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Abstra
t. A 5-year-pro�ling in produ
tion mode at the University ofStuttgart has shown that more than 40% of the exe
ution time of Mes-sage Passing Interfa
e (MPI) routines is spent in the 
olle
tive 
ommu-ni
ation routines MPI Allredu
e and MPI Redu
e. Although MPI im-plementations are now available for about 10 years and all vendors are
ommitted to this Message Passing Interfa
e standard, the vendors' andpubli
ly available redu
tion algorithms 
ould be a

elerated with new al-gorithms by a fa
tor between 3 (IBM, sum) and 100 (Cray T3E, maxlo
)for long ve
tors. This paper presents �ve algorithms optimized for dif-ferent 
hoi
es of ve
tor size and number of pro
esses. The fo
us is onbandwidth dominated proto
ols for power-of-two and non-power-of-twonumber of pro
esses, optimizing the load balan
e in 
ommuni
ation and
omputation. The new algorithms are 
ompared also on the Cray X1 withthe 
urrent development version of Cray's MPI library (mpt.2.4.0.0.13)Keywords. Message Passing, MPI, Colle
tive Operations, Redu
tion.1 Introdu
tionMPI Redu
e 
ombines the elements provided in the input ve
tor (bu�er) of ea
hpro
ess using an operation (e.g. sum, maximum), and returns the 
ombinedvalues in the output bu�er of a 
hosen pro
ess named root. MPI Allredu
e isthe same as MPI Redu
e, ex
ept that the result appears in the re
eive bu�er ofall pro
esses.MPI Allredu
e is one of the most important MPI routines and most vendorsare using algorithms that 
an be improved by a fa
tor of more than 2 for longve
tors. Most 
urrent implementations are optimized only for short ve
tors. A5-year-pro�ling [12℄ of most MPI based appli
ations (in produ
tion mode) ofall users of the Cray T3E 900 at our university has shown, that 8.54% of theexe
ution time is spent in MPI routines. 37.0% of the MPI time is spent inMPI Allredu
e and 3.7% in MPI Redu
e. Based on the pro�led number of 
alls,transferred bytes, and used pro
esses, 
ombined with ben
hmark results for thevendor's redu
tion routines and the optimized algorithms, Fig. 1 show that the
ommuni
ation time 
an be redu
ed by a fa
tor of 20% (allredu
e) and 54%(redu
e) with the new algorithms. The 5-year-pro�ling has also shown, that 25%
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ution time was spent with a non-power-of-two number of pro
esses.Therefore, a se
ond fo
us is the optimization for non-power-of-two numbers ofpro
esses.

Fig. 1. Bene�t of new allredu
e and redu
e proto
ols optimized for long ve
tors.2 Related WorkEarly work on 
olle
tive 
ommuni
ation implements the redu
tion operation asan inverse broad
ast and do not try to optimize the proto
ols based on di�erentbu�er sizes [1℄. Other work already handle allredu
e as a 
ombination of basi
routines, e.g., [2℄ already proposed the 
ombine-to-all (allredu
e) as a 
ombi-nation of distributed 
ombine (redu
e s
atter) and 
olle
t (allgather). Colle
tivealgorithms for wide-area 
luster are developed in [5, 7, 8℄, further proto
ol tuning
an be found in [3, 4, 9, 15℄, and automati
 tuning in [16℄. The main fo
us of thework presented in this paper is to optimize the algorithms for di�erent numbersof pro
esses (non-power-of-two and power-of-two) and for di�erent bu�er sizesby using spe
ial redu
e s
atter proto
ols without the performan
e penalties onnormal rank-ordered s
attering. The allgather proto
ol is 
hosen a

ording the
hara
teristi
s of the redu
e s
atter part to a
hieve an optimal bandwidth forany number of pro
esses and bu�er size. This paper is based on [13℄ and extendedby ben
hmark results on Cray X1 parallel shared memory ve
tor systems.3 Allredu
e and Redu
e Algorithms3.1 Cost ModelTo 
ompare the algorithms, theoreti
al 
ost estimation and ben
hmark resultsare used. The 
ost estimation is based on the same 
at model used by R. Thakurand B. Gropp in [15℄. Ea
h pro
ess has an input ve
tor with n bytes, p is thenumber of MPI pro
esses, 
 the 
omputation 
ost per ve
tor byte exe
uting oneoperation with two operands lo
ally on any pro
ess. The total redu
tion e�ort is
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. The total 
omputation time with optimal load balan
e on p pro
essesis therefore p�1p n
, i.e., less than n
, whi
h is independent of the number ofpro
esses!The 
ommuni
ation time is modeled as � + n�, where � is the laten
y (orstartup time) per message, and � is the transfer time per byte, and n the messagesize in bytes. It is assumed further that all pro
esses 
an send and re
eive onemessage at the same time with this 
ost model, i.e., p parallel pro
esses 
ansend in parallel p messages ea
h with n bytes (e.g., pairwise or in a ring pattern)with the 
ommuni
ation time � + n�. In reality, most networks are faster, ifthe pro
esses 
ommuni
ate in parallel, but pairwise only in one dire
tion (uni-dire
tional between two pro
esses), e.g., in the 
lassi
al binary tree algorithms.Therefore �uni+n�uni is modeling the uni-dire
tional 
ommuni
ation, and �+n� is used with the bi-dire
tional 
ommuni
ation. The ratios are abbreviatedwith f� = �uni=� and f� = �uni=�. These fa
tors are normally in the range 0.5(simplex network) to 1.0 (full duplex network).3.2 Prin
iplesA 
lassi
al implementation of MPI Allredu
e is the 
ombination of MPI Redu
e(to a root pro
ess) followed by MPI B
ast sending the result from root to allpro
esses. This implies a bottle-ne
k on the root pro
ess. Also 
lassi
al is thebinary tree implementation of MPI Redu
e, whi
h is a good algorithm for shortve
tors, but that 
auses a heavy load imbalan
e be
ause in ea
h step the num-ber of a
tive pro
esses is halved. The optimized algorithms are based on a fewprin
iples:Re
ursive ve
tor halving: For long-ve
tor redu
tion, the ve
tor 
an be splitinto two parts and one half is redu
ed by the pro
ess itself and the other half issent to a neighbor pro
ess for redu
tion. In the next step, again the bu�ers arehalved, and so on.Re
ursive ve
tor doubling: To return the total result in the result ve
tor,the split result ve
tors must be 
ombined re
ursively. MPI Allredu
e 
an beimplemented as a redu
e-s
atter (using re
ursive ve
tor halving) followed by anallgather (using re
ursive ve
tor doubling).Re
ursive distan
e doubling: In step 1, ea
h pro
ess transfers data at dis-tan
e 1 (pro
ess P0 with P1, P2{P3, P4{P5, ...); in step 2, the distan
e isdoubled, i.e., P0{P2 and P1{P3, P4{P6 and P5{P7; and so on until distan
e p2 .Re
ursive distan
e halving: Same pro
edure, but starting with distan
e p=2,i.e., P0{Pp2 , P1{P(p2 + 1), ..., and ending with distan
e 1, i.e., P0{P1, ... .Re
ursive ve
tor and distan
e doubling and halving 
an be 
ombined fordi�erent purposes, but always additional overhead 
auses load imbalan
e if thenumber of pro
esses is not a power of two. Two prin
iples 
an redu
e the over-head in this 
ase.Binary blo
ks: The number of pro
esses 
an be expressed as a sum of power-of-two values, i.e., all pro
esses are lo
ated in subsets with power-of-two pro
esses.Ea
h subset is used to exe
ute parts of the redu
tion proto
ol in a blo
k. Over-head o

urs in the 
ombining of the blo
ks in some step of the proto
ol.
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e s
atter 
an be implemented by p�1 ring ex
hangesteps with in
reasing strides. Ea
h pro
ess 
omputes all redu
tion operations forits own 
hunk of the result ve
tor. In step i (i=1 .. p-1) ea
h pro
ess sends theinput ve
tor 
hunk needed by rank+i to that pro
ess and re
eives from rank�ithe data needed to redu
e its own 
hunk. The allredu
e 
an be 
ompleted by anallgather that is also implemented with ring ex
hange steps, but with 
onstantstride 1. Ea
h pro
ess sends its 
hunk of the result ve
tor around the ring to theright (rank + 1) until its left neighbor ((rank + p � 1) mod p) has re
eived itafter p� 1 steps. The following se
tions des
ribe the algorithms in detail.3.3 Binary TreeRedu
e: The 
lassi
al binary tree always ex
hanges full ve
tors, uses re
ursivedistan
e doubling, but with in
omplete proto
ol, be
ause in ea
h step, half ofthe pro
esses �nish their work. It takes dlg pe steps and the time taken by thisalgorithm is Tred;tree = dlg pe(�uni + n�uni + n
)).For short ve
tors, this algorithm is optimal (
ompared to the following algo-rithms) due to its smallest laten
y term dlg pe�uni.Allredu
e: The redu
e algorithm is followed by a binary tree based broad
ast.The total exe
ution time is Tall;tree = dlg pe(2�uni + 2n�uni + n
)).3.4 Re
ursive DoublingAllredu
e: This algorithm is an optimization espe
ially for short ve
tors. Inea
h step of the re
ursive distan
e doubling, both pro
esses in a pair ex
hangethe input ve
tor (in step 1) or its intermediate result ve
tor (in steps 2 ... dlg pe)with its partner pro
ess and both pro
esses are 
omputing the same redu
tionredundantly. After dlg pe steps, the identi
al result ve
tor is available in all pro-
esses. It needs Tall;r:d: = dlg pe(�+n�+n
))+(if non-power-of-two �uni+n�uni)This algorithm is in most 
ases optimal for short ve
tors.3.5 Re
ursive Halving and DoublingThis algorithm is a 
ombination of a redu
e s
atter implemented with re
ur-sive ve
tor halving and distan
e doubling1 followed by a allgather implementedby a re
ursive ve
tor doubling 
ombined with re
ursive distan
e halving (forallredu
e), or followed by gather implemented with a binary tree (for redu
e).In a �rst step, the number of pro
esses p is redu
ed to a power-of-two value:p0 = 2blg p
. r = p� p0 is the number of pro
esses that must be removed in this�rst step. The �rst 2r pro
esses send pairwise from ea
h even rank to the odd1 A distan
e doubling (starting with distan
e 1) is used in 
ontrary to the re-du
e s
atter algorithm in [15℄ that must use a distan
e halving (i.e., starting withdistan
e #pro
esses2 ) to guarantee a rank-ordered s
atter. In our algorithm, any orderof the s
attered data is allowed, and therefore, the longest ve
tors 
an be ex
hangedwith the nearest neighbor, whi
h is an additional advantage on systems with a hier-ar
hi
al network stru
ture.
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Fig. 2. Re
ursive Halving and Doubling. The �gure shows the intermediate resultsafter ea
h bu�er ex
hange (followed by a redu
tion operation in the 1st part). Thedotted frames show the overhead 
aused by a non-power-of-two number of pro
esses.(rank + 1) the se
ond half of the input ve
tor and from ea
h odd rank to theeven (rank � 1) the �rst half of the input ve
tor. All 2r pro
esses 
ompute theredu
tion on their half.Fig. 2 shows the proto
ol with an example on 13 pro
esses. The input ve
-tors and all redu
tion results will be divided into p0 parts (A, B,..., H) by thisalgorithm, and therefore it is denoted with A{Hrank. After the �rst redu
tion,pro
ess P0 has 
omputed A{D0�1, denoting the redu
tion result of the �rsthalf of the ve
tor (A{D) from the pro
esses 0{1. P1 has 
omputed E{H0�1, P2A{D2�3, ... . The �rst step is �nished by sending those results from ea
h oddpro
ess (1 ... 2r � 1) to rank � 1 into the se
ond part of the bu�er.Now, the �rst r even pro
esses and the p� 2r last pro
esses are renumberedfrom 0 to p0 � 1.This �rst step needs (1+ f�)�+ 1+fbeta2 n�+ 12n
 and is not ne
essary, if thenumber of pro
esses p was already a power-of-two.Now we start with the �rst step of re
ursive ve
tor halving and distan
edoubling, i.e., the even / odd ranked pro
esses are sending the se
ond / �rst halfof their bu�er to rank0+1 / rank0�1. Then the redu
tion is 
omputed betweenthe lo
al bu�er and the re
eived bu�er. This step 
osts �+ 12 (n� + n
).In the next lg p0�1 steps, the bu�ers are re
ursively halved and the distan
edoubled. Now, ea
h of the p0 pro
esses has 1p0 of the total redu
tion result ve
tor,i.e., the redu
e s
atter has s
attered the result ve
tor to the p0 pro
esses. Allre
ursive steps 
ost lg p0�+ (1� 1p0 )(n� + n
).The se
ond part implements an allgather or gather to 
omplete the allredu
eor redu
e operation.Allredu
e: Now, the 
ontrary proto
ol is needed: Re
ursive ve
tor doublingand distan
e halving, i.e., in the �rst step the pro
ess pairs ex
hange 1p0 of thebu�er to a
hieve 2p0 of the result ve
tor, and in the next step 2p0 is ex
hanged toget 4p0 , and so on. A{B, A{D ... in Fig. 2 denote the already stored portion ofthe result ve
tor. After ea
h 
ommuni
ation ex
hange step, the result bu�er is
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Fig. 3. Binary Blo
ks.doubled and after lg p0 steps, the p0 pro
esses have re
eived the total redu
tionresult. This allgather part 
osts lg p0�+ (1� 1p0 )(n�).If the number of pro
esses is non-number-of-two, then the total result ve
tormust be sent to the r removed pro
esses. This 
auses the additional overhead�+ n�. The total implementation needs� Tall;h&d;n=2exp = 2 lg p�+ 2n� + n
 � 1p (2n� + n
)' 2 lg p�+ 2n� + n
 if p is power-of-two,� Tall;h&d;n6=2exp = (2 lg p0 + 2 + f�)�+ (3 + 1+fbeta2 )n� + 32n
 � 1p0 (2n� + n
)' (3 + 2blg p
)�+ 4n� + 32n
 if p is non-power-of-two (with p0 = 2blg p
).This proto
ol is good for long ve
tors and power-of-two pro
esses. For non-power-of-two pro
esses, the transfer overhead is doubled and the 
omputationoverhead is enlarged by 32 . The binary blo
ks proto
ol (see below) 
an redu
ethis overhead in many 
ases.Redu
e: The same proto
ol is used, but the pairwise ex
hange with sendre
vis substituted by single message passing. In the �rst step, ea
h pro
ess with thebit with the value p0=2 in its new rank identi
al to that bit in root rank mustre
eive a result bu�er segment and the other pro
esses must send their segment.In the next step only the re
eiving pro
esses 
ontinue and the bit is shifted 1position right (i.e., p0=4). And so on. The time needed for this gather operationis lg p0�uni + (1� 1p0 )n�uni.In the 
ase that the original root pro
ess is one of the removed pro
esses,then the role of this pro
ess and its partner in the �rst step are ex
hangedafter the �rst redu
tion in the redu
e s
atter proto
ol. This 
auses no additionaloverhead.The total implementation needs� Tred;h&d;n=2exp = lg p(1 + f�)�+ (1 + f�)n� + n
 � 1p (n(� + �uni) + n
)' 2 lg p�+ 2n� + n
 if p is power-of-two,� Tred;h&d;n6=2exp = lg p0(1 + f�)� + (1 + f�)� + (1 + 1+fbeta2 + f�)n� + 32n
 �1p0 ((1 + f�)n� + n
)' (2 + 2blg p
)�+ 3n� + 32n
 if p is non-power-of-two (with p0 = 2blg p
).
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ksThe algorithm starts with a binary blo
k de
omposition of all pro
esses in blo
kswith power-of-two number of pro
esses, see example in Fig. 3. Ea
h blo
k exe-
utes its own redu
e s
atter with the re
ursive bu�er halving and distan
e dou-bling algorithm as des
ribed in the previous se
tion. Then, starting with thesmallest blo
k, the intermediate result (or the input ve
tor in 
ase of 20 pro
ess)is split into the segments of the intermediate result in the next higher blo
k, sentto the pro
esses there and the redu
tion operation is exe
uted there. This 
ausesa load imbalan
e in 
omputation and 
ommuni
ation 
ompared to the exe
utionin the larger blo
ks. In our example, in the 3rd ex
hange step in the 23 blo
k,ea
h pro
ess sends one segment (e.g., B in P0), re
eives one segment (A), and
omputes the redu
tion of one segment (A). The load imbalan
e is introdu
edhere by the blo
ks 22 and 20 : In the 22 blo
k, ea
h pro
ess re
eives andredu
es 2 segments (e.g. A{B on P8), while in the 20 blo
k (here only P12),ea
h pro
ess has to send as many messages as the ratio of the two blo
k sizes(here 22=20). At the end of the 1st part, the highest blo
k must be re
ombinedwith the next smaller blo
k. Again, the ratio of the blo
k sizes determines theoverhead.Therefore, the maximum di�eren
e between the ratio of two su

essive blo
ks,espe
ially in the low range of exponents, determines the imbalan
e. On the otherhand, this di�eren
e may be small, e.g., the most used non-power-of-two num-bers of pro
esses on our Cray T3E fall into the 
ategories Æexpo,max = 1 (96[12% of system usage with MPI appli
ations℄, and 60 PEs [pro
esing elements℄),Æexpo,max = 2 (61, 80, 235, 251 PEs), and Æexpo,max = 3 (36, 77, 100 PEs).2Allredu
e: The 2nd part is an allgather implemented with bu�er doubling anddistan
e halving in ea
h blo
k as in the algorithm in the previous se
tion. Theinput must be provided in the pro
esses of the smaller blo
ks always with pairsof messages from pro
esses of the next larger blo
k.Redu
e: If the root is outside of the largest blo
k, then the intermediate resultsegment of rank 0 is sent to root and root plays the role of rank 0. A binary treeis used to gather the result segments into the root pro
ess.For power-of-two number of pro
esses, the binary blo
k algorithms are iden-ti
al to the halving and doubling algorithm in the previous se
tion.3.7 RingWhile the algorithms in the last two se
tions are optimal for power-of-two pro-
ess numbers and long ve
tors, for medium non-power-of-two number of pro-
esses and long ve
tors there exist another good algorithm. It uses the pair-wise ex
hange algorithm for redu
e s
atter and ring algorithm for allgather (for2 Æexpo,max is the maximal di�eren
e of two 
onse
utive exponents in the binaryrepresentation of the number of pro
esses, e.g., 100 = 26 + 25 + 22, Æexpo,max =max(6� 5; 5� 2) = 3.
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e), as des
ribed in [15℄, and for redu
e, all pro
esses send their resultsegment dire
tly to root. Both algorithms are good in bandwidth usage for non-power-of-two number of pro
esses, but the laten
y s
ales with the number ofpro
esses. Therefore this algorithm 
an be used only for a small number ofpro
esses. Independent of whether p is power-of-two or not, the total implemen-tation needs Tall;ring = 2(p� 1)�+ 2n� + n
 � 1p (2n� + n
) for allredu
e, andTred;ring = (p�1)(�+�uni)+n(�+�uni)+n
� 1p (n(�+�uni)+n
) for redu
e.4 Choosing the Fastest Algorithm
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Based on the number ofpro
esses and the ve
tor(input bu�er) length, theredu
tion routine mustde
ide whi
h algorithmshould be used. Fig. 4shows the fastest pro-to
ol on a Cray T3E900 with 540 PEs. Forbu�er sizes less than orequal to 32 byte, re
ur-sive doubling is the best,for bu�er sizes less thanor equal to 1KB, mainlyvendor's algorithm (forpower-of-two) and binarytree (for non-power-of-two) are the best butthere is not a big dif-feren
e to re
ursive dou-bling. For longer bu�ersizes, the ring is goodfor some bu�er sizesand some #pro
esses lessthan 32 PEs. A de-tailed de
ision is done forea
h #pro
esses value,e.g., for 15 pro
esses,ring is used if length� 64KB. In general, ona Cray T3E 900, thebinary blo
k algorithmis faster if Æexpo,max <lg( ve
tor size1Byte )=2:0�2:5 and
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tor size � 16 KB and more than 32 pro
esses are used. In a few 
ases, e.g.,33 PEs and less then 32KB, halving&doubling is the fastest algorithm.Fig. 5 shows for 32KB bu�er size that the new proto
ols are 
learly betterthan the vendor's proto
ol (MPT.1.4.0.4) and the binary tree for all numbers ofpro
esses. Up to 32 PEs, all numbers of pro
esses are measured. For more than32 PEs, only sele
ted values with small and large Æexpo,max are measured. One
an verify, that binary blo
ks' bandwidth depends strongly on Æexpo,max and thathalving&doubling is faster on 33, 65, 66, 97, 128-131, ... PEs. The ring is fasteron 3, 5, 7, 9-11, and 17 PEs.5 ComparisonFig. 6 shows that with the pure MPI programming model (i.e., 1 MPI pro
ess perCPU) on the IBM SP, the bene�t is about 1.5x for bu�er sizes 8{64KB, and 2x {5x for larger bu�ers. With the hybrid programming model (1 MPI pro
ess perSMP node), only for bu�er sizes 4{128KB and more than 4 nodes, the bene�tis about 1.5x { 3x.Fig. 7 
ompares the new algorithm with the old MPICH-1' algorithm (withoutthe halving&doubling). The new algorithms show a performan
e bene�t of 3x {7x with pure MPI and 2x { 5x with the hybrid model.Fig. 8 shows, that in many 
ases the new algorithms are 3x { 5x faster than thevendors algorithm with operation MPI SUM and due to the very slow implemen-tation of stru
tured derived datatypes, a fa
tor up to 100x with MPI MAXLOC.On Cray X1, we 
ompare the new algorithms with the 
urrent develop-ment version of Cray's MPI library (mpt.2.4.0.0.13). Our measurements haveshown, that the shared memory based implementation of MPI Allredu
e andMPI Redu
e [10℄ has an up to 14 times shorter laten
y (6{14�s) as the proto-
ols based on point-to-point message passing and presented in this paper (39{137�s) at MPI Allredu
e 
omputing the sum of ve
tors, ea
h with 1 doubleelement. On the other hand, Fig. 9 shows that the new MPI Allredu
e proto
olsare signi�
antly faster for longer ve
tors. Looking at 96 and more MSPs (MultiStreaming Pro
essors, 
onsisting internally of 4 CPUs) and 32 kB (= 4k doubles)and more ve
tor size, we 
an see that the new presented proto
ols are more than35% faster than Cray's mpt. For 96 and more MPSs and ve
tor sizes with 256kB (=32k doubles) and more, the new proto
ols are 4 to 10 times faster thanCray's mpt, although [10℄ states that this mpt uses already butter
y proto
olsfor longer bu�ers. The lower diagram indi
ates, whi
h proto
ol has a
hieved thebest bandwidth.Fig. 10 shows, that for MPI Redu
e, the di�eren
es are signi�
antly smaller:With more than 8 MSPs, and at least 2 MB bu�er size, one 
an see that thenew proto
ols are faster than Cray's mpt, but only with a ratio between 1.14and 2.01.The redu
tion operation loop is 
ompiled with the pragma fun
tion Pragma(\ CRI 
on
urrent"). The new algorithms ve
torize and multi-stream on theMSPs, in
luding the minlo
 and maxlo
 operation, on all available datatypes,
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ol (without re
ursive doubling) on aMyrinet 
luster with dual-CPU PCs (HELICS 
luster, University of Heidelberg) and1 MPI pro
ess per CPU (left) and per SMP node (right)ex
ept on short and byte datatypes. Internally, all datatypes are mapped to theappropriate number of MPI BYTE elements, before MPI point-to-point messagepassing routines are 
alled. E.g., with 116 MSPs and 8 MB ve
tor size, the min-imal exe
ution time is 6.84ms and 11.67ms (allredu
e with sum and maxlo
),and 5.04ms and 10.94ms (redu
e with sum and maxlo
), whi
h implies followingbandwidth values (based on the 8 MB) per pro
ess: 1227MB/s and 719MB/s(allredu
e) and 1664MB/s and 767MB/s (redu
e). This speed is a
hieved withthe binary blo
k proto
ol. On 64 MSPs and with re
ursive halving and dou-bling, one 
an a
hieve 1362MB/s and 909MB/s (allredu
e) and 1792MB/s and1048MB/s (redu
e).The used mpt.2.4.0.0.13 is an intermediate development version from Cray.The MPI MAXLOC and MPI MINLOC operations are not yet optimized. There-
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ol (re
ursive doubling [allredu
e only℄,binary tree, ring, halving&doubling, and binary blo
ks) 
ompared to the vendors al-gorithm for Allredu
e (left) / Redu
e (right) and operation MPI SUM (1st row) /MPI MAXLOC (2nd row) on a Cray T3E 900.fore the 
omparison of the new proto
ols with Cray's mpt shows still a ratio up to1800 with allredu
e and up to 20 with redu
e. The extreme performan
e bug ofallredu
e may be based on performan
e problems with an internally used b
aston derived datatypes. These problems should be solved before this mpt.2.4 isdelivered as produ
t.6 Con
lusions and Future WorkAlthough prin
ipal work on optimizing 
olle
tive routines is quite old [2℄, thereis a la
k of fast implementations for allredu
e and redu
e in MPI libraries fora wide range of number of pro
esses and bu�er sizes. Based on the author'salgorithm from 1997 [11℄, an eÆ
ient algorithm for power-of-two and non-power-of-two number of pro
esses is presented in this paper. Medium non-power-of-two number of pro
esses 
ould be additionally optimized with a spe
ial ring
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Fig. 9. Ratio of bandwidth of the fastest proto
ol (re
ursive doubling, binary tree, ring,halving&doubling, and binary blo
ks) 
ompared to Cray mpt.2.4.0.0.13 algorithm forMPI Allredu
e and operation MPI SUM on a Cray X1 in MSP mode (upper diagram)and the fastest proto
ol (lower diagram).
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Fig. 10. Ratio of bandwidth of the fastest proto
ol (binary tree, ring, halving&doubling,and binary blo
ks) 
ompared to Cray mpt.2.4.0.0.13 algorithm for MPI Redu
e andoperation MPI SUM on a Cray X1 in MSP mode.algorithm. The halving&doubling is already in
luded into MPICH-2 and it isplanned to in
lude the other bandwidth-optimized algorithms [11, 15℄. Futurework will further optimize laten
y and bandwidth for any number of pro
essesby 
ombining the prin
iples used in Se
t. 3.3{3.7 into one algorithm and sele
tingon ea
h re
ursion level instead of sele
ting one of those algorithms for all levels[14℄.Cray's mpt.2.4.0.0.13 already shows ex
ellent laten
y for smallest ve
tors. Forlong ve
tors, there is still a big gap between the speed that 
an be rea
hed andthe speed implemented by Cray's mpt intermediate development version withratios up to 2 for redu
e(sum), 10 for allredu
e(sum), 20 for redu
e(maxlo
), and1800 for allredu
e(maxlo
). This gap may be or should be 
losed in the mpt.2.4produ
t version.A
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