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Abstract

We describe the design and MPI implementation of two

benchmarks created to characterize the balanced system

performance of high-performance clusters and supercom-

puters. We start with a communication-specific benchmark,

called b eff that characterizes the message passing perfor-

mance of a system. Following the same line of develop-

ment, we extend this work to the design and implementation

of the effective I/O bandwidth benchmark (b eff io). Both

of these benchmarks have two goals: a) to obtain a single

bandwidth number that characterizes the average perfor-

mance of the system namely processor communication for

b eff, and the I/O subsystem for b eff io, and b) to get a

detailed insight into the performance strengths and weak-

nesses of different parallel communication and I/O patterns.

Both benchmarks use a time-driven approach and loop over

a variety of communication and access patterns to charac-

terize a system in a fairly automated fashion. Results of

the two benchmarks are given for several systems including

IBM SPs, Cray T3E, NEC SX-5, and Hitachi SR 8000.

1. Introduction

Characterization of a system’s usable performance re-

quires more than vendor-supplied tables of peak perfor-

mance (Tflops), memory size (Tbytes), and other awe-

inspiring statistics. On the other hand, a simple number

characterization has much appeal in giving both the user

of a system and those procuring a new system a basis

for quick comparison. Indeed, the TOP500 [24] ordering

(based on the Linpack performance) which characterizes a

systems true or predicted application performance based on

the computational speed of a system, is a number most often

quoted in press releases detailing the world’s fastest com-

puters. Such application performance statistics are vital,

yet do not tell the whole story. Usable high-performance

systems require a balance between this application compu-

tational speed (as detailed by the TOP500 figures) and other

aspects in particular communication scalability and I/O per-

formance. We focus on these latter areas. We start with

the design criteria of the effective bandwidth benchmark

(b eff), that characterizes the communication network of a

distributed system [14, 21, 22], and extend the ideas to pro-

duce an additional benchmark which characterizes overall

I/O performance. In this paper, we use the benchmarks to

contrast several current high-performance computing sys-

tems in their production environment.

2. Design Criteria

There are several communication test suites that serve to

characterize relative communication performance and I/O

subsystem performance. Generally, the application of the

benchmark suites results in a series of tabulated results for

various types of tests (e.g., varying the communication pat-

tern, the message size, etc.[10]). The key concept that dif-

ferentiates the effective bandwidth benchmarks described

here from these other test suites is the use of sampling

techniques to automatically scan a subset of the parame-

ter space and pick out key features, followed by averaging

and use of maxima to combine the results into a single nu-

merical value. Obviously, the difficultly lies in judicious

choice of the benchmark parameters and averaging tech-

niques. Additionally, both b eff-type benchmarks are ad-

justed to give their results in an amount of time commen-

surate with the subsystem it is modeling. Specifically, the

communication bandwidth achieves its result in 3-5 min-

utes, and the effective I/O bandwidth, adjusted appropri-

ately for the slower I/O communication, reaches its conclu-

sion in approximately 30 minutes. To get detailed insight, it

is important to choose a set of patterns that reflects typical

application kernels.



2.1. Effective Bandwidth Benchmark

The effective bandwidth benchmark (b eff) measures the

accumulated bandwidth of the communication network of

parallel and/or distributed computing systems. Several mes-

sage sizes, communication patterns and methods are used.

A fundamental difference between the classical ping-pong

benchmarks and this effective bandwidth benchmark is that

all processes are sending messages to neighbors in paral-

lel, i.e., at the same time. The algorithm uses an average

to take into account that short and long messages are trans-

ferred with different bandwidth values in real application

scenarios. The result of this benchmark is a single number,

called the effective bandwidth. The averaging technique is

described later in Sec. 4. Beside the patterns used in the

averaging, additional patterns are measured to get more de-

tailed information on the communication behavior of the

system, e.g., two and three dimensional patterns are used to

compare collective and non-collective MPI communication.

To measure the balance of a system, we introduce the

balance factor defined as the ratio of interprocessor com-

munication defined by b eff and the floating point perfor-

mance of an application. For the floating point perfor-

mance, we use R max as defined by the standard Linpack

performance[24].

2.2. Effective I/O Bandwidth Benchmark

Most parallel I/O benchmarks and benchmarking stud-

ies characterize the hardware and file system performance

limits [2, 5, 8, 9]. Often, they focus on determining under

which conditions the maximal file system performance can

be reached on a specific platform. Such results can guide

the user in choosing an optimal access pattern for a given

machine and file system, but do not generally consider the

needs of the application over the needs of the file system.

To formulate b eff io, we first consider the likely I/O

requests of parallel applications. We use the MPI-I/O in-

terface [11] to implement the I/O requests. This interface

serves both to express the user’s needs in a concise fashion

and to allow for optimized implementations based on the

underlying file system characteristics [3, 13, 16, 17]. To be

consistent with our benchmarking goals, we note that the

effective I/O bandwidth benchmark (b eff io) should mea-

sure different access patterns, report the detailed results, and

finally calculate an average I/O bandwidth value that char-

acterizes the whole system.

A major difference between b eff and b eff io is the

magnitude of the bandwidth. On well-balanced systems in

high performance computing we expect an I/O bandwidth

which allows for writing or reading the total memory in ap-

proximately 10 minutes. (We call this the coffee-cup rule,

since it is based on the application developers’ requirement

that a running application using most or all of the available

memory for a given set of nodes should be able to perform

its I/O needs by writing out approximately 1/2 of this mem-

ory during the 5 minutes it takes for the developer to go to

another room and get a cup of coffee.) In contrast, early

results from the communication bandwidth b eff show that

the total memory can be communicated in 3.2 seconds on

a Cray T3E with 512 processors and in 13.6 seconds on a

24 processor Hitachi SR 8000, i.e., the I/O bandwidth is

about two orders of magnitude slower than the communica-

tion bandwidth.

Another difference is that an I/O benchmark measures

the bandwidth of data transfers between memory and disk.

Such measurements are (1) highly influenced by buffering

mechanisms of the underlying I/O middleware and filesys-

tem details, and (2) high I/O bandwidth on disk requires,

especially on striped filesystems, that a large amount of

data must be transferred between these buffers and disk.

Therefore an I/O benchmark must ensure that a sufficient

amount of data is transferred between disk and the applica-

tion’s memory to minimize buffer effects. In practice, we

find that our communication benchmark b eff can give de-

tailed answers in about 3-5 minutes, while the b eff io, our

I/O counterpart, needs at least 30 minutes.

Although the design criteria for both benchmarks are

similar, the benchmark software is very different. For b eff,

the time driven approach is realized by controlling the re-

peating factor for each loop. These are predefined at the

beginning of each measurement loop and modified by the

execution time of a previous loop. For b eff io, most loops

are terminated when the measured time exceeds the sched-

uled time for a given access pattern.

3. Multidimensional Benchmarking Space

Often, benchmark calculations sample only a small sub-

space of a multidimensional parameter space. One extreme

example is to measure only one point, e.g., a communica-

tion bandwidth between two processors using a ping-pong

communication pattern with 8 Mbyte messages, repeated

100 times. Our goal here is to sample a reasonable amount

of the relevant space.

3.1. Effective Bandwidth Benchmark

For communication benchmarks, the major parameters

are message size, communication patterns, i.e., how many

processes are communicating in parallel, how many mes-

sages are sent in parallel and which communication graph is

used, and at least the communication method, e.g., whether

MPI Sendrecv, nonblocking or collective communication

(MPI Alltoallv) is used. For b eff, 21 different message
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sizes are used, 13 fixed sizes (1 byte to 4 kb) and 8 vari-

able sizes (from 4 kb to the 1/128 of the memory of each

processor). The communication graphs are defined in two

groups, (a) as rings of different sizes and (b) by a random

polygon. Details are discussed later in the definition of the

b eff benchmark. A first approach by Karl Solchenbach,

Hans-Joachim Plum and Gero Ritzenhoefer [22] was based

on the bi-section bandwidth. This approach violates some

of the benchmarking rules defined in [4, 6]. Therefore a

redesign was necessary.

3.2. Effective I/O Bandwidth Benchmark

For I/O benchmarking, a huge number of parameters ex-

ist. We divide the parameters into 6 general categories. At

the end of each category in the following list, a first hint

about handling these aspects in b eff io is noted. The de-

tailed definition of b eff io is given in Sec. 5.1.

1. Application parameters are (a) the size of contiguous

chunks in the memory, (b) the size of contiguous chunks

on disk, which may be different in the case of scat-

ter/gather access patterns, (c) the number of such con-

tiguous chunks that are accessed with each call to a read

or write routine, (d) the file size, (e) the distribution

scheme, e.g., segmented or long strides, short strides,

random or regular, or separate files for each node, and

(f) whether or not the chunk size and alignment are well-

formed, e.g., a power of two or a multiple of the striping

unit. For b eff io, 36 different patterns are used to cover

most of these aspects.

2. Usage aspects are (a) how many processes are used and

(b) how many parallel processors and threads are used

for each process. To keep these aspects outside of the

benchmark, b eff io is defined as a maximum over these

aspects and one must report the usage parameters used

to achieve this maximum.

3. The major programming interface parameter is specifi-

cation of which I/O interface is used: Posix I/O buffered

or raw, special filesystem I/O of the vendor’s filesystem,

or MPI-I/O. In this benchmark, we use only MPI-I/O,

because it should be a portable interface of an optimal

implementation on top of Posix I/O or the special filesys-

tem I/O.

4. MPI-I/O defines the following orthogonal aspects: (a)

access methods, i.e., first writing of a file, rewriting or

reading, (b) positioning method, i.e., explicit offsets, in-

dividual or shared file pointers, (c) coordination, i.e., ac-

cessing the file collectively by (all) processes or noncol-

lectively, (d) synchronism, i.e., blocking or nonblock-

ing. Additional aspects are: (e) whether or not the files

are open unique, i.e., the file will not be concurrently

opened by a different open call, and (f) which consis-

tency is chosen for conflicting accesses, i.e., whether or

not atomic mode is set. For b eff io there is no overlap

of I/O and computation, therefore only blocking calls are

used. Because there should not be a significant differ-

ence between the efficiency of using explicit offsets or

individual file pointers, only the individual and shared

file pointers are benchmarked. With regard to (e) and (f),

unique and nonatomic are used. All three access meth-

ods and five different pattern types implement a major

subset of this parameter space. This is important to eval-

uate an MPI-I/O library on a given filesystem.

5. Filesystem parameters are (a) which filesystem is used,

(b) how many nodes or processors are used as I/O

servers, (c) how much memory is used as bufferspace

on each application node, (d) the disk block size, (e) the

striping unit size, and (f) the number of parallel strip-

ing devices that are used. These aspects are also outside

the scope of b eff io. The chosen filesystem, its param-

eters and any usage of non-default parameters must be

reported.

6. Additional benchmarking aspects are (a) repetition fac-

tors, and (b) how to calculate b eff io, based on a sub-

space of the parameter space defined above using max-

imum, average, weighted average or logarithmic aver-

ages.

To reduce benchmarking time to an acceptable amount, one

can normally only measure I/O performance at a few grid

points of a 1-5 dimensional subspace. To analyze more

than 5 aspects, usually more than one subspace is exam-

ined. Often, the common area of these subspaces is chosen

as the intersection of the area of best results of the other

subspaces. For example in [8], the subspace varying the

number of servers is obtained with segmented access pat-

terns, and with well-chosen block sizes and client:server ra-

tios. Defining such optimal subspaces can be highly system-

dependent and may therefore not be as appropriate for a

b eff io designed for a variety of systems. For the design

of b eff io, it is important to choose the grid points based

more on general application needs than on optimal system

behavior. These needs were a major design goal in the stan-

dardization of MPI-2 [11]. Therefore the b eff io pattern

types were chosen according to the key features of MPI-2.

The exact definition of the pattern types are given in Sec. 5.1

and Fig. 2.

4. The Effective Bandwidth: Definition and

Results

This section defines the patterns used to measure the com-

munication bandwidth and the averaging rule for b eff. Al-

though this section mainly reports the averiging process, it

is as same important, that all measured patterns are reported

in the benchmark protocol and summarized in several cate-

gories (see Table 1) to allow a detailed analysis of a commu-
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System number b eff b eff Lmax ping- b eff b eff b eff

of pro- per proc. pong at Lmax per proc. per proc.

cessors bandwidth at Lmax at Lmax
MByte/s MByte/s MByte/s MByte/s MByte/s ring pat.

Distributed memory systems

Cray T3E/900-512 512 19919 39 1 MB 330 50018 98 193

256 10056 39 1 MB 330 22738 89 190

128 5620 44 1 MB 330 12664 99 195

64 3159 49 1 MB 330 7044 110 192

24 1522 63 1 MB 330 3407 142 205

2 183 91 1 MB 330 421 210 210

Hitachi SR 8000 round-robin 128 3695 29 8 MB 776 11609 90 105

24 915 38 8 MB 741 2764 115 110

Hitachi SR 8000 sequential 24 1806 75 8 MB 954 5415 226 400

Hitachi SR 2201 16 528 33 2 MB 1451 91 96

Shared memory systems

NEC SX-5/8B 4 5439 1360 2 MB 35047 8762 8758

NEC SX-4/32 16 9670 604 2 MB 50250 3141 3242

8 5766 641 2 MB 28439 3555 3552

4 2622 656 2 MB 14254 3564 3552

HP-V 9000 7 435 62 8 MB 1135 162 162

SGI Cray SV1-B/16-8 15 1445 96 4 MB 994 5591 373 375

Table 1. Effective Benchmark Results

nication system. At the end of this section, some additional

patterns are mentioned that are not part of the averaging

process, but also important for this analysis.

The effective bandwidth is defined as (a) a logarithmic

average over the ring patterns and the random patterns, (b)

using the average over all message sizes, (c) and the max-

imum over all the three communication methods (d) of the

bandwidth achieved for the given pattern, message size and

communication method.

For the averaging over the message sizes can be ex-

pressed also by following formula: We take the number of

MPI processes multiplied with the asymptotic bandwidth

for the parallel communication patterns on each process,

and reduce this result by a factor obtained by taking the

area under the curve bandwidth over message-sizes divided

by a rectangular area. The rectangular area is defined by the

lengths of the abscissa and the asymptotic bandwidth.

As formula, the total definition can be expressed as:b e� = logavg(logavgringpatterns(sumL(maxmthd(maxrep(b(ringpat:;L;mthd; rep))))=21); logavgrandompatterns(sumL(maxmthd(maxrep(b(randompat:;L;mthd; rep))))=21))
with� b(pat,L,mthd,rep) = L � (total number of messages of a

pattern ”pat”) � looplength / (maximum time on each pro-

cess for executing the communication pattern looplength

times)� Each measurement is repeated 3 times (rep=1..3). The

maximum bandwidth of all repetitions is used (seemaxmthd in the formula above).� Each pattern is programmed with three methods. The

maximum bandwidth of all methods is used (maxmthd).� The measurement is done for different sizes of a message.

The message length L has the following 21 values:

L = 1B, 2B, 4B, ... 2kB, 4kB, 4kB*(a**1), 4kB*(a**2),

... 4kB*(a**8) with and 4kB*(a**8) = Lmax and Lmax =

(memory per processor) / 128 and looplength = 300 for

the shortest message. The looplength is reduced dynam-

ically to achieve a execution time for each loop between

2.5 and 5 msec. The minimum looplength is 1. The av-

erage of the bandwidth of all messages sizes is computed

(sumL(...)/21).� A set of ring patterns and random patterns is used (see

details section below).� The average for all ring patterns and the average of all

random patterns is computed on the logarithmic scale

(logavgringpatterns and logavgrandompatterns)� Finally the effective bandwidth is the logarithmic average

of these two values:

logavg(logavgringpatterns, logavgrandompatterns)
Only for the detailed analysis of the communication behav-

ior, the following additional patterns are measured:� a worst case cycle,� a best and a worst bi-section,� the communication of a two dimensional Cartesian parti-

tioning in the both directions separately and together,� the same for a three dimensional Cartesian partitioning,� a simple ping-pong between the first two MPI processes.

On communication methods: The communication is pro-

4



0.1

1.0

10.0

100.0

1000.0

0.00 0.05 0.10 0.15 0.20 0.25

Balance = beff / Rmax (Byte/flop)

R
m

ax
 (

G
fl

o
p

/s
)

Hitchi SR2201

IBM SP2 (P2, 66MHz)

IBM SP2 

Cray T3E (600 MHz)

Cray T3E (450 MHz)

SGI Origin 2000 (250 MHz)

Sgi Origin 2000 (190 MHz)

Fujitsu VPP700

NEC SX-4

HP X-Class

HP SPP1200

Pentium III Cluster (500 MHz)

Siemens hpcLine Cluster

Figure 1. Balance factor for a variety of different platforms.

grammed with several methods. This allows the measure-

ment of the effective bandwidth independent of which MPI

methods are optimized on a given platform. The maximum

bandwidth of the following methods is used:� MPI Sendrecv� MPI Alltoallv� nonblocking with MPI Irecv and MPI Isend and

MPI Waitall.

On communication patterns: To produce a balanced mea-

surement on any network topology, different communica-

tion patterns are used:� Each node sends in each measurement a messages to its

left neighbor in a ring and receives such a message from

its right neighbor. Afterwards it sends a message back

to its right neighbor and receives such a message from

its left neighbor. Using the method MPI Sendrecv, the

two messages are sent one after the other in each node,

if a ring has more than 2 processes. In all other cases,

the two messages may be sent in parallel by the MPI im-

plementation. Six ring patterns are used based on a one

dimensional cyclic topology on MPI COMM WORLD:

1. In the first ring pattern, all rings have the size 2, except

the last ring which may have the size 2 or three. E.g. if

MPI COMM WORLD has 7 processes, then the pro-

cesses with the ranks 0 & 1 form the first ring, 2 & 3

form the second ring, and 4 & 5 & 6 form the third

ring.

2. In the second ring pattern, the ring size is 4, except the

last rings, that may have the sizes 1*3, 1*5, or 2*5.

If the number of processes is less or equal 7 then all

processes form one ring.

3. In the third ring pattern, the ring size is 8, except the

last rings, that may have the sizes 3*7, ... 1*7, 1*9,

... 4*9. This rule cannot be used for less than 29 pro-

cesses. In general the ring sizes are computed with

ring numbers.c [19]. For 2 to 28 processes the ring

sizes of the 3rd pattern can be view in the list in [19]

computed by this program.

4. In the 4th ring pattern the standard ring size is

min(max(16, size/4), size). The exact values can be

viewed also in [19].

5. In the 5th ring pattern the standard ring size is

min(max(32, size/2), size).

6. And in the last ring pattern, one ring includes all pro-

cesses.

In each ring, the processes are sorted by their ranks in the

topology mentioned above.� For the random patterns the same ring-communication as

in the 1-dimensional topology is used, but the processes

are sorted by random ranks.� The average is computed in two steps to guarantee that

the ring patterns and random patterns are weighted the

same.

On maximum message size Lmax: On systems with
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sizeof(int)<64, Lmax must be less or equal 128 MB, i.e.,Lmax = min(128 MB, (memory per processor)/128); on all

other systems Lmax is equal to the 128th of the memory per

processor.

The definition of b eff can summarized as follows: The

effective bandwidth is number of MPI processes multiplied

with the asymptotic bandwidth multiplied with the ratio

of the area under the curve bandwidth over message-sizes

and the area under the horizontal constant asymptotic band-

width line in the same diagram. To measure the bandwidth,

several communication patterns are applied. The patterns

are based on rings and on random distributions. The loga-

rithmic average on all ring patterns and on all random pat-

terns is computed and b eff is the logarithmic average of

these two values. The communication is implemented in

three different ways with MPI and for each single mea-

surement the maximum bandwidth of all three methods is

used. For the ratio mentioned above the bandwidth is plot-

ted over the message size and the used message sizes are

plotted equidistant on the abscissa, i.e., along two logarith-

mic scales, one from 1 byte to 4 kbyte (12 intervals) and the

next from 4 kbyte to Lmax (8 intervals).

4.1. Effective Benchmark Results

Table 1 shows some results on distributed and shared

memory platforms. On some platforms, either the total sys-

tem was not available for the measurements or the system

was not configured to be used by one dedicated MPI appli-

cation. But the b eff per processor column extrapolates to

the network performance if all processors are communicat-

ing to a neighbor. On shared memory platforms, the results

generally reflect half of the memory-to-memory copy band-

width because most MPI implementations have to buffer the

message in a shared memory section. To compare these re-

sults with the traditional asymptotic ping-pong bandwidth

for large message sizes, one should remember that b eff is

defined as an average over several message sizes. In the

last three columns, the result is based only on the maximum

message size Lmax. In the last column, only the ring pat-

terns are used. Comparing the last two columns, we see the

negative effect of random neighbor locations. Comparing

the last column with ping-pong results from the vendor we

see the impact of communicating in parallel on each pro-

cessor. For example, on a T3E the asymptotic ping-pong

bandwidth is about 300 MByte/s, and for 2 processors. In

contrast, b eff per processor is 210 MByte/s. For ring pat-

terns, there is virtually no degradation for larger number

of processes. The measurement protocols can be found in

[14]. The Hitachi results depend on the numbering of the

MPI processes on the cluster of SMP nodes: round-robin

means, that the numbering starts with the first processor on

each SMP node, sequential means, that first all processors

of the first SMP node are used, and so on. The numbering

has a heavy impact on the communication bandwidth of the

ring patterns and therefore of the b eff result.

Figure 1 shows the ratio of b eff values to the TOP500

number R max, which we define as the balance factor.

5. The I/O Benchmark: Definition and Results

The benchmark b eff io should characterize the I/O ca-

pabilities of the system. Should we use, therefore, only ac-

cess patterns, that promise a maximum bandwidth? No, but

there should be a good chance that an optimized implemen-

tation of MPI-I/O should be able to achieve a high band-

width. This means that we should measure patterns that can

be recommended to application developers.

An important criterion is that the b eff io benchmark

should only need about 10 to 15 minutes for a given num-

ber of processes, i.e., that two or three measurements with

different node numbers can be taken in 30 minutes. For

first measurements, it need not run on an empty system

as long as concurrently running other applications do not

use a significant part of the I/O bandwidth of the system.

Normally, the full I/O bandwidth can be reached by using

less than the total number of available processors or SMP

nodes. In contrast, the communication benchmark b eff

should not require more than 3-5 minutes, but it must run

on the whole system to compute the aggregate communica-

tion bandwidth.

Based on the rule for well-balanced systems mentioned

in the introduction and assuming that MPI-I/O will attain at

least 50 percent of the hardware I/O bandwidth, we expect

that a 10 minute b eff io run can write or read about 16 %

of the total memory of the benchmarked system. For this

estimate, we divide the total benchmark time into three in-

tervals based on the following access methods: initial write,

rewrite, and read. However, a first test on a T3E900-512

shows that based on the pattern-mix, only about the third of

this theoretical value is transferred.

Finally, as a third important criterion, we want to be able

to compare different common access patterns.

5.1. Definition of the Effective I/O Bandwidth

The effective I/O bandwidth benchmark measures the fol-

lowing aspects:� a set of partitions: a partition is defined by the number of

nodes used for the b eff io benchmark and – if a node is

a multiprocessor node – by the number of MPI processes

on each node,� the access methods initial write, rewrite, and read,� the pattern types (see Fig. 2)

(0) strided collective access, scattering large chunks in

memory with size L each with one MPI-I/O call
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Figure 2. Data transfer patterns used in b eff io.

Pattern l L U
Type No.

0: 0 1 MB 1 MB 0

scatter, 1 MPART :=l 4

collect. 2 1 MB 2 MB 4

3 1 MB 1 MB 4

4 32 kB 1 MB 2

5 1 kB 1 MB 2

6 32 kB +8B 1 MB + 256B 2

7 1 kB +8B 1 MB + 8kB 2

8 1 MB +8B 1 MB + 8B 2

1: 9 1 MB :=l 0

shared, 10 MPART :=l 4

collect. 11 1 MB :=l 2

12 32 kB :=l 1

13 1 kB :=l 1

14 32 kB +8B :=l 1

15 1 kB +8B :=l 1

16 1 MB +8B :=l 2

Pattern l L U
Type No.

2: 17 1 MB :=l 0

separated 18 MPART :=l 2

files, 19 1 MB :=l 2

non-coll. 20 32 kB :=l 1

21 1 kB :=l 1

22 32 kB +8B :=l 1

23 1 kB +8B :=l 1

24 1 MB +8B :=l 2

3: 25f same as patterns 17–24

segmented, 33 fill up segments :=l 0

non-coll.

4: 34f same as patterns 25–33

segmented,

collective �U = 64

Table 2. The pattern details used in b eff io

to/from disk chunks with size l,
(1) strided collective access, but one read or write call

per disk chunk,

(2) noncollective access to one file per MPI process, i.e.,

on separated files,

(3) same as (2), but the individual files are assembled to

one segmented file, and

(4) same as (3), but the access to the segmented file is

done with collective routines;

for each pattern type, an individual file is used.� the contiguous chunk size is chosen wellformed, i.e., as a

power of 2, and non-wellformed by adding 8 bytes to the

wellformed size,� different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the

maximum of 2 MB and 1=128 of the memory size of a

node executing one MPI process.

The total list of patterns is shown in Table 2. A pattern is

a pattern type combined with a fixed chunk size and align-

ment of the first byte1. The column “l” defines the contigu-

ous chunks that are written from memory to disk and vice

1The alignment is implicitly defined by the data written by all previous

patterns in the same pattern type

versa. The value MPART is defined as max(2 MB, mem-

ory of one node / 128). The column “L” defines the con-

tiguous chunk in the memory. In case of pattern type (0),

non-contiguous fileviews are used. If l is less than L,, then

in each MPI-I/O read/write call, the L bytes in memory are

scattered/gathered to/from the portions of l bytes at the dif-

ferent locations on disk, see the left-most scenario in Fig. 2.

In all other cases, the contiguous chunk handled by each call

to MPI Write or MPI Read is equivalent in memory and on

disk. This is denoted by “:=l” in the L column. U is a time

unit.

Each pattern is benchmarked by repeating the pattern for

a given amount of time. For write access, this loop is fin-

ished with a call to MPI File sync. This time is given by

the allowed time for a whole partition (e.g., T = 15 min-

utes) multiplied by U=�U=3, as given in the table. This

time-driven approach allows one to limit the total execu-

tion time. For the pattern types (3) and (4) a fixed segment

size must be computed before starting the pattern of these

types. Therefore, the time-driven approach is substituted by

a size-driven approach, and the repeating factors are initial-

ized based on the measurements for types (0) to (2).
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Figure 3. Comparison of b eff io for different numbers of processes at HLRS and LLNL, measured

partially without pattern type 3. Here T is in seconds, b eff io releases 0.x.

The b eff io value of one pattern type is defined as

the total number of transferred bytes divided by the to-

tal amount of time from opening till closing the file. The

b eff io value of one access method is defined as the aver-

age of all pattern types with double weighting of the scat-

tering type. The b eff io value of one partition is defined

as the average of the access methods with the weights 25 %

for initial write, 25 % for rewrite, and 50 % for read. The

b eff io of a system is defined as the maximum over any

b eff io of a single partition of the system, measured with a

scheduled execution time T of at least 15 minutes. This def-

inition permits the user of the benchmark to freely choose

the usage aspects and enlarge the total filesize as desired.

The minimum filesize is given by the bandwidth for an ini-

tial write multiplied by 300 sec (= 15 minutes / 3 access

methods). For using this benchmark to compare systems as

in the TOP 500 list, more restrictive rules are under devel-

opment.

5.2. Comparing Systems Using b eff io

First, we test b eff io on two systems, the Cray T3E900-

512 at HLRS/RUS in Stuttgart and an RS 6000/SP system

at LLNL called “blue Pacific.” Figure 3 shows the b eff io

values for different partition sizes and different values of T .

On the T3E, we use the tmp-filesystem with 10 striped

Raid-disks connected via a GigaRing for the benchmark.

The peak-performance of the aggregated parallel bandwidth

of this hardware configuration is about 300 MB/s. The

LLNL results presented here are for an SP system with 336

SMP nodes each with four 332 MHz processors. Since

the I/O performance on this system does not increase sig-

nificantly with the number of processors on a given node

performing I/O, all test results assume a single thread on a

given node is doing the I/O. Thus, a 64 processor run means

64 nodes assigned to I/O, and no requested computation by

the additional 64*3 processors. On the SP system, the data

is written to the IBM General Parallel File System (GPFS)

called blue.llnl.gov:/g/g1 which has 20 VSD I/O servers.

Recent results for this system show a maximum read per-

formance of approximately 950MB/sec for a 128 node job,

and a maximum write performance of 690MB/sec for 64

nodes [8].2 Note that these are the maximum values ob-

served, and performance degrades when the access pattern

and/or the node number is changed.

For this data on both platforms pre-releases (Rel. 0.x) of

b eff io were used that had a different weighting of the pat-

terns (type 0, type 1, etc). Therefore the values presented in

this section cannot be directly compared with the results in

the next section. MPI-I/O was implemented with ROMIO

but with different device drivers. On the T3E, we have

modified the MPI Release mpt.1.3.0.2, by substituting the

ROMIO/ADIO Unix filesystem driver routines for opening,

writing and reading files. The Posix routines were substi-

tuted by the asynchronous counter part, directly followed

by the the wait routine. This trick enables parallel disk ac-

cess [18]. On the RS 6000/SP blue machine, GPFS is used

underneath the MPICH version of MPI with ROMIO. Fig-

ure 3 shows the b eff io values for different partition sizes

and different values of T , the time scheduled for bench-

marking one partition. All measurements were taken in a

non-dedicated mode.

Besides the different absolute values that correlate to the

amount of memory in each system, one can see very dif-

2Upgrades to the AIX operating system and underlying GPFS software

may have altered these performance numbers slightly between measure-

ments in [8] and in the current work. Additionally, continual upgrades to

AIX and GPFS are bringing about improved performance overall.
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(a) 128 nodes on the “blue Pacific” RS 6000/SP at LLNL, T = 30 min, b eff io = 63 MB/s
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0.1

1

10

100

1000

10000

100000

1k +8 32k +8 1M +8 64M

ba
nd

w
id

th
  -

  f
ir

st
 w

ri
te

  [
M

B
/s

]

contiguous chunks on disk  [bytes]

HI-UX/MPP hwwsr8k 03-01 0 SR8000

b_eff_io
rel. 1.2

T=15.0min
n=16

scatter - type 0
shared - type 1

separate - type 2
segment - type 3
seg-coll - type 4

0.1

1

10

100

1000

10000

100000

1k +8 32k +8 1M +8 64M

ba
nd

w
id

th
  -

  r
ew

ri
te

  [
M

B
/s

]

contiguous chunks on disk  [bytes]

HI-UX/MPP hwwsr8k 03-01 0 SR8000

b_eff_io
rel. 1.2

T=15.0min
n=16

scatter - type 0
shared - type 1

separate - type 2
segment - type 3
seg-coll - type 4

0.1

1

10

100

1000

10000

100000

1k +8 32k +8 1M +8 64M

ba
nd

w
id

th
  -

  r
ea

d 
 [

M
B

/s
]

contiguous chunks on disk  [bytes]

HI-UX/MPP hwwsr8k 03-01 0 SR8000

b_eff_io
rel. 1.2

T=15.0min
n=16

scatter - type 0
shared - type 1

separate - type 2
segment - type 3
seg-coll - type 4

(c) 16 nodes on the Hitachi SR 8000 at HLRS, T = 15 min, b eff io = 41 MB/s
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Figure 4. Comparison of the results for optimal numbers of processes on T3E and SP, and for T = 10
and 30 min.
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ferent behavior. For the T3E, the maximum is reached at

32 application processes, with little variation from 8 to 128

processors, i.e., the I/O bandwidth is a global resource. In

contrast, on the IBM SP the I/O bandwidth tracks the num-

ber of compute nodes until it saturates. In general, an ap-

plication only makes I/O requests for a small fraction of

the compute time. On large systems, such as those at the

High-Performance Computing Center at Stuttgart and the

Computing Center at Lawrence Livermore National Labo-

ratory, several applications are sharing the I/O nodes, espe-

cially during prime time usage. In this situation, I/O capa-

bilities would not be requested by a significant proportion

of the CPU’s at the same time. “Hero” runs, where one ap-

plication ties up the entire machine for a single calculation

are rarer and generally run during non-prime time. Such

hero runs can require the full I/O performance by all pro-

cessors at the same time. The right-most diagram shows

that the RS 6000/SP fits more to this latter usage model.

Note that GPFS on the SP’s is configurable, i.e., number of

I/O servers and other tunables, and the performance on any

given SP/GPFS system depends on the configuration of that

system.

5.3. Detailed Insight

In this section, we present a detailed analysis of each

run of b eff io on a partition. For each run of b eff io, the

I/O bandwidth for each chunk size and pattern is reported

in a table that can be plotted as in the pictures shown in

each row in Fig. 4. The three diagrams in each row show

the bandwidth achieved for the three different access meth-

ods: writing the file the first time, rewriting the same file,

and reading it. On each diagram, the bandwidth is plotted

on a logarithmic scale, separately for each pattern type and

as a function of the chunk size. The chunk size on disk is

shown on a pseudo-logarithmic scale. The points labeled

“+8” are the non-wellformed counterparts of the power of

two values. The maximum chunk size is different on both

systems because the maximum chunk size was chosen pro-

portional to the usable memory size per node to reflect the

scaling up of applications on larger systems. On the SX-5,

a reduced maximum chunk size was used. Except on NEC

SX-5, we have used b eff io releases 1.x. On the IBM SP,

a new MPI-I/O prototype was used. This prototype is used

for the development and improvement of MPI-I/O. Perfor-

mance of the actual product may vary.

The four rows compare the I/O bandwidth on four dif-

ferent systems from IBM, Cray, Hitachi and NEC. The IBM

SP and the Cray T3E were described in the last section. The

NEC SX-5 system has four striped RAID-3 arrays DS 1200,

connected by fibre channel. The SFS filesystem parameters

are: 4 MB cluster size (=block size), and if the size of an

I/O request is less than 1 MB then a 2 GB filesystem-cache

is used. On the SX-5, we use MPI/SX 10.1.

First notice that the scattering pattern type 0 is the best

on all platforms for small chunk sizes on disk. Thus all I/O

implementations can effectively handle the 1 MB memory

chunks that are given in each MPI-I/O call to be scattered

to disk or gathered from disk. In all other pattern types, the

memory chunk sizes per call are identical to the disk chunk

sizes, i.e., in the case of 1 kB or 32 kB, only a small or

medium amount of data is accessed per call on disk.

Note that due to the logarithmic scale, a vertical differ-

ence of about 7 mm reflects an order of magnitude change!

Comparing the wellformed and non-wellformed measure-

ments, especially on the T3E, there are huge differences.

Also on the T3E, we see a large gap between write and read

performance in the scattering pattern type.

On the IBM SP MPI-I/O prototype, one can see that seg-

mented non-collective pattern type 3 is also optimized. On

the other hand, the collective counterpart is more than a fac-

tor of 10 worse. Such benchmarking can help to uncover

advantages and weakness of an I/O implementation and can

therefore help in the optimization process. In the case of the

prototype, hints are allowed based on specific I/O patterns

and these can drastically increase the performance. (See

e.g., Prost, et al. [13]). These hints are necessarily pat-

tern specific, since if they worked for all pattern types, they

would naturally be a part of the standard MPI I/O imple-

mentation. In the future release of b eff io, we plan to al-

low such special hints for each pattern type or pattern as

introduced by the MPI-2 standard with the info argument.
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Figure 5. Comparison of b eff io for different
numbers of processes at HLRS and LLNL,

measured partially without pattern type 3.

B eff io releases 1.x, except for NEC.

Fig. 5 compares the final b eff io results on these four

platforms. Values for other partition sizes are added.

In general, our results show that the b eff io benchmark
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is a very fast method to analyze the parallel I/O capabilities

available for applications using the standardized MPI-I/O

programming interface. The resulting b eff io value sum-

marizes I/O capabilities of a system in one significant I/O

bandwidth value.

5.4. Discussion of b eff io

In this section, given the primary results of the bench-

mark, we reflect on some details of its definition. The

design of the b eff io tries to follow the rules about MPI

benchmarking defined by Bill Gropp, Ewing Lusk [4] and

Rolf Hempel [6], but there are a few problematic topics.

Normally, the same experiment should be repeated a

few times to compute a maximal bandwidth. To achieve

a very fast I/O benchmark suite, this methodology is sub-

stituted by weighted averaging over a medium number of

experiments i.e., the patterns. (We note that in the case of

the IBM SP data, repeated calculation of b eff io on differ-

ent days produced nearly identical answers). The weighted

averaging is done for each experiment after calculating the

average bandwidth over all repetitions of the same pattern.

Any maximum is calculated only after repeating the total

b eff io benchmark itself. For this maximum, one may vary

the number of client processes, the schedule time T , and file

system parameters.

The major problem with this definition is that one may

use any schedule time T with T > 10minutes. First exper-

iments on the T3E have shown that the b eff io value may

have its maximum for T = 10 minutes. This is likely since

for any larger time interval, the caching of the filesytem in

the memory is reduced.

Indeed, caching issues may be problematic for I/O

benchmarks in general. For example, Rolf Hempel [7]

has reported that on SX-5 systems other benchmark pro-

grams have reported a bandwidth significantly higher than

the hardware peak performance of the disks. This is caused

by a huge 4 GB memory cache used by the filesytem. In

other words, the measurement is not able to guarantee that

the data was actually written to disk. To help assure that

data is written, we can add MPI File sync. The problem

is, however, that MPI File sync influences only the consis-

tency semantics. Calling MPI File sync after writing on a

file, guarantees that any other process can read this newly

written data, but it does not guarantee that the data is stored

on a permanent storage medium, i.e., that the data is written

to disk. There is only one way to guarantee, that the MPI-

I/O routines have stored 95 % of the written data to disk:

One must write a dataset 20 times larger than the mem-

ory cache length of the filesystem. This can be controlled

by verifying that the datasize accessed by each b eff io ac-

cess method is larger than 20 times of the filesystems’ cache

length.

The next problem arises from the time driven approach

of this benchmark: A pattern is repeating for a given time

interval, which is Tpattern = T=3�U=�U for each pattern.

The termination condition must be computed after each call

to a write or read routine. In all patterns defining a collec-

tive fileview or using collective write or read routines, the

termination condition must be computed globally to guaran-

tee that all processes are stopped after the same iteration. In

the current version this is done by computing the criterion

only at a root process. The local clock is read after a barrier

synchronization. Then, the decision is broadcasted to all

other nodes. This termination algorithm is based on the as-

sumption that a barrier followed by a broadcast is at least 10

times faster than a single read or write access. For example,

the fastest access on the T3E for L= 1 kB chunks is about

4 MB/s, i.e., 250�s per call. In contrast, a barrier followed

by a broadcast needs only about 60�s on 32 PEs, which is

not 10 times faster than a single I/O call. Therefore, this

termination algorithm should be modified in future versions

of this benchmark. Instead of computing the termination

criterion in each iteration, a geometric series of increasing

repeating factors should be used.

Pattern types 3 and 4 require a predefined segment sizeLSEG, see Fig. 2. In the current version, for each chunk

size “l”, a repeating factor is calculated from the measured

repeating factors of the pattern types 0–2. The segment size

is calculated as the sum of the chunk sizes multiplied by

these repeating factors. The sum is rounded up to the next

multiple of 1 MB. This algorithm has two drawbacks:

1. The alignment of the segments are multiples of 1 MB.

If the striping unit is more than 1 MB, then the align-

ment of the segments is not wellformed.

2. On systems with 32 bit integer/int datatype, the seg-

ment size multiplied by the number of processes (n)

may be more than 2 GB, which may cause internal er-

rors inside of the MPI library. Without such internal

restrictions, the maximum segment size would be 16/n
GB, based on a 8 byte element type. If the segment

size must be reduced due to these restrictions, then the

total amount of data written by each processes does no

longer fit into one segment.

On large MPP systems, it may be also necessary to reduce

the maximal chunk size (MPART ) to 2/n GB or 16/n GB.

This restriction is necessary for the pattern types 0, 1, 3 and

4.

Another aspect is the mode used to open the benchmark

files. Although we want to benchmark unique mode, i.e.,

ensure that a file is not accessed by other applications while

it is open by the benchmark program, we must not use

MPI MODE UNIQUE OPEN because it would allow an

MPI-I/O implementation to delay all MPI File sync oper-

ations until the closing of the file.
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6. Current and Future Work

We plan to use this benchmark to compare several ad-

ditional systems. Although [1] stated, that “the majority

of the request patterns are sequential”, we should examine

whether random access patterns can be included into the

b eff io benchmark. It is planned to use both benchmarks

in the Top Clusters list [23]. For this, it is necessary that the

I/O benchmark can be done automatically in 30 minutes.

Both benchmarks will also be enhanced to write an addi-

tional output that can be used in the SKaMPI comparison

page [20].

7. Summary

In this paper we have described in detail two bench-

marks, the effective bandwidth and its I/O counterpart. We

use these two benchmarks to characterize the performance

of common computing platforms. We have shown how

these benchmarks can provide both detailed insight into the

performance of high-performance platforms and how they

can reduce these data to a single number averaging impor-

tant information about that system’s performance. We give

suggestions for interpreting and improving the benchmarks,

and for testing the benchmarks on one’s own system.
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