http://www.hlrs.de/mpi/myreduce.html

Rolf Rabenseifner, Automatic MPI counter profiling of all users: First results on
a CRAY TS8F 900-512, Proceedings of the Message Passing Interface Developer’s
and User’s Conference 1999 (MPIDC’99), Atlanta, USA, March 1999, pp 77-85.
http://www.hlrs.de/people/rabenseifner/publ/publications.html

Rajeev Thakur and William D. Gropp, Improving the performance of collective
operations in MPICH, in Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, proceedings of the 10th European PVM/MPI Users’ Group
Meeting, LNCS 2840, J. Dongarra, D. Laforenza, S. Orlando (Eds.), 2003, 257-267.
Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra, Automatically tuned
collective communications, in Proceedings of SC2000, Nov. 2000.

An extended version of this paper can be found on the author’s home/publication page.



