
Colle
tive Redu
tion Operation on Cray X1 andOther PlatformsRolf Rabenseifner and Panagiotis AdamidisHigh-Performan
e Computing-Center (HLRS), University of StuttgartAllmandring 30, D-70550 Stuttgart, Germanyrabenseifner|adamidis�hlrs.de,www.hlrs.de/people/rabenseifner/ | adamidis/

Pro
eedings of the CUG 2004 Conferen
e, Knoxville, Tennessee, USA, May, 17-21, 2004.www.
ug.org

Abstra
t. A 5-year-pro�ling in produ
tion mode at the University ofStuttgart has shown that more than 40% of the exe
ution time of Mes-sage Passing Interfa
e (MPI) routines is spent in the
olle
tive
ommu-ni
ation routines MPI Allredu
e and MPI Redu
e. Although MPI im-plementations are now available for about 10 years and all vendors are
ommitted to this Message Passing Interfa
e standard, the vendors' andpubli
ly available redu
tion algorithms
ould be a

elerated with new al-gorithms by a fa
tor between 3 (IBM, sum) and 100 (Cray T3E, maxlo
)for long ve
tors. This paper presents �ve algorithms optimized for dif-ferent
hoi
es of ve
tor size and number of pro
esses. The fo
us is onbandwidth dominated proto
ols for power-of-two and non-power-of-twonumber of pro
esses, optimizing the load balan
e in
ommuni
ation and
omputation. The new algorithms are
ompared also on the Cray X1 withthe
urrent development version of Cray's MPI library (mpt.2.4.0.0.13)Keywords. Message Passing, MPI, Colle
tive Operations, Redu
tion.1 Introdu
tionMPI Redu
e
ombines the elements provided in the input ve
tor (bu�er) of ea
hpro
ess using an operation (e.g. sum, maximum), and returns the
ombinedvalues in the output bu�er of a
hosen pro
ess named root. MPI Allredu
e isthe same as MPI Redu
e, ex
ept that the result appears in the re
eive bu�er ofall pro
esses.MPI Allredu
e is one of the most important MPI routines and most vendorsare using algorithms that
an be improved by a fa
tor of more than 2 for longve
tors. Most
urrent implementations are optimized only for short ve
tors. A5-year-pro�ling [12℄ of most MPI based appli
ations (in produ
tion mode) ofall users of the Cray T3E 900 at our university has shown, that 8.54% of theexe
ution time is spent in MPI routines. 37.0% of the MPI time is spent inMPI Allredu
e and 3.7% in MPI Redu
e. Based on the pro�led number of
alls,transferred bytes, and used pro
esses,
ombined with ben
hmark results for thevendor's redu
tion routines and the optimized algorithms, Fig. 1 show that the
ommuni
ation time
an be redu
ed by a fa
tor of 20% (allredu
e) and 54%(redu
e) with the new algorithms. The 5-year-pro�ling has also shown, that 25%

2 Rolf Rabenseifner and Panagiotis Adamidisof all exe
ution time was spent with a non-power-of-two number of pro
esses.Therefore, a se
ond fo
us is the optimization for non-power-of-two numbers ofpro
esses.

Fig. 1. Bene�t of new allredu
e and redu
e proto
ols optimized for long ve
tors.2 Related WorkEarly work on
olle
tive
ommuni
ation implements the redu
tion operation asan inverse broad
ast and do not try to optimize the proto
ols based on di�erentbu�er sizes [1℄. Other work already handle allredu
e as a
ombination of basi
routines, e.g., [2℄ already proposed the
ombine-to-all (allredu
e) as a
ombi-nation of distributed
ombine (redu
e s
atter) and
olle
t (allgather). Colle
tivealgorithms for wide-area
luster are developed in [5, 7, 8℄, further proto
ol tuning
an be found in [3, 4, 9, 15℄, and automati
 tuning in [16℄. The main fo
us of thework presented in this paper is to optimize the algorithms for di�erent numbersof pro
esses (non-power-of-two and power-of-two) and for di�erent bu�er sizesby using spe
ial redu
e s
atter proto
ols without the performan
e penalties onnormal rank-ordered s
attering. The allgather proto
ol is
hosen a

ording the
hara
teristi
s of the redu
e s
atter part to a
hieve an optimal bandwidth forany number of pro
esses and bu�er size. This paper is based on [13℄ and extendedby ben
hmark results on Cray X1 parallel shared memory ve
tor systems.3 Allredu
e and Redu
e Algorithms3.1 Cost ModelTo
ompare the algorithms, theoreti
al
ost estimation and ben
hmark resultsare used. The
ost estimation is based on the same
at model used by R. Thakurand B. Gropp in [15℄. Ea
h pro
ess has an input ve
tor with n bytes, p is thenumber of MPI pro
esses,
 the
omputation
ost per ve
tor byte exe
uting oneoperation with two operands lo
ally on any pro
ess. The total redu
tion e�ort is

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 3(p�1)n
. The total
omputation time with optimal load balan
e on p pro
essesis therefore p�1p n
, i.e., less than n
, whi
h is independent of the number ofpro
esses!The
ommuni
ation time is modeled as � + n�, where � is the laten
y (orstartup time) per message, and � is the transfer time per byte, and n the messagesize in bytes. It is assumed further that all pro
esses
an send and re
eive onemessage at the same time with this
ost model, i.e., p parallel pro
esses
ansend in parallel p messages ea
h with n bytes (e.g., pairwise or in a ring pattern)with the
ommuni
ation time � + n�. In reality, most networks are faster, ifthe pro
esses
ommuni
ate in parallel, but pairwise only in one dire
tion (uni-dire
tional between two pro
esses), e.g., in the
lassi
al binary tree algorithms.Therefore �uni+n�uni is modeling the uni-dire
tional
ommuni
ation, and �+n� is used with the bi-dire
tional
ommuni
ation. The ratios are abbreviatedwith f� = �uni=� and f� = �uni=�. These fa
tors are normally in the range 0.5(simplex network) to 1.0 (full duplex network).3.2 Prin
iplesA
lassi
al implementation of MPI Allredu
e is the
ombination of MPI Redu
e(to a root pro
ess) followed by MPI B
ast sending the result from root to allpro
esses. This implies a bottle-ne
k on the root pro
ess. Also
lassi
al is thebinary tree implementation of MPI Redu
e, whi
h is a good algorithm for shortve
tors, but that
auses a heavy load imbalan
e be
ause in ea
h step the num-ber of a
tive pro
esses is halved. The optimized algorithms are based on a fewprin
iples:Re
ursive ve
tor halving: For long-ve
tor redu
tion, the ve
tor
an be splitinto two parts and one half is redu
ed by the pro
ess itself and the other half issent to a neighbor pro
ess for redu
tion. In the next step, again the bu�ers arehalved, and so on.Re
ursive ve
tor doubling: To return the total result in the result ve
tor,the split result ve
tors must be
ombined re
ursively. MPI Allredu
e
an beimplemented as a redu
e-s
atter (using re
ursive ve
tor halving) followed by anallgather (using re
ursive ve
tor doubling).Re
ursive distan
e doubling: In step 1, ea
h pro
ess transfers data at dis-tan
e 1 (pro
ess P0 with P1, P2{P3, P4{P5, ...); in step 2, the distan
e isdoubled, i.e., P0{P2 and P1{P3, P4{P6 and P5{P7; and so on until distan
e p2 .Re
ursive distan
e halving: Same pro
edure, but starting with distan
e p=2,i.e., P0{Pp2 , P1{P(p2 + 1), ..., and ending with distan
e 1, i.e., P0{P1,Re
ursive ve
tor and distan
e doubling and halving
an be
ombined fordi�erent purposes, but always additional overhead
auses load imbalan
e if thenumber of pro
esses is not a power of two. Two prin
iples
an redu
e the over-head in this
ase.Binary blo
ks: The number of pro
esses
an be expressed as a sum of power-of-two values, i.e., all pro
esses are lo
ated in subsets with power-of-two pro
esses.Ea
h subset is used to exe
ute parts of the redu
tion proto
ol in a blo
k. Over-head o

urs in the
ombining of the blo
ks in some step of the proto
ol.

4 Rolf Rabenseifner and Panagiotis AdamidisRing algorithms: A redu
e s
atter
an be implemented by p�1 ring ex
hangesteps with in
reasing strides. Ea
h pro
ess
omputes all redu
tion operations forits own
hunk of the result ve
tor. In step i (i=1 .. p-1) ea
h pro
ess sends theinput ve
tor
hunk needed by rank+i to that pro
ess and re
eives from rank�ithe data needed to redu
e its own
hunk. The allredu
e
an be
ompleted by anallgather that is also implemented with ring ex
hange steps, but with
onstantstride 1. Ea
h pro
ess sends its
hunk of the result ve
tor around the ring to theright (rank + 1) until its left neighbor ((rank + p � 1) mod p) has re
eived itafter p� 1 steps. The following se
tions des
ribe the algorithms in detail.3.3 Binary TreeRedu
e: The
lassi
al binary tree always ex
hanges full ve
tors, uses re
ursivedistan
e doubling, but with in
omplete proto
ol, be
ause in ea
h step, half ofthe pro
esses �nish their work. It takes dlg pe steps and the time taken by thisalgorithm is Tred;tree = dlg pe(�uni + n�uni + n
)).For short ve
tors, this algorithm is optimal (
ompared to the following algo-rithms) due to its smallest laten
y term dlg pe�uni.Allredu
e: The redu
e algorithm is followed by a binary tree based broad
ast.The total exe
ution time is Tall;tree = dlg pe(2�uni + 2n�uni + n
)).3.4 Re
ursive DoublingAllredu
e: This algorithm is an optimization espe
ially for short ve
tors. Inea
h step of the re
ursive distan
e doubling, both pro
esses in a pair ex
hangethe input ve
tor (in step 1) or its intermediate result ve
tor (in steps 2 ... dlg pe)with its partner pro
ess and both pro
esses are
omputing the same redu
tionredundantly. After dlg pe steps, the identi
al result ve
tor is available in all pro-
esses. It needs Tall;r:d: = dlg pe(�+n�+n
))+(if non-power-of-two �uni+n�uni)This algorithm is in most
ases optimal for short ve
tors.3.5 Re
ursive Halving and DoublingThis algorithm is a
ombination of a redu
e s
atter implemented with re
ur-sive ve
tor halving and distan
e doubling1 followed by a allgather implementedby a re
ursive ve
tor doubling
ombined with re
ursive distan
e halving (forallredu
e), or followed by gather implemented with a binary tree (for redu
e).In a �rst step, the number of pro
esses p is redu
ed to a power-of-two value:p0 = 2blg p
. r = p� p0 is the number of pro
esses that must be removed in this�rst step. The �rst 2r pro
esses send pairwise from ea
h even rank to the odd1 A distan
e doubling (starting with distan
e 1) is used in
ontrary to the re-du
e s
atter algorithm in [15℄ that must use a distan
e halving (i.e., starting withdistan
e #pro
esses2) to guarantee a rank-ordered s
atter. In our algorithm, any orderof the s
attered data is allowed, and therefore, the longest ve
tors
an be ex
hangedwith the nearest neighbor, whi
h is an additional advantage on systems with a hier-ar
hi
al network stru
ture.

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 5

Fig. 2. Re
ursive Halving and Doubling. The �gure shows the intermediate resultsafter ea
h bu�er ex
hange (followed by a redu
tion operation in the 1st part). Thedotted frames show the overhead
aused by a non-power-of-two number of pro
esses.(rank + 1) the se
ond half of the input ve
tor and from ea
h odd rank to theeven (rank � 1) the �rst half of the input ve
tor. All 2r pro
esses
ompute theredu
tion on their half.Fig. 2 shows the proto
ol with an example on 13 pro
esses. The input ve
-tors and all redu
tion results will be divided into p0 parts (A, B,..., H) by thisalgorithm, and therefore it is denoted with A{Hrank. After the �rst redu
tion,pro
ess P0 has
omputed A{D0�1, denoting the redu
tion result of the �rsthalf of the ve
tor (A{D) from the pro
esses 0{1. P1 has
omputed E{H0�1, P2A{D2�3, The �rst step is �nished by sending those results from ea
h oddpro
ess (1 ... 2r � 1) to rank � 1 into the se
ond part of the bu�er.Now, the �rst r even pro
esses and the p� 2r last pro
esses are renumberedfrom 0 to p0 � 1.This �rst step needs (1+ f�)�+ 1+fbeta2 n�+ 12n
 and is not ne
essary, if thenumber of pro
esses p was already a power-of-two.Now we start with the �rst step of re
ursive ve
tor halving and distan
edoubling, i.e., the even / odd ranked pro
esses are sending the se
ond / �rst halfof their bu�er to rank0+1 / rank0�1. Then the redu
tion is
omputed betweenthe lo
al bu�er and the re
eived bu�er. This step
osts �+ 12 (n� + n
).In the next lg p0�1 steps, the bu�ers are re
ursively halved and the distan
edoubled. Now, ea
h of the p0 pro
esses has 1p0 of the total redu
tion result ve
tor,i.e., the redu
e s
atter has s
attered the result ve
tor to the p0 pro
esses. Allre
ursive steps
ost lg p0�+ (1� 1p0)(n� + n
).The se
ond part implements an allgather or gather to
omplete the allredu
eor redu
e operation.Allredu
e: Now, the
ontrary proto
ol is needed: Re
ursive ve
tor doublingand distan
e halving, i.e., in the �rst step the pro
ess pairs ex
hange 1p0 of thebu�er to a
hieve 2p0 of the result ve
tor, and in the next step 2p0 is ex
hanged toget 4p0 , and so on. A{B, A{D ... in Fig. 2 denote the already stored portion ofthe result ve
tor. After ea
h
ommuni
ation ex
hange step, the result bu�er is

6 Rolf Rabenseifner and Panagiotis Adamidis

Fig. 3. Binary Blo
ks.doubled and after lg p0 steps, the p0 pro
esses have re
eived the total redu
tionresult. This allgather part
osts lg p0�+ (1� 1p0)(n�).If the number of pro
esses is non-number-of-two, then the total result ve
tormust be sent to the r removed pro
esses. This
auses the additional overhead�+ n�. The total implementation needs� Tall;h&d;n=2exp = 2 lg p�+ 2n� + n
 � 1p (2n� + n
)' 2 lg p�+ 2n� + n
 if p is power-of-two,� Tall;h&d;n6=2exp = (2 lg p0 + 2 + f�)�+ (3 + 1+fbeta2)n� + 32n
 � 1p0 (2n� + n
)' (3 + 2blg p
)�+ 4n� + 32n
 if p is non-power-of-two (with p0 = 2blg p
).This proto
ol is good for long ve
tors and power-of-two pro
esses. For non-power-of-two pro
esses, the transfer overhead is doubled and the
omputationoverhead is enlarged by 32 . The binary blo
ks proto
ol (see below)
an redu
ethis overhead in many
ases.Redu
e: The same proto
ol is used, but the pairwise ex
hange with sendre
vis substituted by single message passing. In the �rst step, ea
h pro
ess with thebit with the value p0=2 in its new rank identi
al to that bit in root rank mustre
eive a result bu�er segment and the other pro
esses must send their segment.In the next step only the re
eiving pro
esses
ontinue and the bit is shifted 1position right (i.e., p0=4). And so on. The time needed for this gather operationis lg p0�uni + (1� 1p0)n�uni.In the
ase that the original root pro
ess is one of the removed pro
esses,then the role of this pro
ess and its partner in the �rst step are ex
hangedafter the �rst redu
tion in the redu
e s
atter proto
ol. This
auses no additionaloverhead.The total implementation needs� Tred;h&d;n=2exp = lg p(1 + f�)�+ (1 + f�)n� + n
 � 1p (n(� + �uni) + n
)' 2 lg p�+ 2n� + n
 if p is power-of-two,� Tred;h&d;n6=2exp = lg p0(1 + f�)� + (1 + f�)� + (1 + 1+fbeta2 + f�)n� + 32n
 �1p0 ((1 + f�)n� + n
)' (2 + 2blg p
)�+ 3n� + 32n
 if p is non-power-of-two (with p0 = 2blg p
).

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 73.6 Binary Blo
ksThe algorithm starts with a binary blo
k de
omposition of all pro
esses in blo
kswith power-of-two number of pro
esses, see example in Fig. 3. Ea
h blo
k exe-
utes its own redu
e s
atter with the re
ursive bu�er halving and distan
e dou-bling algorithm as des
ribed in the previous se
tion. Then, starting with thesmallest blo
k, the intermediate result (or the input ve
tor in
ase of 20 pro
ess)is split into the segments of the intermediate result in the next higher blo
k, sentto the pro
esses there and the redu
tion operation is exe
uted there. This
ausesa load imbalan
e in
omputation and
ommuni
ation
ompared to the exe
utionin the larger blo
ks. In our example, in the 3rd ex
hange step in the 23 blo
k,ea
h pro
ess sends one segment (e.g., B in P0), re
eives one segment (A), and
omputes the redu
tion of one segment (A). The load imbalan
e is introdu
edhere by the blo
ks 22 and 20 : In the 22 blo
k, ea
h pro
ess re
eives andredu
es 2 segments (e.g. A{B on P8), while in the 20 blo
k (here only P12),ea
h pro
ess has to send as many messages as the ratio of the two blo
k sizes(here 22=20). At the end of the 1st part, the highest blo
k must be re
ombinedwith the next smaller blo
k. Again, the ratio of the blo
k sizes determines theoverhead.Therefore, the maximum di�eren
e between the ratio of two su

essive blo
ks,espe
ially in the low range of exponents, determines the imbalan
e. On the otherhand, this di�eren
e may be small, e.g., the most used non-power-of-two num-bers of pro
esses on our Cray T3E fall into the
ategories Æexpo,max = 1 (96[12% of system usage with MPI appli
ations℄, and 60 PEs [pro
esing elements℄),Æexpo,max = 2 (61, 80, 235, 251 PEs), and Æexpo,max = 3 (36, 77, 100 PEs).2Allredu
e: The 2nd part is an allgather implemented with bu�er doubling anddistan
e halving in ea
h blo
k as in the algorithm in the previous se
tion. Theinput must be provided in the pro
esses of the smaller blo
ks always with pairsof messages from pro
esses of the next larger blo
k.Redu
e: If the root is outside of the largest blo
k, then the intermediate resultsegment of rank 0 is sent to root and root plays the role of rank 0. A binary treeis used to gather the result segments into the root pro
ess.For power-of-two number of pro
esses, the binary blo
k algorithms are iden-ti
al to the halving and doubling algorithm in the previous se
tion.3.7 RingWhile the algorithms in the last two se
tions are optimal for power-of-two pro-
ess numbers and long ve
tors, for medium non-power-of-two number of pro-
esses and long ve
tors there exist another good algorithm. It uses the pair-wise ex
hange algorithm for redu
e s
atter and ring algorithm for allgather (for2 Æexpo,max is the maximal di�eren
e of two
onse
utive exponents in the binaryrepresentation of the number of pro
esses, e.g., 100 = 26 + 25 + 22, Æexpo,max =max(6� 5; 5� 2) = 3.

8 Rolf Rabenseifner and Panagiotis Adamidisallredu
e), as des
ribed in [15℄, and for redu
e, all pro
esses send their resultsegment dire
tly to root. Both algorithms are good in bandwidth usage for non-power-of-two number of pro
esses, but the laten
y s
ales with the number ofpro
esses. Therefore this algorithm
an be used only for a small number ofpro
esses. Independent of whether p is power-of-two or not, the total implemen-tation needs Tall;ring = 2(p� 1)�+ 2n� + n
 � 1p (2n� + n
) for allredu
e, andTred;ring = (p�1)(�+�uni)+n(�+�uni)+n
� 1p (n(�+�uni)+n
) for redu
e.4 Choosing the Fastest Algorithm

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f

M
P

I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling
recursive doubling

binary blocks halving+doubling
break-even points : size=1k and 2k and min((size/256)

9/16
, ...)

Fig. 4. The fastest proto
ol for Allredu
e(double,sum) on a Cray T3E 900.

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256

b
a

n
d

w
id

th
 [

M
b

/s
]

number of MPI processes

buffersize = 32 kb
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling

binary blocks halving + doubling
recursive doubling

chosen best

Fig. 5. Bandwidth
omparison for Allredu
e(double,sum) with 32 KB ve
tors on a Cray T3E 900.

Based on the number ofpro
esses and the ve
tor(input bu�er) length, theredu
tion routine mustde
ide whi
h algorithmshould be used. Fig. 4shows the fastest pro-to
ol on a Cray T3E900 with 540 PEs. Forbu�er sizes less than orequal to 32 byte, re
ur-sive doubling is the best,for bu�er sizes less thanor equal to 1KB, mainlyvendor's algorithm (forpower-of-two) and binarytree (for non-power-of-two) are the best butthere is not a big dif-feren
e to re
ursive dou-bling. For longer bu�ersizes, the ring is goodfor some bu�er sizesand some #pro
esses lessthan 32 PEs. A de-tailed de
ision is done forea
h #pro
esses value,e.g., for 15 pro
esses,ring is used if length� 64KB. In general, ona Cray T3E 900, thebinary blo
k algorithmis faster if Æexpo,max <lg(ve
tor size1Byte)=2:0�2:5 and

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 9ve
tor size � 16 KB and more than 32 pro
esses are used. In a few
ases, e.g.,33 PEs and less then 32KB, halving&doubling is the fastest algorithm.Fig. 5 shows for 32KB bu�er size that the new proto
ols are
learly betterthan the vendor's proto
ol (MPT.1.4.0.4) and the binary tree for all numbers ofpro
esses. Up to 32 PEs, all numbers of pro
esses are measured. For more than32 PEs, only sele
ted values with small and large Æexpo,max are measured. One
an verify, that binary blo
ks' bandwidth depends strongly on Æexpo,max and thathalving&doubling is faster on 33, 65, 66, 97, 128-131, ... PEs. The ring is fasteron 3, 5, 7, 9-11, and 17 PEs.5 ComparisonFig. 6 shows that with the pure MPI programming model (i.e., 1 MPI pro
ess perCPU) on the IBM SP, the bene�t is about 1.5x for bu�er sizes 8{64KB, and 2x {5x for larger bu�ers. With the hybrid programming model (1 MPI pro
ess perSMP node), only for bu�er sizes 4{128KB and more than 4 nodes, the bene�tis about 1.5x { 3x.Fig. 7
ompares the new algorithm with the old MPICH-1' algorithm (withoutthe halving&doubling). The new algorithms show a performan
e bene�t of 3x {7x with pure MPI and 2x { 5x with the hybrid model.Fig. 8 shows, that in many
ases the new algorithms are 3x { 5x faster than thevendors algorithm with operation MPI SUM and due to the very slow implemen-tation of stru
tured derived datatypes, a fa
tor up to 100x with MPI MAXLOC.On Cray X1, we
ompare the new algorithms with the
urrent develop-ment version of Cray's MPI library (mpt.2.4.0.0.13). Our measurements haveshown, that the shared memory based implementation of MPI Allredu
e andMPI Redu
e [10℄ has an up to 14 times shorter laten
y (6{14�s) as the proto-
ols based on point-to-point message passing and presented in this paper (39{137�s) at MPI Allredu
e
omputing the sum of ve
tors, ea
h with 1 doubleelement. On the other hand, Fig. 9 shows that the new MPI Allredu
e proto
olsare signi�
antly faster for longer ve
tors. Looking at 96 and more MSPs (MultiStreaming Pro
essors,
onsisting internally of 4 CPUs) and 32 kB (= 4k doubles)and more ve
tor size, we
an see that the new presented proto
ols are more than35% faster than Cray's mpt. For 96 and more MPSs and ve
tor sizes with 256kB (=32k doubles) and more, the new proto
ols are 4 to 10 times faster thanCray's mpt, although [10℄ states that this mpt uses already butter
y proto
olsfor longer bu�ers. The lower diagram indi
ates, whi
h proto
ol has a
hieved thebest bandwidth.Fig. 10 shows, that for MPI Redu
e, the di�eren
es are signi�
antly smaller:With more than 8 MSPs, and at least 2 MB bu�er size, one
an see that thenew proto
ols are faster than Cray's mpt, but only with a ratio between 1.14and 2.01.The redu
tion operation loop is
ompiled with the pragma fun
tion Pragma(\ CRI
on
urrent"). The new algorithms ve
torize and multi-stream on theMSPs, in
luding the minlo
 and maxlo
 operation, on all available datatypes,

10 Rolf Rabenseifner and Panagiotis Adamidis
16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 6. Ratio of bandwidth of the fastest proto
ol (without re
ursive doubling) on aIBM SP at SDSC and 1 MPI pro
ess per CPU (left) and per SMP node (right)
4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 7. Ratio of bandwidth of the fastest proto
ol (without re
ursive doubling) on aMyrinet
luster with dual-CPU PCs (HELICS
luster, University of Heidelberg) and1 MPI pro
ess per CPU (left) and per SMP node (right)ex
ept on short and byte datatypes. Internally, all datatypes are mapped to theappropriate number of MPI BYTE elements, before MPI point-to-point messagepassing routines are
alled. E.g., with 116 MSPs and 8 MB ve
tor size, the min-imal exe
ution time is 6.84ms and 11.67ms (allredu
e with sum and maxlo
),and 5.04ms and 10.94ms (redu
e with sum and maxlo
), whi
h implies followingbandwidth values (based on the 8 MB) per pro
ess: 1227MB/s and 719MB/s(allredu
e) and 1664MB/s and 767MB/s (redu
e). This speed is a
hieved withthe binary blo
k proto
ol. On 64 MSPs and with re
ursive halving and dou-bling, one
an a
hieve 1362MB/s and 909MB/s (allredu
e) and 1792MB/s and1048MB/s (redu
e).The used mpt.2.4.0.0.13 is an intermediate development version from Cray.The MPI MAXLOC and MPI MINLOC operations are not yet optimized. There-

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 11
2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Reduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(maxloc,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Reduce(maxloc,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 8. Ratio of bandwidth of the fastest proto
ol (re
ursive doubling [allredu
e only℄,binary tree, ring, halving&doubling, and binary blo
ks)
ompared to the vendors al-gorithm for Allredu
e (left) / Redu
e (right) and operation MPI SUM (1st row) /MPI MAXLOC (2nd row) on a Cray T3E 900.fore the
omparison of the new proto
ols with Cray's mpt shows still a ratio up to1800 with allredu
e and up to 20 with redu
e. The extreme performan
e bug ofallredu
e may be based on performan
e problems with an internally used b
aston derived datatypes. These problems should be solved before this mpt.2.4 isdelivered as produ
t.6 Con
lusions and Future WorkAlthough prin
ipal work on optimizing
olle
tive routines is quite old [2℄, thereis a la
k of fast implementations for allredu
e and redu
e in MPI libraries fora wide range of number of pro
esses and bu�er sizes. Based on the author'salgorithm from 1997 [11℄, an eÆ
ient algorithm for power-of-two and non-power-of-two number of pro
esses is presented in this paper. Medium non-power-of-two number of pro
esses
ould be additionally optimized with a spe
ial ring

12 Rolf Rabenseifner and Panagiotis Adamidis

4

8

16

32

64

128

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling
recursive doubling

binary blocks halving+doubling

Fig. 9. Ratio of bandwidth of the fastest proto
ol (re
ursive doubling, binary tree, ring,halving&doubling, and binary blo
ks)
ompared to Cray mpt.2.4.0.0.13 algorithm forMPI Allredu
e and operation MPI SUM on a Cray X1 in MSP mode (upper diagram)and the fastest proto
ol (lower diagram).

Colle
tive Redu
tion Operation on Cray X1 and Other Platforms 13

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Reduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling

binary blocks halving+doubling

Fig. 10. Ratio of bandwidth of the fastest proto
ol (binary tree, ring, halving&doubling,and binary blo
ks)
ompared to Cray mpt.2.4.0.0.13 algorithm for MPI Redu
e andoperation MPI SUM on a Cray X1 in MSP mode.algorithm. The halving&doubling is already in
luded into MPICH-2 and it isplanned to in
lude the other bandwidth-optimized algorithms [11, 15℄. Futurework will further optimize laten
y and bandwidth for any number of pro
essesby
ombining the prin
iples used in Se
t. 3.3{3.7 into one algorithm and sele
tingon ea
h re
ursion level instead of sele
ting one of those algorithms for all levels[14℄.Cray's mpt.2.4.0.0.13 already shows ex
ellent laten
y for smallest ve
tors. Forlong ve
tors, there is still a big gap between the speed that
an be rea
hed andthe speed implemented by Cray's mpt intermediate development version withratios up to 2 for redu
e(sum), 10 for allredu
e(sum), 20 for redu
e(maxlo
), and1800 for allredu
e(maxlo
). This gap may be or should be
losed in the mpt.2.4produ
t version.A
knowledgmentsThe authors would like to a
knowledge their
olleagues and all the people that sup-ported this proje
t with suggestions and helpful dis
ussions. They would espe
ially liketo thank Rajeev Thakur and Jesper Larsson Tr�a� for the helpful dis
ussion on opti-mized redu
tion algorithm and Gerhard Wellein, Thomas Ludwig, Ana Kovat
heva,Rajeev Thakur, Monika Wierse, Howard Prit
hard, Patri
k H. Worley, Terry Hewitt,Mike Pettipher, Adrian Tate for their ben
hmarking support.Referen
es1. V. Bala, J. Bru
k, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M.Snir, CCL: A portable and tunable
olle
tive
ommuni
ation library for s
alable

14 Rolf Rabenseifner and Panagiotis Adamidisparallel
omputers, in IEEE Transa
tions on Parallel and Distributed Systems,Vol. 6, No. 2, Feb. 1995, pp 154{164.2. M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Gejin, and J. Watts, Inter-pro
essor
olle
tive
ommuni
ation library (InterCom), in Pro
eedings of Super-
omputing '94, Nov. 1994.3. Edward K. Blum, XinWang, and Patri
k Leung, Ar
hite
tures and message-passingalgorithms for
luster
omputing: Design and performan
e, in Parallel Computing26 (2000) 313{332.4. J. Bru
k, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, EÆ
ient algorithms forall-to-all
ommuni
ations in multiport message-passing systems, in IEEE Transa
-tions on Parallel and Distributed Systems, Vol. 8, No. 11, Nov. 1997, pp 1143{1156.5. E. Gabriel, M. Res
h, and R. R�uhle, Implementing MPI with optimized algorithmsfor meta
omputing, in Pro
eedings of the MPIDC'99, Atlanta, USA, Mar
h 1999,pp 31{41.6. Message Passing Interfa
e Forum. MPI: A Message-Passing Interfa
e Standard,Rel. 1.1, June 1995, www.mpi-forum.org.7. N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan,Exploiting hierar
hy in parallel
omputer networks to optimize
olle
tive operationperforman
e, in Pro
eedings of the 14th International Parallel and DistributedPro
essing Symposium (IPDPS '00), 2000, pp 377{384.8. Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, Raoul A. F.Bhoedjang, MPI's redu
tion operations in
lustered wide area systems, in Pro-
eedings of the Message Passing Interfa
e Developer's and User's Conferen
e 1999(MPIDC'99), Atlanta, USA, Mar
h 1999, pp 43{52.9. Man D. Knies, F. Ray Barriuso, William J. Harrod, George B. Adams III, SLICC:A low laten
y interfa
e for
olle
tive
ommuni
ations, in Pro
eedings of the 1994
onferen
e on Super
omputing, Washington, D.C., Nov. 14{18, 1994, pp 89{96.10. Howard Prit
hard, Je� Ni
holson, and Jim S
hwarzmeier, Optimizing MPI Col-le
tives for the Cray X1, in Pro
eeding of the CUG 2004
onferen
e, Knoxville,Tennessee, USA, May, 17-21, 2004.11. Rolf Rabenseifner, A new optimized MPI redu
e and allredu
e algorithm, Nov. 1997.http://www.hlrs.de/mpi/myredu
e.html12. Rolf Rabenseifner, Automati
 MPI
ounter pro�ling of all users: First results ona CRAY T3E 900-512, Pro
eedings of the Message Passing Interfa
e Developer'sand User's Conferen
e 1999 (MPIDC'99), Atlanta, USA, Mar
h 1999, pp 77{85.http://www.hlrs.de/people/rabenseifner/publ/publi
ations.html13. R. Rabenseifner, Optimization of
olle
tive redu
tion operations, in M. Bubak etal. (Eds.): International Conferen
e on Computational S
ien
e (ICCS 2004), June6-9, Krakow, Poland, LNCS 3036, pp 1{9, 2004.14. Rolf Rabenseifner and Jesper L. Tr�a�, More eÆ
ient redu
tion algorithms for non-power-of-two number of pro
essors in message-passing parallel systems, to be pub-lished in Re
ent Advan
es in Parallel Virtual Ma
hine and Message Passing Inter-fa
e, pro
eedings of the 11th European PVM/MPI Users' Group Meeting, LNCS,J. Dongarra, et al. (Eds.), Springer, 2004.15. Rajeev Thakur and William D. Gropp, Improving the performan
e of
olle
tiveoperations in MPICH, in Re
ent Advan
es in Parallel Virtual Ma
hine and Mes-sage Passing Interfa
e, pro
eedings of the 10th European PVM/MPI Users' GroupMeeting, LNCS 2840, J. Dongarra, D. Laforenza, S. Orlando (Eds.), 2003, 257{267.16. Sathish S. Vadhiyar, Graham E. Fagg, and Ja
k Dongarra, Automati
ally tuned
olle
tive
ommuni
ations, in Pro
eedings of SC2000, Nov. 2000.

