Published in Recent Advances in Parallel Virtual Machine and Message Passing Interface, Jack
Dongarra and Dieter Kranzlmller (Eds.), Proceedings of the 9th European PVM/MPI Users’ Group
Meeting, EuroPVM/MPI 2002, Sep.29 — Oct. 2, Linz, Austria, LNCS, Springer-Verlag, 2002.
©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

Communication and Optimization Aspects on
Hybrid Architectures

Rolf Rabenseifner

High-Performance Computing-Center (HLRS), University of Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany
rabenseifner@hlrs.de,
www.hlrs.de/people/rabenseifner/

Abstract. Most HPC systems are clusters of shared memory nodes.
Parallel programming must combine the distributed memory paralleliza-
tion on the node inter-connect with the shared memory parallelization
inside of each node. The hybrid MPI+OpenMP programming model is
compared with pure MPI and compiler based parallelization. The paper
focuses on bandwidth and latency aspects, but also whether program-
ming paradigms can separate the optimization of communication and
computation. Benchmark results are presented for hybrid and pure MPI
communication.

Keywords. OpenMP, MPI, Hybrid Parallel Programming, Threads and
MPI, HPC.

1 DMotivation

The hybrid MPI+OpenMP programming model on clusters of SMP nodes is
already used in many applications, but often there is only a small benefit as,
e.g., reported with the climate model calculations of one of the Gordon Bell
Prize finalists at SC 2001 [6], or sometimes losses are reported compared to the
pure MPI model, e.g., as shown with an discrete element modeling algorithm in
[4]. In the hybrid model, each SMP node is executing one multi-threaded MPI
process. With pure MPI programming, each processor executes a single-threaded
MPI process, i.e., the cluster of SMP nodes is treated as a large MPP (massively
parallel processing) system.

One of the major drawbacks of the hybrid MPI-OpenMP programming model
is based on a very simple usage of this hybrid approach: If the MPI routines are
invoked only outside of parallel regions, all threads except the master thread are
sleeping while the MPI routines are executed.

This paper will discuss this phenomenon and other hybrid MPI-OpenMP
programming strategies. Sect.2 shows different methods to combine MPI and
OpenMP. Further rules on hybrid programming are discussed in Sect.3, and
pure MPI on hybrid architectures in Sect. 4. Sect.5 presents benchmark results
of the communication in both models. Sect. 6 to 8 compare the MPI based pro-
gramming models with compiler based parallelization.

2 Rolf Rabenseifner

2 MPI and Thread-Based Parallelization

The combination of MPI and thread-based parallelization was already addressed
by the MPI-2 Forum in Sect.8.7 MPI and Threads in [8]. For hybrid pro-
gramming, the MPI-1 routine MPI_Init() should be substituted by a call to
MPI _Init_threads() which has the input argument named required to define which
thread-support the application requests from the MPI library, and the output ar-
gument provided which is used by the MPI library to tell the application which
thread-support is available. MPI libraries may support the following thread-
categories (higher categories are supersets of all lower ones):

MPI_THREAD_SINGLE — No thread-support.

MPI_THREAD _FUNNELED - Only the master thread is allowed to call
MPI routines. The other threads may run other application code while the master
thread calls an MPI routine.

MPI_THREAD_SERIALIZED — Multiple threads may make MPI-calls,
but only one thread may execute an MPI routine at a time.

MPI_THREAD _MULTIPLE — Multiple threads may call MPI without
any restrictions.

The constants MPI. THREADS.... are monotonically increasing.

Between MPI_THREAD _SINGLE and FUNNELED, there are intermediate
levels of thread support, not yet addressed by the standard:

T1la — The MPI process may be multi-threaded but only the master thread
may call MPI routines AND only while the other threads do not exist, i.e.,
parallel threads created by a parallel region must be destroyed before an MPI
routine is called. An MPI library supporting this class (and not more) must also
return providled=MPI_THREAD_SINGLE (i.e., no thread-support) because of
the lack of this definition in the MPI-2 standard®.

T1b — The definition T1a is relaxed in the sense that more than one thread
may exist during the call of MPI routines, but all threads except the master
thread must sleep, i.e., must be blocked in some OpenMP synchronization. As
in Tla, an MPI library supporting T1b but not more must also return pro-
vided=MPI_THREAD _SINGLE.

Usually, the application cannot distinguish whether an OpenMP based paral-
lelization or an automatic parallelization needs T1a or T1b to allow calls to MPI
routines outside of OpenMP parallel regions, because it is not defined, whether
at the end of a parallel region the team of threads is sleeping or is destroyed.
And usually, this category is chosen, when the MPI routines are called outside
of parallel regions. Therefore, one should summarize the cases Tla and T1b to
only one case:

T1 — The MPI process may be multi-threaded but only the master thread
may call MPI routines AND only outside of parallel regions (in case of OpenMP)
or outside of parallelized code (if automatic parallelization is used). We define
here an additional constant THREAD _MASTERONLY with a value between
MPI_-THREAD_SINGLE and MPI. THREAD_FUNNELED.

! This may be solved in the revision 2.1 of the MPI standard.

Communication and Optimization Aspects on Hybrid Architectures 3
3 Rules with hybrid programming

THREAD_MASTERONLY defines the most simple hybrid programming model
with MPI and OpenMP, because MPI routines may be called only outside of
parallel regions. The new cache coherence rules in OpenMP 2.0 guarantee that
the outcome of an MPI routine is visible to all threads in a subsequent parallel
region, and that the outcome of all threads of a parallel region is visible to a
subsequent MPI routine.

The programming model behind MPI.THREAD_FUNNELED can be achieved
by surrounding the call to the MPI routine with the OMP MASTER and OMP
END MASTER directives inside of a parallel region. One must be very careful,
because OMP MASTER does not imply an automatic barrier synchronization
or an automatic cache flush neither at the entry to nor at the exit from the
master section. If the application wants to send data computed in the previous
parallel region or wants to receive data into a buffer that was also used in the
previous parallel region (e.g., to use the data received in the previous iteration),
then a barrier with implied cache flush is necessary prior to calling the MPI
routine, i.e., prior to the master section. If the data or buffer is also used in the
parallel region after the exit of the MPI routine and its master section, then also
a barrier is necessary after the exit of the master section. If both barriers must
be done, then while the master thread is executing the MPI routine, all other
threads are sleeping, i.e., we are going back to the case T1b.

The rules of MPI.THREAD_SERIALIZED can be achieved by using the
OMP SINGLE directive, which has an implied barrier only at the exit (unless
NOWAIT is specified). Here again, the same problems as with FUNNELED must
be taken into account.

These problems with FUNNELED and SERIALIZED arise, because the
communication must be funneled from all threads to one thread (an arbitrary
thread with OMP SINGLE, and the master thread with OMP MASTER). Only
MPI_THREAD_MULTIPLE allows a direct message passing from each thread
in one node to each thread in another node.

Based on these reasons and because THREAD MASTERONLY is available
on nearly all clusters, often, hybrid and portable parallelization is using only this
parallelization scheme. This paper will evaluate this hybrid model by comparing
it with the non-hybrid pure MPI model described in the next section.

4 Pure MPI on hybrid architectures

Using a pure MPI model, the cluster must be viewed as a hybrid communication
network with typically fast communication paths inside of each SMP node and
slower paths between the nodes. It is important to implement a good mapping
of the communication paths used by application to the hybrid communication
network of the cluster. The MPI standard defines virtual topologies for this
purpose, but the optimization algorithm isn’t yet implemented in most MPI
implementations. Therefore, in most cases, it is important to choose a good

4 Rolf Rabenseifner

ranking in MPI_.COMM_WORLD. E.g., on a Hitachi SR8000, the MPI library
allows two different ranking schemes, round robin (ranks 0, N, 2*N; ... on node 0;
ranks 1, N+1, 2*N+1, ... on node 1, ...; with N=number of nodes) and sequential
(rank 0—7 on node 0, ranks 8-15 on node 1, ...), and the user has to decide which
scheme may fit better to the communication needs of his application.

The pure MPI programming model implies additional message transfers due
to the higher number of MPI processes and higher number of boundaries. Let
us consider, for example, a 3-dimensional cartesian domain decomposition. Each
domain may have to transfer boundary information to its neighbors in all six
cartesian directions (7| 2). Bringing this model on a cluster with 8-way
SMP nodes, on each node, we should execute the domains belonging to a 2x2x2
cube. Domain-to-domain communication occurs as node-to-node (inter-node)
communication and as intra-node communication between the domains inside of
each cube. Hereby, each domain has 3 neighbors inside the cube and 3 neighbors
outside, i.e., in the inter-node and the intra-node communication the amount
of transferred bytes should be equivalent. If we compare this pure MPI model
with a hybrid model, assuming that the domains (in the pure MPI model) in
each 2x2x2 cube are combined to a super-domain in the hybrid model, then
the amount of data transferred on the node-interconnect should be the same
in both models. This implies that in the pure MPI model, the total amount of
transferred bytes (inter-node plus intra-node) will be twice the number of bytes
in the hybrid model. The same ratio is shown in the topology in the left diagram
of Fig. 1. In the symmetric case, the intra-node and inter-node communication
has the same transfer volume.

5 Benchmark Results

The following benchmark results will compare the communication behavior of
the hybrid MPI+OpenMP model with the pure MPI model that can be named
also as MPP-MPI model. Based on the domain decomposition scenario discussed
in the last section, we compare the bandwidth of both models and the ratio of
the total communication time presuming that in the pure MPI model, the to-
tal amount of transferred data is twice the amount in the hybrid model. The
benchmark was done on a Hitachi SR8000 with 16 nodes from which 12 nodes
are available for MPI parallel applications. Each node has 8 CPUs. The effective
communication benchmark b_eff is used [5,12]. It accumulates the communi-
cation bandwidth values of the communication done by each MPI process. To
determine the bandwidth of each process, the maximum time needed by all
processes is used, i.e., this benchmark models an application behavior, where
the node with the slowest communication controls the real execution time. To
compare both models, we use the following benchmark patterns:
— b_eff — the accumulated bandwidth average for several ring and random
patterns (this is the major benchmark pattern of the b_eff benchmark);
— 3D-cyclic — a 3-dimensional cyclic communication pattern with 6 neighbors
for each MPI process (this is an additional pattern measured by the b_eff
benchmark);

Communication and Optimization Aspects on Hybrid Architectures 5

b_eff | b_eff [3D-cyclic|3D-cyclic
(avg.)|at Lmax|(average)|at Lmax

bhybrid [MB/s]| 1535 | 5565 1604 5638
(per node) [MB/s]| (128) | (464) (134) (470)
bvpp [MB/s]| 5299 | 16624 | 5000 | 18458
(per process) [MB/s]| (55) | (173) (52) (192)
bMPP/bhybrid (measured) 3.45 2.99 3.12 3.27
SMPP/Shybrid (assumed) 2 2 2 2

Thybrid/TMpp (Concluding) 1.73 1.49 1.56 1.64

Table 1. Comparing the hybrid and the MPP communication needs.

With the following sub-options, we get 4 metrics (columns) in Table 1:

— average — the average bandwidth of 21 different message sizes (8 byte —
8 MB);
— at Lmax — the bandwidth is measured with 8 MB messages.
For each metrics, the following rows are presented in Tab. 1:

— bhybrid, the accumulated bandwidth b for the hybrid model measured with a
1-threaded MPI process on each node (12 MPI processes),

— and in parentheses the same bandwidth per node,

— bupp, the accumulated bandwidth for the pure MPI model (96 MPI pro-
cesses with sequential ranking in MPI.COMM_WORLD),

— and in parentheses the same bandwidth per process,

— by pp/bhybrid, the ratio of accumulated MPP bandwidth and accumulated
hybrid bandwidth,

— Thybria/Trvpp, the ratio of execution times T', assuming that total size s of
the transferred data in the pure MPI model is twice of the size in the hybrid
model, i.e., Sprpp/Shybria = 2, as shown in Sect.4. For this calculation, it is
assumed that the measured bandwidth values are approximately valid also
for doubled message sizes.

Note that this comparison was done with no special optimized topology mapping
in the pure MPI model. The result shows that the pure MPI communication
model is faster than the communication in the hybrid model. There are at least
two reasons: (1) In the hybrid model, all communication was done by the master
thread while the other threads were inactive; (2) One thread is not able to
saturate the total inter-node bandwidth that is available for each node.

Fig.1 shows a similar experiment. In the hybrid MPI4+OpenMP communi-
cation scheme, only the left thread sends inter-node messages. Therefore, the
message size is 8 times the size used in the pure MPI scheme. Here, each CPU
communicates in the vertical (inter-node) and horizontal (intra-node) direction.
The total communication time with the hybrid model (19.2ms) is 66% greater
than with the pure MPI communication (11.6ms), although with pure MPI, the
total amount of transferred data is doubled due to the additional intra-node
communication. The left diagram shows the measured transfer time for several
message sizes and the ratio of the transfer time in the hybrid model to the trans-
fer time of inter-node plus intra-node communication. Note that for the hybrid

6 Rolf Rabenseifner

100 +{ —— T_hybrid 2
MPI+OpenMP: pure MPI: Hitachi . .
only vertical ~ vertical AND horizontal messages | SR8000 —8—T_pure MPI: inter+intra 118
ﬁﬂg?dggndrecv —4A—T_pure MPI: inter-node E
NANNANNNAN . +16 E
_, 101 ——T_pure MPl: intra-node 14 0::
2 —%—T_hybrid / T_pureMPI TE
. ° }/ T12 7
intra-node

8+8+1MB: g 1 /)& 1 %
2.0ms 3 08 Ey

(%] +
g s
= 106 3
0,1 2
T04 X
inter-node ':\
— 8+8+1MB: 102 +

o6 ms 0,01 — 0

. 128 512 2k 8k 32k 128k 512k 2M (pureMPI
hybrid: 19.2 ms pure MPI: X116 ms 1k 4k 16k 64k 256k 1M 4M 16M (hybrid

Message size [bytes]

Fig. 1. Parallel communication in a cartesian topology.

measurements, the message size must reflect that the inter-node data exchange
of all threads is communicated by the master thread, and therefore, the message
size is chosen 8 times larger, i.e., it ranges from 1 kB to 16 GB. The diagram
shows that for message sizes greater than 32 kB, the pure MPI model is faster
than the hybrid model in this experiment. With smaller message sizes, the ratio
Thybrid/ Tpurem pr depends mainly on the latencies of the underlying protocols
that may differ due to the larger message sizes in the hybrid model.

A similar communication behavior can be expected on other platforms if the
inter-mode network cannot be saturated by a single processor in each SMP node.
This paper cannot analyze the reasons based on decisions in the hardware or
software (MPI library) design of a system. For example, additional local copying
for user space to system space and bad pipelining or parallelization of process-
local activities and inter-node data transfer may cause that one CPU cannot
reach the inter-node peak bandwidth. The shown ratio of hybrid to pure MPI
transfer time may be a major reason when an application is running faster in
the pure MPI model than in the hybrid model.

6 Comparison of hybrid MPI+OpenMP versus pure MPI

The comparison in this paper focuses on bandwidth and latency aspects, i.e., how
to achieve a major percentage of the physical inter-node network bandwidth with
various parallel programming models.

Although the benchmark results in the last section show advantages of the
pure MPI model, there are also advantages of the hybrid model. In the hybrid
model there is no communication overhead inside of a node. The message size
of the boundary information of one process may be larger (although the total
amount of communication data is reduced). This reduces latency based over-
heads. The number of MPI processes is reduced. This may cause a better speedup
based on Amdahl’s law and may cause a faster convergence if, e.g., the parallel
implementation of a multigrid numeric is only computed on a partial grid. To
reduce the MPI overhead by communicating only through one thread, the MPI

Communication and Optimization Aspects on Hybrid Architectures 7

communication routines should be relieved by unnecessary local work, e.g., con-
catenation of data should be better done by copying the data to a scratch buffer
with a thread-parallelized loop, instead of using derived MPI datatypes. MPI re-
duction operations can be split into the inter-node communication part and the
local reduction part by using user-defined operations, but a local thread-based
parallelization of these operations may cause problems because these threads are
running while an MPI routine may communicate.

Hybrid programming is often done in two different ways: (a) the domain
decomposition is used for the inter-node parallelization with MPI and also for
the intra-node parallelization with OpenMP; i.e., in both cases, a coarse grained
parallelization is used. (b) The intra-node parallelization is implemented as a
fine grained parallelization, e.g., mainly as loop parallelization. The second case
also allows automatic intra-node parallelization by the compiler, but Amdahl’s
law must be considered independently for both parallelizations.

Now we want to compare three different hybrid programming schemes: In the
masteronly scheme, only the master thread communicates and only outside of
parallel regions. The computation is parallelized on all CPUs of an SMP node
and inside of parallel regions. In the funneled scheme, the communication on the
master thread is done in parallel with the computation on the other threads. For
this, the application has to be restructured to allow the overlap of communication
and computation. In the multiple scheme, all threads may communicate and
compute in parallel. If the other application threads do not sleep while the
master thread is communicating with MPI then communication time Thypriq in
Tab. 1 counts only the eighth (a node has 8 CPUs on the SR8000) because only
one instead of 1 (active) plus 7 (idling) CPUs is communicating. In this hybrid
programming style, the factor Thybria/Tmpp must be reduced to the eighth, i.e.
from about 1.6 to about 0.2. This can be implemented by dedicating one thread
for communication and the other threads of a node for computing, but also with
full load balancing with different mixes of computation and communication on
all threads.

Wellein et al. compared in [14] the two hybrid programming schemes mas-
teronly (named vector-mode in [14]) and funneled (task-mode). They show that

Tfunneled or multiple

)~ of funneled (or multiple) to

the performance ratio € = (

Tmasteronly

masteronly execution has the bounds 1 — % <e<2-— % if n is the number of
threads of each SMP node. In general, if m threads are reserved for communica-
tion, Tcomm and Tooarp being the accumulated communication and compu-

tation time, and f := —LCOMM __ Yeine the real communication percentage
’ Tcomm+Tcomp s

then e is bounded® by 1—2 < e < 1+m(1—%) and € < l—f—fn(l—%). If
m > 1 or ¢ > f, then the funneled scheme is faster if f > W2—1M The
maximum of ¢ is given for f = ™*. E.g., if n=8 and m=1, the first upper bound
of € indicates that the funneled scheme may be up to 1.875 times faster than
masteronly, but if the communication ratio f does not fit to m/n, only small
profits may be shown, as indicated with the second upper bound 1+ fn(1— %)
and benchmarks in [14].

2 If m is non-integer, m < 1, and 7 < f, then the lower bound is m — 7 <e.

8 Rolf Rabenseifner

Access method|copies|remarks bandwidth b(message size)
2-sided MPI 2 |internal MPI buffer boo /(1 + %)7 e.g.,
+ application receive buffer |300MB/s / (1 + W)
= 232 MB/s
1-sided MPI 1 |application receive buffer same formula,
but probably better boo and Ti,:
Co-Array 1 |page based transfer extremely poor, if only
Fortran, parts of the page are needed
UPC, HPC, 0 |word based access 8 byte / Tiat,
OpenMP with e.g., 8byte / 0.33 us = 24 MIB/s
cluster 0 |latency hiding with pre-fetch|boo
extensions 1 |latency hiding with buffering|see 1-sided communication

Table 2. Memory copies from remote memory to local CPU register.

7 MPI versus Compiler-based Parallelization

Now, we compare the MPI based models with the NUMA or RDMA based
models. To access data on another node with MPI, the data must be copied to
a local memory location (so called halo or shadow) by message passing, before
it can be loaded into the CPU. Usually all necessary data should be transferred
in one large message instead of using several short messages. Then, the transfer
speed is dominated by the asymptotic bandwidth of the network, e.g., as reported
for 3D-cyclic-Lmax in Tab. 1 per node (470 MB/s) or per process (192 MB/s).
With NUMA or RDMA, the data can be loaded directly from the remote memory
location into the CPU. This may imply short accesses, i.e., the access is latency
bound. Although the NUMA or RDMA latency is usually 10 times shorter than
the message passing latency, the total transfer speed may be worse. E.g., [2]
reports on a ccNUMA system a latency of 0.33—1 us, which implies a bandwidth
of only 8-24 MB/s for a 8 byte data. This effect can be eliminated if the compiler
has implemented a remote pre-fetching strategy as described in [9], but this
method is still not used in all compilers.

The remote memory access can also be optimized by buffering or pipelining
the data that must be transferred. This approach may be hard to automate,
and current research in OpenMP compiler technology already studies the band-
width optimization on SMP clusters [13], but it can be easily implemented as an
directive-based optimization technique: The application thread can define the
(remote) data it will use in the next simulation step and the compiled OpenMP
code can pre-fetch the whole remote part of the data with a bandwidth-optimized
transfer method. Table 2 summarizes this comparison.

8 Parallelization and Compilation

Major advantages of OpenMP based programming are that the application can
be incrementally parallelized and that one still has a single source for serial and
parallel compilation. On a cluster of SMPs, the major disadvantages are that

Communication and Optimization Aspects on Hybrid Architectures 9

OpenMP has a flat memory model and that it does not know buffered transfers
to reach the asymptotic network bandwidth. But, these problems can be solved
by tiny additional directives, like the proposed migration and memory-pinning
directives in [3], and additional directives that allow a contiguous transfer of the
whole boundary information between each simulation step. Those directives are
optimization features that do not modify the basic OpenMP model, as this would
be done with directives to define a full HPF-like user-directed data distribution
(as in [3,7]). Another lack in the current OpenMP standard is the absence of
a strategy of combining automatic parallelization with OpenMP parallelization,
although this is implemented in a non-standardized way in nearly all OpenMP
compilers. This problem can be solved, e.g., by adding directives to define scopes
where the compiler is allowed to automatically parallelize the code, e.g., with
auto-parallel regions. An OpenMP-based parallel programming model for SMP-
clusters should be usable for both, fine grained loop parallelization, and coarse
grained domain decomposition. There should be a clear path from MPI to such
an OpenMP cluster programming model with a performance that should not be
worse than with pure MPI or hybrid MPI+OpenMP.

It is also important to have a good compilation strategy that allows the devel-
opment of well optimizing compilers on any combination of processor, memory
access, and network hardware. The MPI based approaches, especially the hybrid
MPI+OpenMP approach, clearly separate remote from local memory access op-
timization. The remote access is optimized by the MPI library, and the local
memory access must be improved by the compiler. Such separation is realized,
e.g., in the NANOS project OpenMP compiler [1, 10]. The separation of local and
remote access optimization may be more essential than the chance of achieving
a zero-latency by remote pre-fetching (Tab.2) with direct compiler generated
instructions for remote data access. Pre-fetching can also be done via macros or
library calls in the input for the local (OpenMP) compiler.

9 Conclusion

For many parallel applications on hybrid systems, it is important to achieve
a high communication bandwidth between the processes on the node-to-node
inter-connect. On such architectures, the standard programming models of SMP
or MPP systems do not longer fit well. The rules for hybrid MPI+OpenMP
programming and the benchmark results in this paper show that a hybrid ap-
proach is not automatically the best solution if the communication is funneled by
the master thread and long message sizes can be used. The MPI based parallel
programming models are still the major paradigm on HPC platforms. OpenMP
with further optimization features for clusters of SMPs and bandwidth based
data transfer on the node interconnect have a chance to achieve a similar per-
formance together with an incremental parallelization approach, but only if the
current SMP model is enhanced by features that allow an optimization of the
total inter-node traffic. Same important is a strategy that allows independently
the optimization of the computation (e.g., choosing the best available compiler
for the processor and programming language) and the communication.

10

Rolf Rabenseifner

Acknowledgments

The author would like to acknowledge his colleagues and all the people that supported
these projects with suggestions and helpful discussions. He would especially like to
thank Alice Koniges, David Eder and Matthias Brehm for productive discussions of
the limits of hybrid programming, Bob Ciotti and Gabrielle Jost for the discussions on
MLP, Gerrit Schulz for his work on the benchmarks, Gerhard Wellein for discussions
on network congestion in the pure MPI model, and Thomas Bonisch, Matthias Miiller,
Uwe Kiister, and John M. Levesque for discussions on OpenMP cluster extensions and
vectorization.

References

1.

13.

14.

E. Ayguade, M. Gonzalez, J. Labarta, X. Martorell, N. Navarro, and J. Oliver,
NanosCompiler: A Research Platform for OpenMP FExtensions, in proceedings of
the 1st European Workshop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999.
Robert B. Ciotti, James R. Taft, and Jens Petersohn, Farly Experiences with the
512 Processor Single System Image Origin2000, proceedings of the 42nd Interna-
tional Cray User Group Conference, SUMMIT 2000, Noordwijk, The Netherlands,
May 22-26, 2000, www.cug.org.

Jonathan Harris, Extending OpenMP for NUMA Architectures, in proceedings of
the Second European Workshop on OpenMP, EWOMP 2000.

D. S. Henty, Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling, in Proc. Supercomputing’00, Dallas, TX,
2000. http://citeseer.nj.nec.com/hentyOOperformance.html

. Alice E. Koniges, Rolf Rabenseifner, Karl Solchenbach, Benchmark Design for

Characterization of Balanced High-Performance Architectures, in proceedings, 15th
International Parallel and Distributed Processing Symposium (IPDPS’01), Work-
shop on Massively Parallel Processing, April 23-27, 2001, San Francisco, USA.
Richard D. Loft, Stephen J. Thomas, and John M. Dennis, Terascale spectral el-
ement dynamical core for atmospheric general circulation models, in proceedings,
SC 2001, Nov. 2001, Denver, USA.

John Merlin, Distributed OpenMP: Extensions to OpenMP for SMP Clusters, in
proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997, www.mpi-forum.org.

Matthias M. Miiller, Compiler-Generated Vector-based Prefetching on Architec-
tures with Distributed Memory, in High Performance Computing in Science and
Engineering '01, W. Jger and E. Krause (eds), Springer, 2001.

. The NANOS Project, Jesus Labarta, et al., //research.ac.upc.es/hpc/nanos/.
. OpenMP Group, www.openmp.org.

Rolf Rabenseifner and Alice E. Koniges, Effective Communication and File-1/0
Bandwidth Benchmarks, in Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, proceedings of the 8th European PVM/MPI Users’ Group
Meeting, Santorini, Greece, LNCS 2131, Y. Cotronis, J. Dongarra (Eds.), Springer,
2001, pp 24-35, www.hlrs.de/mpi/b_eff/, www.hlrs.de/mpi/b_eff io/.
Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano and Yoshio Tanaka, Design
of OpenMP Compiler for an SMP Cluster, in proceedings of the 1st Euro-
pean Workshop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999, pp 32-39.
http://citeseer.nj.nec.com/sato99design.html

G. Wellein, G. Hager, A. Basermann, and H. Fehske, Fast sparse matriz-vector
multiplication for TeraFlop/s computers, in proceedings of Vector and Parallel
Processing - VECPAR’2002, Porto, Portugal, June 2628, 2002, Springer LNCS.

