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Summary

Most HPC systems are clusters of shared memory nodes.

Parallel programming must combine the distributed mem-

ory parallelization on the node inter-connect with the

shared memory parallelization inside of each node. The hy-

brid MPI+OpenMP programming model is compared with

pure MPI, compiler based parallelization, and other par-

allel programming models on hybrid architectures. The

paper focuses on bandwidth and latency aspects, and also

whether programming paradigms can separate the opti-

mization of communication and computation. Benchmark

results are presented for hybrid and pure MPI communi-

cation. This paper analyzes the strength and waekness of

several parallel programming models on clusters of SMP

nodes.

Keywords. OpenMP, MPI, Hybrid Parallel Programming,

Threads and MPI, HPC.

1 Motivation

Today, most systems in high performance computing
(HPC) are clusters of SMP (symmetric multi-processor)
nodes, i.e., they are hybrid architectures, shared mem-
ory systems are inside of each node, and a distributed
memory parallel (DMP) system is across the node
boundaries. Such hybrid systems range from small clus-
ters of dual-CPU PCs up to the largest systems, e.g.,
the ASCI systems in USA [1], or the Earth Simulator
in Japan with 640 nodes each equipped with 8 vector
CPUs and with an aggregated peak performance of 40
TFLOP/s [8, 27, 30], ranked number 1 in the TOP500
lists in 2002 [20]. To achieve a minimal parallelization
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overhead, often a hybrid programming model is pro-
posed, e.g., OpenMP [24] or automatic compiler based
thread parallelization inside of each SMP node, and
message passing (e.g., with MPI [18]) on the node in-
terconnect.

The hybrid MPI+OpenMP programming model on
clusters of SMP nodes is already used in many applica-
tions, but often there is only a small benefit, e.g., as re-
ported with the climate model calculations of one of the
Gordon Bell Prize finalists at SC 2001 [16], or sometimes
losses are reported compared to the pure MPI model,
e.g., as shown with an discrete element modeling algo-
rithm in [13]. In the hybrid model, each SMP node is
executing one multi-threaded MPI process. With pure
MPI programming, each processor executes a single-
threaded MPI process, i.e., the cluster of SMP nodes
is treated as a large MPP (Massively Parallel Process-
ing) system.

One of the major drawbacks of the hybrid MPI-
OpenMP programming model is based on a very simple
usage of this hybrid approach: If the MPI routines are
invoked outside of parallel regions, all threads except
the master thread are sleeping while the MPI routines
are executed.

This paper will discuss this phenomenon and other
hybrid MPI-OpenMP programming strategies. In
Sect. 2, an overview on hybrid programming models is
given. Sect. 3 shows different methods to combine MPI
and OpenMP. Further rules on hybrid programming are
discussed in Sect. 4, and pure MPI on hybrid archi-
tectures in Sect. 5. Sect. 6 presents benchmark results
of the communication in both models. Sect. 7 com-
pares the MPI based programming models with com-
piler based parallelization. In Sect. 8, we analyze the
optimization of communication and computation, its
separation (as used in the MPI model), and its com-
bination as used in OpenMP on clusters.
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2 Programming Models on Hy-

brid Architectures

The available programming models depend on the type
of cluster hardware. If the node interconnect al-
lows cache-coherent or non-cache-coherent non-uniform
memory access (ccNUMA and nccNUMA), i.e., if the
memory access inside of each SMP node and across the
cluster interconnect is implemented by the same instruc-
tions, then one can use programming models which need
a shared memory access across the whole cluster. This
includes OpenMP on the whole cluster, usage of nested
parallelism inside of OpenMP, but also OpenMP with
cluster extensions that are primarily based on a first
touch mechanism [12] or on data distribution exten-
sions [17]. These cluster extensions may also benefit
from the availability of software-based shared virtual
memory (SVM, or distributed shared memory [DSM])
[4, 28, 29]. At NASA/Ames, a hybrid approach was
developed. The parallelization is organized in two lev-
els: The upper level is process based, and in the lower
level each process is multi-threaded with OpenMP. The
processes are using a Fortran wrapper around the Sys-
tem V shared memory module shm that allows to fork
the processes, to initialize a shared memory segment,
to associate portions of this segment with Cray pointer
based arrays in each process, and to make a barrier syn-
chronization over all processes. This system is named as
Multi Level Parallelism (MLP) and it allows very flexi-
ble, dynamic and simple way of load balancing: At each
start of a parallel region inside of each MLP process, the
number of threads, i.e., the number of used CPUs, may
be adapted [7]. Although MLP is a proprietary method
of NASA/Ames, the programming style based on shm
is non-proprietary.

If the node interconnect requires different methods for
accessing local and cluster-wide memory, but if there are
remote direct memory access (RDMA) methods avail-
able, i.e., if one node can access the memory of another
node without interaction of a CPU on that node, then
further programming methods are available: Such sys-
tems can be programmed with Co-Array Fortran [23] or
Unified Parallel C (UPC) [6, 9]. In Co-Array Fortran,
the access to an array of another process or thread is
done by using an additional trailing array subscript in
square brackets addressing that process or thread. Both
language extensions can also be used to program clus-
ters of SMP nodes, because they neither add a message
passing overhead nor the overhead of additional copies.

A key issue for a more widespread usage of UPC and Co-
Array Fortran is the availability of (portable) compiling
systems for a wide range of platforms with a clear de-
velopment path to achieve an optimal performance, as
it was presented for MPI by the early MPICH imple-
mentation [10]. Another approach to use the RDMA
hardware is based on one-sided communication, e.g., in
Cray’s shmem library or in MPI-2 [19]. These library-
based methods allow to store (fetch) data to (from)
the memory of another process in a SPMD environ-
ment with a distributed memory model. The shmem li-
brary was ported by many vendors to their systems. All
programming models available for RDMA-class node-
interconnect are also usable on NUMA-class intercon-
nects.

The third class of hardware supports neither NUMA
access nor RDMA. Only pure message passing is avail-
able on the node-interconnect. Programming models
designed for this class of hardware have the major ad-
vantage that they are applicable to all other already
mentioned classes. This paper focuses on this type of
hardware. The commonly accepted standard for mes-
sage passing between the nodes is the Message Pass-
ing Interface (MPI) [18, 19]. The major programming
styles are pure MPI, i.e., the MPP model that uses each
CPU for one MPI process, and hybrid models, e.g., MPI
on the node-interconnect and OpenMP or automatic
or semi-automatic compiler based thread-parallelization
inside of each SMP node. Inside of each node mainly
two different SMP parallelization strategies are used:
(a) A coarse-grain SPMD-style parallelization (similar
to the work distribution between the processes in a mes-
sage passing program) is applied; this method allows a
similar computational efficiency as with the pure MPI
parallelization; the efficiency of the communication is a
major factor in the comparison of this hybrid approach
with the pure MPI solution. The present paper is fo-
cused on the communication aspects. (b) A fine-grained
SMP parallelization is done in an incremental effort of
parallelizing loops inside the MPI processes. The ef-
ficiency of such hybrid solution depends on both, the
efficiency of the computation (Amdahl’s law must be
considered on both levels of parallelization) and of the
communication, as shown in [5] for the NAS parallel
benchmarks. Different SMP parallelization strategies
in the hybrid model are also studied in [31]. High Per-
formance Fortran (HPF) is also available on clusters of
SMPs. In [3], HPF based on hybrid MPI+OpenMP is
compared with pure MPI.
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Figure 1: Timeline diagrams showing the different MPI thread-support categories of MPI-2.

3 MPI and Thread-Based Paral-

lelization

The combination of MPI and thread-based paralleliza-
tion was already addressed by the MPI-2 Forum in
Sect. 8.7 MPI and Threads in [19]. For hybrid program-
ming, the MPI-1 routine MPI Init() should be substi-
tuted by a call to MPI Init threads() which has the in-
put argument named required to define which thread-
support the application requests from the MPI library,
and the output argument provided which is used by the
MPI library to tell the application which thread-support
is available. MPI libraries may support the following
thread-categories (higher categories are supersets of all
lower ones):

MPI THREAD SINGLE – No thread-support.
MPI THREAD FUNNELED – Only the mas-

ter thread is allowed to call MPI routines. The other
threads may run other application code while the mas-
ter thread calls an MPI routine.

MPI THREAD SERIALIZED – Multiple
threads may make MPI-calls, but only one thread may
execute an MPI routine at a time.

MPI THREAD MULTIPLE – Multiple threads
may call MPI without any restrictions.

The constants MPI THREADS ... are monotoni-
cally increasing. Between MPI THREAD SINGLE and
MPI THREAD FUNNELED, there are intermediate
levels of thread support, not yet addressed by the stan-
dard:

T1a – The MPI process may be multi-threaded but
only the master thread may call MPI routines AND
only while the other threads do not exist, i.e., paral-
lel threads created by a parallel region must be de-
stroyed before an MPI routine is called. An MPI
library supporting this class (and not more) must
also return provided=MPI THREAD SINGLE (i.e., no
thread-support) because of the lack of this definition in
the MPI-2 standard1.

1This may be solved in the revision 2.1 of the MPI standard.

T1b – The definition T1a is relaxed in the sense
that more than one thread may exist during the call of
MPI routines, but all threads except the master thread
must sleep, i.e., must be blocked in some OpenMP syn-
chronization. As in T1a, if an MPI library supports
T1b but not more, this library must also return pro-
vided=MPI THREAD SINGLE.
Usually, the application cannot distinguish whether

an OpenMP based parallelization or an automatic par-
allelization needs T1a or T1b to allow calls to MPI rou-
tines outside of OpenMP parallel regions, because it is
not defined, whether at the end of a parallel region the
team of threads is sleeping or is destroyed. And usu-
ally, this category is chosen, when the MPI routines are
called outside of parallel regions. Therefore, one should
summarize the cases T1a and T1b to only one case:

T1 – The MPI process may be multi-threaded
but only the master thread may call MPI rou-
tines AND only outside of parallel regions (in case
of OpenMP) or outside of parallelized code (if au-
tomatic parallelization is used). We define here
an additional constant THREAD MASTERONLY
with a value between MPI THREAD SINGLE and
MPI THREAD FUNNELED.
The diagrams in Figure 1 illustrate the different MPI

thread-support categories.

4 Rules with hybrid program-

ming

THREAD MASTERONLY defines the most simple hy-
brid programming model with MPI and OpenMP, be-
cause MPI routines may be called only outside of paral-
lel regions. The new cache coherence rules in OpenMP
2.0 guarantee that the outcome of an MPI routine is vis-
ible to all threads in a subsequent parallel region, and
that the outcome of all threads of a parallel region is
visible to a subsequent MPI routine.
The programming model behind

MPI THREAD FUNNELED can be achieved by
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surrounding the call to the MPI routine with the OMP
MASTER and OMP END MASTER directives inside
of a parallel region. One must be very careful, because
OMP MASTER does not imply an automatic barrier
synchronization or an automatic cache flush neither
at the entry to the master section nor at the exit. If
the application wants to send data computed in the
previous parallel region or wants to receive data into
a buffer that was also used in the previous parallel
region (e.g., to use the data received in the previous
iteration), then a barrier with implied cache flush is
necessary prior to calling the MPI routine, i.e., prior to
the master section. If the data or buffer is also used in
the parallel region after the exit of the MPI routine and
its master section, then also a barrier is necessary after
the exit of the master section. If both barriers must
be done, then while the master thread is executing the
MPI routine, all other threads are sleeping, i.e., we are
going back to the case T1b.
The rules of MPI THREAD SERIALIZED can be

achieved by using the OMP SINGLE directive, which
has an implied barrier only at the exit (unless NOWAIT
is specified). Here again, the same problems as with
FUNNELED must be taken into account.
These problems arise with FUNNELED and SERI-

ALIZED because the communication must be funnelled
from all threads to one thread (an arbitrary thread with
OMP SINGLE, and the master thread with OMPMAS-
TER). Only MPI THREAD MULTIPLE allows a direct
message passing from each thread in one node to each
thread in another node.
Based on these reasons and because

THREAD MASTERONLY is available on nearly
all clusters, often, hybrid and portable parallelization
is using only this parallelization scheme. This paper
evaluates this hybrid model by comparing it with the
non-hybrid pure MPI model described in the next
section.

5 Pure MPI on hybrid architec-

tures

Using a pure MPI model, the cluster must be viewed as a
hybrid communication network with typically fast com-
munication paths inside of each SMP node and slower
paths between the nodes. It is important to implement
a good mapping of the communication paths used by ap-
plication to the hybrid communication network of the
cluster. The MPI standard defines virtual topologies for

this purpose, but the optimization algorithm is not yet
implemented in most MPI implementations. Therefore,
in most cases, it is important to choose a good ranking
in MPI COMM WORLD. E.g., on a Hitachi SR8000,
the MPI library allows two different ranking schemes,
round robin (ranks 0, N, 2*N, ... on node 0; ranks 1,
N+1, 2*N+1, ... on node 1, ...; with N=number of
nodes) and sequential (rank 0–7 on node 0, ranks 8–15
on node 1, ...), and the user has to decide which scheme
may fit better to the communication needs of his appli-
cation.

The pure MPI programming model implies additional
message transfers due to the higher number of MPI pro-
cesses and higher number of boundaries. Let us con-
sider, for example, a 3-dimensional cartesian domain de-
composition. Each domain may have to transfer bound-
ary information to its neighbors in all six cartesian di-
rections (↑↓ −→← ↙↗). Bringing this model on a cluster
with 8-way SMP nodes, on each node, we should execute
the domains belonging to a 2×2×2 cube. Domain-to-
domain communication occurs as node-to-node (inter-
node) communication and as intra-node communication
between the domains inside of each cube. Hereby, each
domain has 3 neighbors inside the cube and 3 neighbors
outside, i.e., in the inter-node and the intra-node com-
munication the amount of transferred bytes should be
equivalent. If we compare this pure MPI model with a
hybrid model, assuming that the domains (in the pure
MPI model) in each 2×2×2 cube are combined to a
super-domain in the hybrid model, then the amount of
data transferred on the node-interconnect should be the
same in both models. This implies that in the pure MPI
model, the total amount of transferred bytes (inter-node
plus intra-node) is twice the number of bytes in the hy-
brid model. The same ratio is shown in the topology in
Fig. 2. In the symmetric case, the intra-node and inter-
node communication has the same transfer volume.

6 Benchmark Results

The following benchmark results compare the commu-
nication behavior of the hybrid MPI+OpenMP model
with the pure MPI model that can be named also as
MPP-MPI model. Based on the domain decomposition
scenario discussed in the last section, we compare the
bandwidth of both models and the ratio of the total
communication time presuming that in the pure MPI
model, the total amount of transferred data is twice
the amount in the hybrid model. The benchmark was
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b eff b eff 3D-cyclic 3D-cyclic
(avg.) at Lmax (average) at Lmax

bhybrid [MB/s] 1535 5565 1604 5638
(per node) [MB/s] (128) (464) (134) (470)
bMPP [MB/s] 5299 16624 5000 18458
(per process) [MB/s] (55) (173) (52) (192)
bMPP /bhybrid (measured) 3.45 2.99 3.12 3.27
sMPP /shybrid (assumed) 2 2 2 2
Thybrid/TMPP (concluding) 1.73 1.49 1.56 1.64

Table 1: Comparing the hybrid and the MPP communication needs.

done on a Hitachi SR8000 with 16 nodes from which 12
nodes are available for MPI parallel applications. Each
node has 8 CPUs. The effective communication bench-
mark b eff is used [15, 25]. It accumulates the commu-
nication bandwidth values of the communication done
by each MPI process. To determine the bandwidth of
each process, the maximum time needed by all processes
is used, i.e., this benchmark models an application be-
havior, where the node with the slowest communication
controls the real execution time. To compare both mod-
els, we use the following benchmark patterns:

• b eff – the accumulated bandwidth average for sev-
eral ring and random patterns (this is the major
benchmark pattern of the b eff benchmark);

• 3D-cyclic – a 3-dimensional cyclic communication
pattern with 6 neighbors for each MPI process
(this is an additional pattern measured by the b eff
benchmark);

The benchmark measures a set of different message sizes
for each pattern. For each pattern, the following sub-
categories are presented in the columns of Table 1:

• average – the average bandwidth of 21 different
message sizes (8 byte – 8MB);

• at Lmax – the bandwidth is measured with 8 MB
messages.

The following rows are presented in Tab. 1:

• bhybrid, the accumulated bandwidth b for the hybrid
model measured with a 1-threaded MPI process on
each node (12 MPI processes),

• and in parentheses the same bandwidth per node,

• bMPP , the accumulated bandwidth for the pure
MPI model (96 MPI processes with sequential rank-
ing in MPI COMM WORLD),

• and in parentheses the same bandwidth per pro-
cess,

• bMPP /bhybrid, the ratio of accumulated MPP band-
width and accumulated hybrid bandwidth,

• sMPP /shybrid: Based on the considerations in
Sect. 5, we assume that the ratio of the transferred
data (sMPP /shybrid) is 2,

• Thybrid/TMPP : To compare the comunication time
of both models, one must take into consideration
the measured bandwidth values and the assump-
tion that the total amount of transferred bytes is
larger in the MPP model. The ratio is given by
Thybrid/TMPP = (shybrid/bhybrid)/sMPP /bMPP )
= (bMPP /bhybrid)/(sMPP /shybrid)

Note that this comparison was done without any es-
pecially optimized topology mapping in the pure MPI
model. The result shows that the pure MPI commu-
nication model is faster than the communication in the
hybrid model. There are at least two reasons: (1) In the
hybrid model, all communication was done by the mas-
ter thread while the other threads were inactive. (2)
One thread is not able to saturate the total available
inter-node bandwidth due to software implementation
problems or hardware design.
Figure 2 shows a similar experiment. In the hybrid

MPI+OpenMP communication scheme, only the left
thread sends inter-node messages. Therefore, the mes-
sage size is 8 times the size used in the pure MPI scheme.
Here, each CPU communicates in the vertical (inter-
node) and horizontal (intra-node) direction. The total
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Figure 2: Parallel communication in a cartesian topol-
ogy.

communication time with the hybrid model (19.2ms) is
66% greater than with the pure MPI communication
(11.6ms), although with pure MPI, the total amount of
transferred data is doubled due to the additional intra-
node communication. Figure 3 shows the measured
transfer time for several message sizes (left diagram)
and the ratio of the transfer time in the hybrid model
to the transfer time of inter-node plus intra-node com-
munication (right diagram). Note that for the hybrid
measurements, the message size must reflect that the
inter-node data exchange of all threads is communicated
by the master thread, and therefore, the message size is
chosen 8 times larger, i.e., it ranges from 1 kB to 16 GB.
The diagrams show that for message sizes greater than
32 kB, the pure MPI model is faster than the hybrid
model in this experiment. With smaller message sizes,
the ratio Thybrid/TpureMPI depends mainly on the la-
tencies of the underlying protocols that may differ due
to the larger message sizes in the hybrid model.

Fig. 4 shows the same behavior on an IBM SP sys-
tem with 16 Power3 CPUs on each SMP node. The
intra-node communication is done as a ring with all 16
CPUs. For the inter-node communication, the aggre-
gated messages in the hybrid test-case are therefore 16
times longer than in the pure MPI experiment. The left
diagram shows one experiment with 16 SMP nodes, i.e.,
with 256 CPUs; the left (logarithmic) scale is used for
the execution time, the right scale for the ratio of the
execution time of the hybrid experiment to the time of
the pure MPI experiment. The right diagram shows this

ratio for several experiments with different numbers of
nodes. Each node has 2 network adapters. Ratio values
larger than 2 show that the master thread is not able
to saturate (or use) both adapters.
A similar communication behavior can be expected

on other platforms if the inter-node network cannot be
saturated by a single processor in each SMP node. Rea-
sons are that each node can have more than one network
adapter and one CPU cannot saturate all adapters of a
node, or that internal local MPI copying (e.g., from user
space to a system buffer) cannot be overlapped with the
real inter-node communication. E.g., on the Earth Sim-
ulator [8], the inter-node network can be saturated by
one thread only, if the application buffers are located in
the global memory by the application: 11.76 GB/s inter-
node ping-pong MPI bandwidth are reported in [33]; the
maximum rate of the link from each SMP node to the
crossbar switch is 12.3 GB/s. If the application buffers
are not allocated in the global memory, then additional
copying between local and global memory must be ex-
ecuted and the single-thread inter-node bandwidth is
reduced to about 60% of the global memory inter-node
ping-pong bandwidth. In this case, only the parallel us-
age of multiple threads (with hybrid MPI+OpenMP) or
processes (pure MPI) can saturate the inter-node net-
work.
The shown ratio of hybrid to pure MPI transfer time

may be a major reason for an application running faster
in the pure MPI model than in the hybrid model.

7 Comparison

The comparison in this paper focuses on bandwidth and
latency aspects, i.e., how to achieve a major percentage
of the physical inter-node network bandwidth with var-
ious parallel programming models.

7.1 Hybrid MPI+OpenMP versus pure

MPI

Although the benchmark results in the last section show
advantages of the pure MPI model, there are also advan-
tages of the hybrid model. In the hybrid model there is
no communication overhead inside of a node. The mes-
sage size of the boundary information of one process
may be larger (although the total amount of commu-
nication data is reduced). This reduces latency based
overheads in the inter-node communication. The num-
ber of MPI processes is reduced. This may cause a bet-
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Figure 3: Benchmark results comparing hybrid MPI+OpenMP with pure MPI on a Hitachi SR8000 with 8 CPUs
per SMP node.

Figure 4: Benchmark results comparing hybrid MPI+OpenMP with pure MPI on an IBM SP with 16 Power3
CPUs per SMP node.
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ter speedup based on Amdahl’s law and may cause a
faster convergence if, e.g., the parallel implementation
of a multigrid numeric is only computed on a partial
grid. To reduce the MPI overhead by communicating
only through one thread, the MPI communication rou-
tines should be relieved by unnecessary local work, e.g.,
concatenation of data should be better done by copying
the data to a scratch buffer with a thread-parallelized
loop, instead of using derived MPI datatypes. MPI re-
duction operations can be split into the inter-node com-
munication part and the local reduction part by using
user-defined operations, but a local thread-based par-
allelization of these operations may cause problems be-
cause these threads are running while an MPI routine
may communicate.
Hybrid programming is often done in two different

ways:

• The domain decomposition is used for the inter-
node parallelization with MPI and also for the
intra-node parallelization with OpenMP, i.e., in
both cases, a coarse grained parallelization is used.

• The intra-node parallelization is implemented as
a fine grained parallelization, e.g., mainly as loop
parallelization.

The second case also allows automatic intra-node par-
allelization by the compiler, but Amdahl’s law must be
considered independently for both parallelizations.

7.2 Comparing hybrid MPI+OpenMP

programming schemes

Now we want to compare three different hybrid pro-
gramming schemes: In the masteronly scheme, only
the master thread communicates outside of parallel re-
gions. The computation is parallelized on all CPUs of
an SMP node and inside of parallel regions. In the fun-
neled scheme, the communication on the master thread
is done in parallel with the computation on the other
threads. For this, the application has to be restructured
to allow the overlap of communication and computa-
tion. In the multiple scheme, all threads may commu-
nicate and compute in parallel. If the other application
threads do not sleep while the master thread is com-
municating with MPI then communication time Thybrid

in Tab. 1 counts only the eighth (a node has 8 CPUs
on the SR8000) because only one instead of 1 (active)
plus 7 (idling) CPUs is communicating. In this hybrid
programming style, the factor Thybrid/TMPP must be

reduced to the eighth, i.e. from about 1.6 to about
0.2. This can be implemented by dedicating one thread
for communication and the other threads of a node for
computing, but also with full load balancing with dif-
ferent mixes of computation and communication on all
threads.

7.2.1 Reserved threads for communicating

Wellein et al. compared in [32] the two hybrid pro-
gramming schemes masteronly (named vector-mode by
Wellein et al.) and funneled (task-mode). They show

that the performance ratio ε = (
Tfunneled or multiple

Tmasteronly
)−1

of funneled (or multiple) to masteronly execution has
the bounds 1 − 1

n ≤ ε ≤ 2 − 1
n if n is the number of

threads of each SMP node, and one thread is reserved
for communication. In general, m threads are reserved
for communication. Tmasteronly is the wall-clock execu-
tion time with the masteronly programming scheme. It
can be divided into three fractions: fcommTmasteronly

is the communication time consumed by the master
thread; fcompTmasteronly is the wall-clock computation
time, consumed by all threads in parallel. Only parts
of this fraction can be overlapped with communication
in the funneled or multiple scheme. For this, the com-
putation fraction must be divided into fcomp,non and
fcomp,overlap, and the sum is:

fcomm + fcomp,non + fcomp,overlap = 1 (1)

In the funneled scheme, m = 1 thread is reserved for
communication and n−m threads are used for compu-
tation. In the multiple scheme, m may be any value, but
based on the results in the last section, m should not be
chosen larger than the number of CPUs needed to sat-
urate the communication network. The natural lower
bound for m is given by mmin = fcomm

fcomp,overlap+fcomm
.

If we expect no further overhead by using the multiple
scheme and if we expect that the fcomp,non fraction is
parallelized on all n threads, while fcomp,overlap is par-
allelized only on the remaining n−m threads, then the
execution time is

Tmultiple = [ fcomp,non

+max(fcomm
1

m
, fcomp,overlap

n

n−m
)

] Tmasteronly (2)
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Figure 5: The performance ratio ε plotted according Equation (3).

Therefore, the performance ratio is

ε = [fcomp,non +max(fcomm
1

m
, fcomp,overlap

n

n−m
)]−1

(3)
The best performance ratio can be achieved if all

CPUs are busy with communication or computation.
In this case both terms in max(..., ...) in (3) must be
equal, i.e.,

fcomm
1

m
= fcomp,overlap

n

n−m
(4)

Then, ε = [fcomp,non+fcomm
1
m ]−1 and with (4) and (1)

the performance ratio of the best case is

εmax :=
1 +m(1− 1

n )

1 + fcomp,nonm(1− 1
n )

(5)

This best ratio can be achieved if fcomm satisfies (4) or
with (1), if

fcomm = fcomm,best :=
1

1 + 1
m −

1
n

(1− fcomp,non) (6)

The value εmax is an upper bound for ε, i.e., for any
fractions fcomm, fcomp,non, and fcomp,overlap,

ε ≤
1 +m(1− 1

n )

1 + fcomp,nonm(1− 1
n )
≤ 1 +m(1−

1

n
) (7)

If fcomm > fcomm,best and m ≥ mmin then always the
multiple scheme is better than the masteronly scheme,
i.e., ε > 1.

The upper bound expresses the chance of a perfor-
mance gain, if the load balancing is done in a way that
the first thread(s) is (are) communicating and comput-
ing and the other threads are only computing, and there
is no idle time due to a bad balancing.
On the other hand, what are the risks with the fun-

neled and multiple scheme? A performance loss can
emerge, if more threads are reserved for communication
than needed, i.e., if these threads idle therefore. Then,
the term n

n−m in (3) reduces the performance:

ε = [fcomp,non + fcomp,overlap
n

n−m ]−1 (8)

= [fcomp,non + (1− fcomp,non − fcomm) n
n−m ]−1

≥ [fcomp,non + (1− fcomp,non)
n

n−m ]−1

=
(

1− m
n

)

/
(

1− fcomp,non
m
n

)

=: εmin (9)

≥ 1− m
n

Both schemes have the same performance, i.e. ε = 1,
if fcomm = fcomm,equiv := m

n (1− fcomp,non). The proof
is directly based on (8) and (1).
In reality, the performance win may be worse, because

normally the separation of the computational parts that
can be overlapped with the communication from those
computational parts that need some information from
neighbor processes causes some overhead. In the case of
vector processing, additional effort may be necessary to
achieve a long vector size in the funneled and multiple
programming scheme.
For example, if m = 1, n = 8, and fcomp,non = 20%,

then εmax = 1.60 (5) is achived for fcomm,best = 43%
(6). For fcomm,equiv = 10%, the performance of both
models are equal, i.e., ε = 1. And for smaller fcomm,



10 COMPUTING APPLICATIONS

the ratio can decrease to εmin = 0.90 for fcomm = 0%
(9). Fig. 5 shows the performance ratio for different
parammeters.

7.2.2 Experimental results with reserved com-
munication threads

The basic principles as discussed in Fig. 5 also hold
for real world applications, e.g. sparse matrix-vector-
multiplication (MVM) on SMP clusters. We selected
the hybrid parallel implementation of sparse MVM
as described in Ref. [32]. Of course, scalability of
MVM strongly depends on the sparsity pattern, thus
we consider the matrix representation of the seven point
discretisation of the differential operator on a three
dimensional Cartesian grid (with periodic boundary
conditions). The conversion of Cartesian coordinates
({i, j, k}) to a linear index l is defined as follows

{i, j, k} −→ l = i+ (j − 1) · ni + (k − 1) · ni · nj (10)

(i = 1, . . . , ni ; j = 1, . . . , nj ; k = 1, . . . , nk)

and block-wise parallelisation using nproc MPI processes
is done along the k-direction (nloc

k = nk/nproc), the com-
munication scheme is independent of problem sizes and
involves nearest neighbor communication only. There-
fore, we can easily control the communication and com-
putation costs as a function of problem size and MPI
processes for the masteronly scheme:

fcommTmasteronly

= xcomm×ni×nj (11)

fcomp,nonTmasteronly

= xMV M,non×ni×nj×n
loc
k (12)

fcomp,overlapTmasteronly

= xMV M,overlap×ni×nj×n
loc
k (13)

In this approach only the dominant contributions to the
total computing time are considered, with xcomm repre-
senting the MPI communication costs and xMV M,overlap

(xMV M,non) measuring the (non–) overlapping part
of the total MVM computation time. According to
Eqs. (1)–(3), the performance ratio ε can easily be cal-
culated as a function of the problem size:

ε = ( xcomm + xMV M,non × nloc
k

+xMV M,overlap × nloc
k )

/ (xMV M,non × nloc
k +

max(
1

m
× xcomm,
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Figure 6: Performance ratio ε for sparse MVM algo-
rithm: Measurements were performed with a maximum
of nproc = 64 Hitachi SR8000-F1 nodes (n = 8;m = 1)
using ni = nj = 512. The dotted line is plotted accord-
ing to Eq. (14) with xcomm/xMV M,overlap = 4.57. The
matrix dimension of the sparse matrix used in the MVM
step is given as follows: Dmat = 512×512×nloc

k ×nproc.

n

n−m
× xMV M,overlap × nloc

k )) (14)

Furthermore, for the sparsity pattern described above
and the parallel MVM implementation as introduced
in [32] xMV M,non/xMV M,overlap = 1/6 holds and there
is only one adjustable parameter (xcomm/xMV M,overlap)
left in Eq. (14).

Results on a Hitachi SR8000 system

As a testcase we fixed ni = nj = 512 and varied
nloc
k at different number of MPI processes, i.e. the total

communication cost remained constant while the local
workload per process was changed. Performance mea-
surements of masteronly scheme and multiple scheme
were done with up to 64 SMP nodes on the Hitachi
SR8000-F1 (n = 8;m = 1) at LRZ Munich and with
up to 16 SMP nodes on the IBM SP-Power3 at NERSC
(N = 16;m = 1). The corresponding performance ra-
tios are plotted in Fig. 6 and Fig. 7 as a function of
local workload per node. For the Hitachi SR8000-F1,
we find consistent with Eq. (14) that at fixed nloc

k only
a weak dependence with the number of nodes can be
found. Moreover, the complex interplay of communica-
tion and computation costs as described in the theory
above can be found in the experimental results: The
multiple scheme is favored (ε > 1) at low and intermedi-
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Figure 7: Performance ratio ε for sparse MVM algo-
rithm: Measurements were performed with a maximum
of nproc = 16 IBM SP-Power3 nodes (n = 16;m = 1)
using ni = nj = 512. The matrix dimension of the
sparse matrix used in the MVM step is given as follows:
Dmat = 512× 512× nloc

k × nproc. The inset shows the
Speed-Up (Sp) on one node using different number of
threads (nthreads).

ate local workloads, while a crossover-point ε ≈ 1 occurs
around nloc

k ≈ 32; for higher local workload the (fixed)
communication cost is too small to be paid off by a sep-
arate thread spent for communication. To compare the
measurements in Fig. 6 with the performance ratio as
predicted by Eq. (14) xcomm/xMV M,overlap = 4.57 has
been chosen. This choice fixes the crossover-point ε = 1
at nloc

k = 32 in Eq. (14) and represents a realistic num-
ber, e.g., xcomm/xMV M,overlap ≈ 4.17 was estimated
from a profiling run with nproc = 4 and nloc

k = 4. Al-
though the total problem sizes cover more than two or-
ders of magnitude (Dmat ≈ 1×106, . . . , 2.5×108) as well
as a large range of number of nodes (nproc = 4, . . . , 64)
is considered, we find a very good qualitative agreement
between the theoretical approach and the measurements
for the whole range of workloads. Regarding the maxi-
mum performance gain achieved by the multiple mode,
the theoretical approach gives a good approximation for
the position but overestimates the absolute value.

Results on IBM SP

These results also hold qualitatively for the IBM SP
system (cf. Fig. 7), where two features have to be dis-
cussed in more detail: First, although the position of

the maximum of ε is again independent of the number
of nodes used, the absolute values of ε now decrease with
increasing node counts at small values of nloc

k . This ef-
fect may depend on the position of the nodes in the
network (which comprises more than 200 nodes) and
is intended to be examined in future work. Second, in
contrast to the Hitachi we cannot find ε decreasing be-
low 1. This fact, however, can easily be understood,
if we take into account that the memory bandwidth
within the SMP node does not scale with the num-
ber of processors. As can be seen from the inset of
Fig. 7 a speed-up of only 9.8 (10.1) is achieved on one
node when using 15 (16) threads instead of one thread.
In other words, spending one thread for communica-
tion does not increase almost the time for the overlap-
ping computations in the multiple model as assumed
in Eq. (2). Thus the effective value of m in Eq. (9)
is approximately zero, giving a lower bound εmin ≈ 1.
Please note, in case of the Hitachi the memory band-
width within one node can saturate the single processor
bandwidth of all eight processors. A speed-up of more
than 7.2 has been demonstrated on eight processors of
one Hitachi node [11]. Of course a detailed description
of communication and computation – going beyond the
simple approach in Eqs. (11)–(13) – is required to im-
prove the quantitative agreement between the theoreti-
cal model and the measurements.

7.3 MPI versus Compiler-based Paral-

lelization

After comparing the pure MPI and different MPI based
hybrid parallel programming models, we now compare
the MPI based models with the NUMA or RDMA based
models. To access data on another node with MPI, the
data must be copied to a local memory location (so
called halo or shadow) by message passing, before it
can be loaded into the CPU. Usually all necessary data
should be transferred in one large message instead of
using several short messages. Then, the transfer speed
is dominated by the asymptotic bandwidth of the net-
work, e.g., as reported for 3D-cyclic-Lmax in Tab. 1 per
node (470 MB/s) or per process (192 MB/s). With
NUMA or RDMA, the data can be loaded directly from
the remote memory location into the CPU. This may
imply short accesses, i.e., the access is latency bound.
Although the NUMA or RDMA latency is usually 10
times shorter than the message passing latency, the to-
tal transfer speed may be worse. E.g., [7] reports on a
ccNUMA system a latency of 0.33–1µs, which implies
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Access method copies remarks bandwidth b(message size)

2-sided MPI 2 internal MPI buffer b∞/(1 + b∞Tlat

size ), e.g.,

+ application receive buffer 300MB/s / (1 + 300MB/s×10 µs
10 kB

)
= 232MB/s

1-sided MPI 1 application receive buffer same formula,
but probably better b∞ and Tlat

Co-Array 1 page based transfer extremely poor, if only
Fortran, parts of the page are needed
UPC, HPC, 0 word based access 8 byte / Tlat,
OpenMP with e.g., 8 byte / 0.33µs = 24MB/s
cluster 0 latency hiding with pre-fetch b∞
extensions 1 latency hiding with buffering see 1-sided communication

Table 2: Memory copies from remote memory to local CPU register.

a bandwidth of only 8–24 MB/s for a 8 byte data. This
effect can be eliminated if the compiler has implemented
a remote pre-fetching strategy as described in [21], but
this method is still not used in all compilers. Hess et al.
[14] have shown that one can reach with OpenMP on
top of a DSM system speed-ups ranging between 70%
and 100% of the MPI speed-up, except if the commu-
nication fraction is high.

The remote memory access can also be optimized by
buffering or pipelining the data that must be trans-
ferred. This approach may be hard to automate, and
current OpenMP compiler research already studies the
bandwidth optimization on SMP clusters [26], but it
can be easily implemented as an directive-based opti-
mization technique: The application thread can define
the (remote) data it will use in the next simulation step
and the compiled OpenMP code can pre-fetch the whole
remote part of the data with a bandwidth-optimized
transfer method. Table 2 summarizes this comparison.

8 Parallelization and Compila-

tion

Major advantages of OpenMP based programming are
that the application can be incrementally parallelized
and still one has a single source for serial and paral-
lel compilation. On a cluster of SMP nodes, OpenMP
has also two major disadvantages: OpenMP is based on
a flat memory model (it knows only private and shared
variables) and there is not any strategy to achieve a con-
tiguous data transfer to access shared array variables
in a remote memory. Especially this second problem

makes it difficult to reach the asymptotic network band-
width. But, as already mentioned, these problems can
be solved by tiny additional directives, like the proposed
migration and memory-pinning directives in [12], and
additional directives that allow a contiguous transfer of
the whole boundary information between each simula-
tion step. Those directives are optimization features
that do not modify the basic OpenMP model, as this
would be done with directives to define a full HPF-like
user-directed data distribution (as in [12, 17]). Another
lack in the current OpenMP standard is the absence of
a strategy of combining automatic parallelization with
OpenMP parallelization, although this is implemented
in a non-standardized way in nearly all OpenMP com-
pilers. This problem can be solved, e.g., by adding di-
rectives to define scopes where the compiler is allowed
to automatically parallelize the code, e.g., similar to
the parallel region, one can define an auto-parallel re-
gion. Usual rules for nested parallelism can apply, i.e.,
a compiler can define that it cannot handle nested par-
allelism.

An OpenMP-based parallel programming model for
SMP-clusters should be usable for both, fine grained
loop parallelization, and coarse grained domain decom-
position. There should be a clear path from MPI to such
an OpenMP cluster programming model with a perfor-
mance that should not be worse than with pure MPI or
hybrid MPI+OpenMP.

It is also important to have a good compilation strat-
egy that allows the development of well optimizing com-
pilers on any combination of processor, memory access,
and network hardware. The MPI based approaches,
especially the hybrid MPI+OpenMP approach, clearly
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separate remote from local memory access optimization.
The remote access is optimized by the MPI library, and
the local memory access must be improved by the com-
piler. Such separation is realized, e.g., in the NANOS
project OpenMP compiler [2, 22]. The separation of
local and remote access optimization may be more es-
sential than the chance of achieving a zero-latency by
remote pre-fetching (Tab. 2) with direct compiler gen-
erated instructions for remote data access. Pre-fetching
can also be done via macros or library calls in the input
for the local (OpenMP) compiler.

9 Conclusion

For many parallel applications on hybrid systems, it
is important to achieve a high communication band-
width between the processes on the node-to-node inter-
connect. On such architectures, the standard program-
ming models of SMP or MPP systems do not longer fit
well. This paper identifies three major problems.
First, using only one thread per node to perform

the inter-node communication and calling the MPI
routines only outside of parallel regions, one cannot
achieve the full inter-node bandwidth. In the bench-
mark with the Cartesian topology, this hybrid mas-
teronly MPI+OpenMP model needs about 60–100%
more communication time than communicating in a
pure MPI model, although additional intra-node mes-
sage transfers were necessary with pure MPI. This prob-
lem may have several reasons: One thread cannot use
different hardware links at the same time, or the MPI
library is not able to saturate the network due to addi-
tional internal memory copying and a limited memory
bandwidth on each thread. If the overall communica-
tion percentage is only in the area of less than 15%, then
this effect of the hybridmasteronlymodel only causes an
additional overhead of about 9–15%. Together with the
OpenMP based synchronization overhead, a 20% larger
execution time of hybrid programs is not a surprise.
Second, we compare the masteronly model with a hy-

brid model where we overlap communication and com-
putation. Instead of implementing a full load balancing,
we decided to funnel the communication through the
master thread and to reserve one thread for commu-
nication while the other threads are used for compu-
tation. On a cluster with 8-way SMP nodes, we can
exhibit, that theoretically the total application can run
1.75 times faster than in the masteronly model. This
factor depends on the fraction used for communication

and on the fraction of computation that can be over-
lapped with communication. In the experiment we can
demonstrate a factor of 1.5. Unfortunately, this fast
hybrid overlapping&funnel&reserve model does not al-
low to use the sophisticated work-sharing constructs of
OpenMP. OpenMP is reduced to an interface for ba-
sic thread usage. Work-sharing must be done by the
application program based on the ranks of the threads.

And third, we look at compiler based parallelization
on hybrid platforms. Here, two problems arise: a) How
can we achieve a communication speed that is in the
area of the hardware inter-node bandwidth, and b), does
the cluster-capable compiler deliver the same computa-
tional optimizations as the SMP-local compiler? Both of
these problems are still unsolved. Therefore, at least for
programs with a relevant communication fraction, MPI
based parallelization (pure or combined with OpenMP)
is still the method of first choice.

Future work will include the examination of mixing
MPI and OpenMP inside of SMP nodes to benefit to-
gether from the saturation of the inter-node network
and from the hybrid programming.
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Benchmarking Issues, proceedings of the Interna-
tional Conference on Parallel Processing, 2001, pp
365–372.
http://projects.seas.gwu.edu/∼hpcl/upcdev/UPC bench.pdf

[10] W. Gropp and E. Lusk and N. Doss and A. Skjel-
lum, A high-performance, portable implementation
of the MPI message passing interface standard, in
Parallel Computing 22–6, Sep. 1996, pp 789–828.

[11] G. Hager, F. Deserno and G. Wellein, Pseudo-
Vectorization and RISC Optimization Techniques
for the Hitachi SR8000 Architecture, accepted for
publication in High Performance Computing in Sci-
ence and Engineering in Munich ’02, Springer-
Verlag Berlin Heidelberg, 2003.

[12] Jonathan Harris, Extending OpenMP for NUMA
Architectures, in proceedings of the Second Eu-
ropean Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html



HYBRID PARALLEL PROGRAMMING 15

[13] D. S. Henty, Performance of hybrid message-
passing and shared-memory parallelism for discrete
element modeling, in Proc. Supercomputing’00,
Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html

www.sc2000.org/techpapr/papers/pap.pap154.pdf

[14] Matthias Hess, Gabriele Jost, Matthias Müller, and
Roland Rühle, Experiences using OpenMP based on
Compiler Directed Software DSM on a PC Cluster,
in WOMPAT2002: Workshop on OpenMP Appli-
cations and Tools, Arctic Region Supercomputing
Center, University of Alaska, Fairbanks, Aug. 5–7,
2002.

[15] Alice E. Koniges, Rolf Rabenseifner, Karl Solchen-
bach, Benchmark Design for Characterization
of Balanced High-Performance Architectures, in
proceedings, 15th International Parallel and
Distributed Processing Symposium (IPDPS’01),
Workshop on Massively Parallel Processing, April
23-27, 2001, San Francisco, USA, p. 196.

[16] Richard D. Loft, Stephen J. Thomas, and John M.
Dennis, Terascale spectral element dynamical core
for atmospheric general circulation models, in pro-
ceedings, SC 2001, Nov. 2001, Denver, USA.
www.sc2001.org/papers/pap.pap189.pdf

[17] John Merlin, Distributed OpenMP: Extensions to
OpenMP for SMP Clusters, in proceedings of the
Second EuropeanWorkshop on OpenMP, EWOMP
2000. www.epcc.ed.ac.uk/ewomp2000/proceedings.html

[18] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, Rel. 1.1, June
1995, www.mpi-forum.org.

[19] Message Passing Interface Forum. MPI-2: Exten-
sions to the Message-Passing Interface, July 1997,
www.mpi-forum.org.

[20] Hans Meuer, Erich Strohmaier, Jack Dongarra,
Horst D. Simon, Universities of Mannheim
and Tennessee, TOP500 Supercomputer Sites,
www.top500.org.

[21] Matthias M. Müller, Compiler-Generated Vector-
based Prefetching on Architectures with Distributed
Memory, in High Performance Computing in Sci-
ence and Engineering ’01, Transactions of the High
Performance Computing Center Stuttgart (HLRS),
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The following addenda are not part of the published paper.

9.0.1 Addendum 1

Proof of (5):

(4) and (1) ⇒ fcomm(
1

m
+

n

n−m
) = (1− fcomp,non)

n

n−m

ε = [fcomp,non + fcomm
1

m
]−1

= [fcomp,non + (1− fcomp,non)
n

n−m

1
1
m + n

n−m

1

m
]−1

= [fcomp,non + (1− fcomp,non)
n

n−m+ nm
]−1

= [fcomp,non
1−m/n+m

1−m/n+m
+ (1− fcomp,non)

1

1−m/n+m
]−1

= (1−m/n+m)[1 + fcomp,non((1−m/n+m)− 1)]−1

=
1 +m(1− 1

n )

1 + fcomp,nonm(1− 1
n )

9.0.2 Addendum 2

Proof of (6):

(4) and (1)⇒ fcomm(
1

m
+

n

n−m
) = (1− fcomp,non)

n

n−m

fcomm =
n

n−m
1
m + n

n−m

(1− fcomp,non)

=
1

n−m
nm + 1

(1− fcomp,non)

=
1

1
m −

1
n + 1

(1− fcomp,non)

9.0.3 Addendum 3

Calculation of εmin in detail:

ε = [fcomp,non + fcomp,overlap
n

n−m ]−1 (8)

= [fcomp,non + (1− fcomp,non − fcomm) n
n−m ]−1
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≥ [fcomp,non + (1− fcomp,non)
n

n−m ]−1

= n−m
n [fcomp,non

n−m
n + (1− fcomp,non)]

−1

= (1− m
n )[1− fcomp,non(1−

n−m
n )]−1

=
(

1− m
n

)

/
(

1− fcomp,non
m
n

)

=: εmin (9)

≥ 1− m
n

9.0.4 Addendum 4

Proof of the Theorem: Both schemes have the same performance (ε = 1) if fcomm = m
n (1− fcomp,non).

(8) andε = 1→ fcomp,non + fcomp,overlap
n

n−m
= 1

with (1)→ fcomp,non + (1− fcomp,non − fcomm)
n

n−m
= 1

fcomp,non(1−
n

n−m
) +

n

n−m
− 1 = fcomm

n

n−m

fcomp,non(
n−m

n
− 1) + 1−

n−m

n
= fcomm

fcomp,non(−
m

n
) +

m

n
= fcomm

fcomm =
m

n
(1− fcomp,non)


