To be published in the proceedings of the International Conference on High Performance Scientific
Computing, March 10-14, 2003, Hanoi, Vietnam.

Comparison of Parallel Programming Models
on Clusters of SMP Nodes

Rolf Rabenseifner! and Gerhard Wellein?

! High-Performance Computing-Center (HLRS), University of Stuttgart,
Allmandring 30, D-70550 Stuttgart, Germany, rabenseifner@hlrs.de,
www.hlrs.de/people/rabenseifner/

2 Regionales Rechenzentrum Erlangen, MartensstraBe 1, D-91058 Erlangen,
Germany, gerhard.wellein@rrze.uni-erlangen.de

Abstract

Most HPC systems are clusters of shared memory nodes. Parallel program-
ming must combine the distributed memory parallelization on the node inter-
connect with the shared memory parallelization inside of each node. Various hybrid
MPI+OpenMP programming models are compared with pure MPI. Benchmark
results of several platforms are presented. This paper analyzes the strength and
weakness of several parallel programming models on clusters of SMP nodes. There
are several mismatch problems between the (hybrid) programming schemes and
the hybrid hardware architectures. Benchmark results on a Myrinet cluster and on
recent Cray, NEC, IBM, Hitachi, SUN and SGI platforms show, that the hybrid-
masteronly programming model can be used more efficiently on some vector-type
systems, but also on clusters of dual-CPUs. On other systems, one CPU is not
able to saturate the inter-node network and the commonly used masteronly pro-
gramming model suffers from insufficient inter-node bandwidth. This paper anal-
yses strategies to overcome typical drawbacks of this easily usable programming
scheme on systems with weaker inter-connects. Best performance can be achieved
with overlapping communication and computation, but this scheme is lacking in
ease of use.

Keywords. OpenMP, MPI, Hybrid Parallel Programming, Threads and MPI,
HPC, Performance.

1 Introduction
Most systems in High Performance Computing are clusters of shared mem-

ory nodes. Such hybrid systems range from small clusters of dual-CPU PCs
up to largest systems like the Earth Simulator consisting of 640 SMP nodes

2 Rolf Rabenseifner and Gerhard Wellein

connected by a single-stage cross-bar and with SMP nodes combining 8 vec-
tor CPUs on a shared memory [3, 5]. Optimal parallel programming schemes
enable the application programmer to use the hybrid hardware in a most effi-
cient way, i.e., without any overhead induced by the programming scheme. On
distributed memory systems, message passing, especially with MPI [4, 12, 13],
has shown to be the mainly used programming paradigm. One reason of the
success of MPI was the clear separation of the optimization: communication
could be improved by the MPI library, while the numerics had to be optimized
by the compiler. On shared memory systems, directive-based parallelization
was standardized with OpenMP [15], but there is also a long history of pro-
prietary compiler-directives for parallelization. The directives handle mainly
the work sharing; there is no data distribution.

On hybrid systems, i.e., on clusters of SMP nodes, parallel programming
can be done in several ways: one can use pure MPI, or some schemes combining
MPI and OpenMP, e.g., calling MPI routines only outside of parallel regions
(which is herein named the masteronly style), or using OpenMP on top of a
(virtual) distributed shared memory (DSM) system. A classification on MPI
and OpenMP based parallel programming schemes on hybrid architectures is
given in Sect. 2. Unfortunately, there are several mismatch problems between
the (hybrid) programming schemes and the hybrid hardware architectures.
Often, one can see in publications, that applications may or may not benefit
from hybrid programming depending on some application parameters, e.g., in
[7, 10, 22].

Sect. 3 gives a list of major problems often causing a degradation of the
speed-up, i.e., causing that the parallel hardware is utilized only partially.
Sect. 4 shows, that there isn’t a silver bullet to achieve an optimal speed-
up. Measurements show that different hardware platforms are more or less
prepared for the hybrid programming models. Sect.5 discusses optimization
strategies to overcome typical drawbacks of the hybrid masteronly style.
With these modifications, efficiency can be achieved together with the ease of
parallel programming on clusters of SMPs. Conclusions are provided in Sec. 6.

2 Parallel programming on hybrid systems, a
classification

Often, hybrid MPI+OpenMP programming denotes a programming style with
OpenMP shared memory parallelization inside the MPI processes (i.e., each
MPI process itself has several OpenMP threads) and communicating with
MPI between the MPI processes, but only outside of parallel regions. For ex-
ample, if the MPI parallelization is based on a domain decomposition, the MPI
communication mainly exchanges the halo information after each iteration of
the outer numerical loop. The numerical iterations itself are parallelized with
OpenMP, i.e., (inner) loops inside of the MPI processes are parallelized with
OpenMP work-sharing directives. However, this scheme is only one style in

Comparison of Parallel Programming Models on Clusters of SMP Nodes 3

a set of different hybrid programming methods. This hybrid programming
scheme will be named masteronly in the following classification, which is
based on the question, when and by which thread(s) the messages are sent
between the MPI processes:

1.

2a.

2b.

Pure MPI: each CPU of the cluster of SMP nodes is used for one MPI
process. The hybrid system is treated as a flat massively parallel process-
ing (MPP) system. The MPI library has to optimize the communication
by using shared memory based methods between MPI processes on the
same SMP node, and the cluster interconnect for MPI processes on dif-
ferent nodes.

Hybrid MPI4+OpenMP without overlapping calls to MPI routines with
other numerical application code in other threads:

Hybrid masteronly: MPI is called only outside parallel regions, i.e., by
the master thread.

Hybrid multiple/masteronly: MPI is called outside the parallel regions
of the application code, but the MPI communication is done itself by
several CPUs: The thread parallelization of the MPI communication can
be done

« automatically by the MPI library routines, or

« explicitly by the application, using a full thread-safe MPI library.

In this category, the non-communicating threads are sleeping (or executing
some other applications, if non-dedicated nodes are used). This problem
of idling CPUs is solved in the next category:

. Overlapping communication and computation: While the communica-

tion is done by the master thread (or a few threads), all other non-
communicating threads are executing application code. This category re-
quires, that the application code is separated into two parts: the code
that can be overlapped with the communication of the halo data, and the
code that must be deferred until the halo data is received. Inside of this
category, we can distinguish two types of sub-categories:

e How many threads communicate:

(A) Hybrid funneled: Only the master thread calls MPI routines, i.e.,
all communication is funneled to the master thread.

(B) Hybrid multiple: Each thread handles its own communication
needs (B1), or the communication is funneled to more than one thread
(B2).

e Except in case B1, the communication load of the threads is inherently
unbalanced. To balance the load between threads that communicate and
threads that do not communicate, the following load balancing strategies
can be used:

(I) Fixed reservation: reserving a fixed amount of threads for commu-

nication and using a fixed load balance for the application between the
communicating and non-communicating threads; or (II) Adaptive.

4 Rolf Rabenseifner and Gerhard Wellein

4. Pure OpenMP: based on virtual distributed shared memory systems
(DSM), the total application is parallelized only with shared memory
directives.

Each of these categories of hybrid programming has different reasons, why
it is not appropriate for some classes of applications or classes of hybrid hard-
ware architectures. The paper focuses on pure MPI and hybrid masteronly
programming style. Overlapping communication and computation is studied
in more detail in [16, 17]. Regarding pure OpenMP approaches, the reader is
referred to [1, 6, 8, 11, 18, 19, 20]. Different SMP parallelization strategies in
the hybrid model are studied in [21] and in [2] for the NAS parallel bench-
marks. The following section shows major problems of mismatches between
programming and hardware architecture.

3 Mismatch problems

All these programming styles on clusters of SMP nodes have advantages, but
also serious disadvantages based on mismatch problems between the (hybrid)
programming scheme and the hybrid architecture:

e With pure MPI, minimizing of the inter-node communication requires that
the application-domain’s neighborhood-topology matches with the hard-
ware topology.

e Pure MPI also introduces intra-node communication on the SMP nodes
that can be omitted with hybrid programming.

e On the other hand, such MPI4+OpenMP programming is not able to
achieve full inter-node bandwidth on all platforms for any subset of inter-
communicating threads.

« With masteronly style, all non-communicating threads are idling.

e CPU time is also wasted, if all CPUs of an SMP node communicate, al-
though a few CPUs are already able to saturate the inter-node bandwidth.

o With hybrid masteronly programming, additional overhead is induced by
all OpenMP synchronization, but also by additional cache flushing between
the generation of data in parallel regions and the consumption in sub-
sequent message passing routines and calculations in subsequent parallel
sections.

Overlapping of communication and computation is a chance for an optimal
usage of the hardware, but

o causes serious programming effort in the application itself to separate nu-
merical code that needs halo data and that cannot be overlapped with the
communication therefore,

o causes overhead due to the additional parallelization level (OpenMP), and

e communicating and non-communicating threads must be load balanced.

A few of these problems will be discussed in more detail and based on bench-
mark results in the following sections.

Comparison of Parallel Programming Models on Clusters of SMP Nodes 5
3.1 The inter-node bandwidth problem

With hybrid masteronly or funneled style, all communication must be done
by the master thread. The benchmark measurements in Fig. 3 and the inter-
node results in Tab. 1 show, that on several platforms, the available aggregated
inter-node bandwidth can be achieved only, if more than one thread is used
for the communication with other nodes.

In this benchmark, all

MP1+OpenMP: pure MPI: SMP nodes are located
only vertical vertical AND horizontal messages in a logical ring. Each
Hﬁ CPU sends messages to

SN } the corresponding CPU in

the next node and receives
from the previous node

Multiple vertical
communication

aths, e.g., qiAr > intra-node . .
i X : oM OO« gxgximp in the ring. The bench-
.?noéfcﬁigje ‘ ‘ ‘ mark is done with pure
stride 2 MPI, i.e., one MPI pro-
T I cess on each CPU, ex-
hybrid: .
3-8 +8/3MB L internode Cept for Cray X1, where
EREE

IRYRYVEY 8+8*1MB we used as smallest entity

“pure MPI: intra + internode @ MSP (which itself has

stride (=vert. + horizontal) 4 SSPg [ZCPUSD. Fig. 1

shows the communication

Fig. 1. Communication pattern with hybrid patterns. The aggregated

MPI+OpenMP style and with pure MPI style. bandwidth per node is de-

fined as the number of all

bytes of all messages on the inter-node network divided by the time needed

for the communication and divided by the number of nodes. Note that in this
definition, each message is counted only once, and not twice.?

Fig.2 shows the absolute bandwidth over the number of CPUs (or MSPs
at Cray X1), Fig. 3 shows relative values, i.e., the percentage of the achieved
peak bandwidth in each system over the percentage of CPUs of a node. One
can see, that only on the NEC SX-6, Cray X1 systems, and on the Myrinet
based cluster of dual-CPU PCs, one can achieve more than 75% of the peak
bandwidth already with one CPU (or MSP on Cray X1) per node (see
highlighted values in Tab. 1, Col. 3).

On the other systems, the hybrid masteronly or funneled programming
scheme can achieve only a small percentage of the peak inter-node bandwidth.
[16] has compared the pure MPI with the masteronly scheme. For this compar-
ison, each MPI process in the pure MPI scheme has also to exchange messages
between the processes in the same node. These intra-node messages have the

3 The hardware specification typically presents the duplex inter-node bandwidth
by counting each message twice, i.e. as incoming and outgoing message at a node,
e.g., on a Cray X1, 25.6 GB/s = 2x12.8 GB/s; the measured 12 GB/s (shmen_put)
must be compared with the 12.8 GB/s of the hardware specification.

Rolf Rabenseifner and Gerhard Wellein

—m— Cray X1 MSP shmem_put/ 1920*4 kB
12000 — —-m - Cray X1 MSP shmem_put/ 240*4 kB
- Cray X1, smem_put ---m---Cray X1 MSP shmem_put/ 30*4 kB
o 10000 - 4MSPsinode = | —¢—CrayX1MSP/1920*4 kB
= N m —-e- Cray X1 MSP/ 240*4 kB
= ;o ---@---Cray X1 MSP/ 30*4 kB
5 8000 , —A— NEC SX6 gimem / 1920*8 kB
H ; NEC SX-6, --A- NEC SX6 glmem/ 240*8 kB
3 MPI with globall ---A---NEC SX6 gimem/ 30*8 kB
® 1 N memory, —@— Hitachi SR8000 / 1920*8 kB
§ 0000 8CPUs/node | _ o _ pjitachi SRB000 / 240°8 kB
g Cray X1, MPI > @ - Hitachi SR8000/ 3078 kB
® 4000 ¥ L —X— IBM SP/Power3+/ 1920*16 kB
e oA, % - BMSP/Power3+/ 240*16 kB
:E, 2000 - A --X--- IBM SP/Power3+/_30*16 kB
(3] \ . {
8 ®-®Hitachi, 8 CPUs/node IBM, 16 CPlleﬁe 2';?;;;;:;‘2:;
) M sl
e accumulated message
0 2 4 6 8 10 12 14 16 | size from node to node

communicating CPUs per SMP node

Fig. 2. Aggregated bandwidth per SMP node.

I\ o
O s =—r—
St K
WIEL
i
H

100%

90%

accumulated
message size
from node to node

80%

70%

—

Nearly all platforms: || _s_ Gray X1 MSP sh 1/7680 kB
>75% bandwidth with || " smem_py

25% of CPUs/node

Nearly full bandwidth
» with 1 MSP on Cray
« with 1 CPU on NEC

[50 % and less
on the other platforms

60%

50%

40% —o— Cray X1 MSP, with MPI / 7680 kB

30% ——NEC SX6 glmem /7680 kB

of the peak bandwidth

X
20% b\ H - Hitachi SR8000 / 7680 kB

%

125% 250% 375% 50,0% 625% 750% 87,5% 100,0%

communicating CPUs per SMP node
as percentage of the total number of CPUs per SMP node

10% —x—1BM SP/Power3+ /7680 kB

accumulated bandwidth as percentage

0%

Cray X1 results
0,0%

are preliminary

Fig. 3. Aggregated bandwidth per SMP node.

same size as the inter-node messages, (c.f. Fig.1). Fig.4 shows the ratio of
the inter-node communication time of hybrid MPI+OpenMP masteronly style
divided by the time needed for the inter- and intra-node communication with
pure MPI. In case of hybrid masteronly style, the messages must transfer the
accumulated data of the parallel inter-node messages in pure MPI style, i.e.,
the message size is multiplied with the number of CPUs of an SMP node. In
Fig. 4, one can see a significantly better communication time with pure MPI,
on those platforms, on which the inter-node network cannot be saturated by

Comparison of Parallel Programming Models on Clusters of SMP Nodes 7

3
A |-o-IBMSP 8x16 GPUS,
1BM SP 03000 and SR 8000 Pure MPI {1 CPU Masteronly
|| Masteronly: MPI cannot saturate

inter-node bandwidth is faster . 5 03000 16x4 CPUs,

1 CPU Masteronly
—A Hitachi SR8000 8x8 CPUs,

1 CPU Masteronly
—0—Pure MPI,

horizontal + vertical
—4-Cray X1 8x4 MSPs,

| 1 MSP Masteronly

Hybrid

. —#- NEC SX6 gimem 4x8 CPUs,
Is TaSter 1 CPU Masteronly

I
Cray X1 and NEC SX are well prepared
for hybrid masteronly programming
T T T

ratio T_hybrid_masteronly / T_pure_MPI

Cray X1 and SGl results

T
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 are preliminary

Message size (used with pure MPI) [bytes]

Fig. 4. Ratio of hybrid communication time to pure MPI communication time.

the master thread. In this benchmark, the master thread in the masteronly
scheme was emulated by an MPI process (and the other threads by MPI pro-
cess waiting in a barrier). On most platforms, the measurements were verified
with a benchmark using hybrid compilation and hybrid application start-up.
The diagram compares experiments with the same aggregated message-size
in the inter-node communication; on the x-axis, the corresponding number of
bytes in the pure-MPI experiment is shown. This means, e.g., that the mes-
sage size in the hybrid-masteronly experiment on a 16-CPU-per-node system
is 16 times larger than in the experiments with pure MPI.

Benchmark platforms were: a Cray X1 with 16 nodes at Cray; the NEC
SX-6 with 24 nodes and IXS interconnect at the DKRZ, Hamburg, Germany;
the Hitachi SR8000 with 16 nodes at HLRS, Stuttgart, Germany; the IBM
SP-Power3 at NERSC, USA; the SGI Origin 3000 (400 MHz) Lomaz with
512 CPUs at NASA/Ames Research Center, NAS, USA; an SGI Origin 3800
(600 MHz) at SGI; the SUN Fire 6800 cluster with Sun Fire Link at the RWTH
Aachen, Germany; and HELICS, a Myrinet 2 GBit/s full bisection network
based cluster of 256 dual AMD Athlon 1.4 GHz PCs at IWR, University of
Heidelberg.

3.2 The sleeping-threads problem and the saturation problem

The two most simple programming models on hybrid systems have both the
same problem although they look quite different: With hybrid masteronly
style the non-master threads are sleeping while the master communicates,
and with pure MPI, all threads try to communicate while only a few (or one)
threads already can saturate the inter-node network bandwidth (expecting
that the application is organized in communicating and computing epochs).
If one thread is able to achieve the full inter-node bandwidth (e.g., NEC SX-6,
see Fig. 2), then both problems are equivalent. If one thread can only achieve

8 Rolf Rabenseifner and Gerhard Wellein

a small percentage (e.g., 28 % on IBM SP), then the problem with masteronly
style is significantly higher. As example on the IBM system, if an application
communicates 1 sec in the pure MPI style (i.e. 1x16 = 16 CPUsec), then
this program would need about 16/0.28 = 57 CPUsec in masteronly style,
and if one would use 4 CPUs for the inter-node communication (4 CPUs
achieve 88.3%) and the other 12 threads for overlapping computation, then
only 4/0.883 = 4.5 CPUsec would be necessary.

If the inter-node bandwidth cannot be achieved by one thread, then it may
be a better choice to split each SMP node into several MPI processes that
are itself multithreaded. Then, the inter-node bandwidth in the pure MPI
and hybrid masteronly model are similar and mainly the topology, intra-node
communication, and OpenMP-overhead problems determine which of both
programming styles are more effective. With overlapping communication and
computation, this splitting can also solve the inter-node bandwidth problem
described in the previous section.

3.3 OpenMP overhead and cache effects

OpenMP parallelization introduces additional overhead both in sequential and
in MPI parallel programs. Using a fine-grained OpenMP parallelization ap-
proach, the frequent creation of parallel regions and synchronization at the
end of parallel regions as well as at the end of parallel worksharing constructs
may sum up to a substantial part of the total runtime. Moreover, many of the
OpenMP constructs imply automatic OMP FLUSH operations to provide a
consistent view of the memory at the cost of additional memory operations.

12000 — T T T T T T T T T T T T T 1T
| Problem size fits into aggregate L2 cache i
2 2 % m
10000 |~ Duma=128 % 128 Dppa=128" % 512]
. . -
L . |
7
8000 — e |
7
7
2 B . : e B
a
= 6000~ : : e _
7
= | . s,
. O .- ’
4000 [~ . -~ d
-) o /:/ - O pure MPL: D, =128’ : i 28
2000 C - @ masteronly: Dmm:I278 128
| .é// . O pure MPL: D =128"* 512
= 1 : M masteronly: D =128" %512
0 T I T I T N mat
0 32 64 96 128 160 192 224 256
CPUs

Fig. 5. Sparse matrix-vector-multiplication: Scalability of pure MPI style and Hy-
brid masteronly style for two different problem sizes on IBM SP-Power3/NERSC.
The vertical dotted lines denote the CPU counts where the aggregate L2 cache sizes
are large enough to hold all the data.

Comparison of Parallel Programming Models on Clusters of SMP Nodes 9

These effects may impact, in particular, the Hybrid masteronly style where
OpenMP and/or automatic parallelization of inner loops is often done. Us-
ing the sparse-matrix-vector application described in Ref. [16], Fig.5 clearly
demonstrates the drawback of these effects when scaling processor count at
fixed problem size:

Contrary to the pure MPI approach where a superlinear performance in-
crease occurs if the aggregate L2 cache size becomes larger than the data size
of the application, no cache effect is seen at all for the Hybrid masteronly style.

The overhead associated with the OpenMP parallelization can be reduced
by a coarse-grained approach: The parallel regions are started only once at
the beginning of the application, and OMP MASTER and OMP BARRIER
directives are used for synchronizing before and after the MPI communication.
Of course, this approach is more appropriate for Hybrid funneled and Hybrid
multiple styles but will still suffer from the OMP FLUSH and OMP BARRIER
operations which are necessary to establish a consistent memory view among
the threads.

4 Bite the bullet

Each parallel programming scheme on hybrid architectures has one or more
significant drawbacks. Depending on the needed resources of an application,
the drawbacks may be major or only minor.

Programming without overlap of communication and computation

One of the two problems, sleeping-threads and saturation problem is indis-
pensable. The major design criterion may be the topology problem:

o If it cannot be solved, pure MPI may cause too much inter-node traffic,
but the masteronly scheme implies on some platforms a slow inter-node
communication due to the inter-node bandwidth problem described above.

o If the topology problem can be solved, then we can compare hybrid mas-
teronly with pure MPI: On some platforms, wasting inter-node bandwidth
with masteronly style is the major problem; it causes more CPUs longer
idling than with pure MPI. For example on an IBM SP system with 16
Power3+ CPUs on each SMP node, Fig.6 shows the aggregated band-
width per node with the experiment described in Sect. 3.1. The pure MPI
horizontal+vertical bandwidth is defined in this diagram by dividing the
amount of inter-node message bytes (without counting the intra-node mes-
sages)?) by the time needed for inter- and intra-node communication, i.e.,
the intra-node communication is treated as overhead. One can see, that
more than 4 CPUs per node must communicate in parallel to achieve full

4 Because the intra-node messages must be treated as overhead if we compare pure
MPI with hybrid communication strategies.

10 Rolf Rabenseifner and Gerhard Wellein

IBM at NERSC (16 Power3+ CPUs/node)
0

—x— 8x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1

—#— 8x16 CPUs, Hybrid Multiple,
6/16 CPUs Stride 1

—@— 8x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

—a— 8x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

More than 4 CPUs per
node needed to achieve
[1 full inter-node
bandwidth

1| Second CPU —o— 8x16 CPUs, Hybrid Multiple,
doubles the 2/16 CPUs Stride 1
accumulated

©--- 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

--- 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 8

—8— 8x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs|

—o— 8x16 CPUs, Pure MPI,
horizontal + vertical

[bandwidth

Accumulated bandwidth per SMP node
[MB/s]
P
8

One CPU can achieve
only 27-30% of peak

1E+2 1E+3 1E+4 1E+5 1E+6
Message size (used with pure MPI on each CPU)

Fig. 6. Aggregated bandwidth per SMP node on IBM SP with 16 Power3+ CPUs
per node.

1BM at NERSC (16 Power3+ CPUs/node) —8— 8x16 CPUs, Hybrid Masteronly,

— Hybrid Masteronly is by a MPL: 1 of 16CPUs
g factor of 2.7-2.9 slower o | —— 8x16 CPUs, Hybrid Multiple,
o [than pure MPI %) 2/16 CPUs Stride 1
3
2 = |--¢ - 8x16 CPUs, Hybrid Multiple,
5 2| 2 2116 CPUs Stride 4
£ o @
g R & | —&— 8x16 CPUs, Hybrid Multiple,
8 2 3/16 CPUs Stride 1
-
= o 8x16 CPUs, Pure MP,
A horizontal + vertical
° X I
g " S | —©— 8x16 CPUs, Hybrid Multiple,
g o More than 3 CPUs/node s 416 CPUs Stride 1
:‘ N needed to communicate z —#— 8x16 CPUs, Hybrid Multiple,

0 ‘ ‘ faster thén with pure‘MPI 3 | 6/16 CPUs Stride 1

1E42 1E43 1E+4 1E45 1E+6 R 5 —x— 8x16 CPUs, Hybrid Multiple,

Message size (used with pure MPI on each CPU) 12116 CPUs Stride 1

Fig. 7. Ratio of communication time in hybrid models to pure MPI programming
on IBM SP.

Hitachi SR 8000

1000 1

—X— 8x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1

—#— 8x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1

—0— 8x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1

—a— 8x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1

—o— 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1

- -¢ - 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4

—o— 8x8 CPUs, Pure MPI,
horizontal + vertical

—&— 8x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs

To spend more than
3 CPUs/node

L} for communication
makes no sense

©
=3
8

@
S
8

At least 2 CPUs

[| needed to be better,

|| than pure MPI ~
. 27

|| 1 CPU achieves/ @~

only 60-70%
of pure MPI

IS
S
8

@
S
38

N
S
8

100

Accumulated bandwidth per SMP node
[MB/s]
o
8

0
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPl on each CPU)

Fig. 8. Aggregated bandwidth per SMP node on Hitachi SR 8000.

Comparison of Parallel Programming Models on Clusters of SMP Nodes 11

NEC SX6 (with MPI_Alloc_mem)

8000 ‘
. —x— 4x8 CPUs, Hybrid Multiple,

$ 7000 +— Inverse: 8/8 CPUs Stride 1

2 More CPUs —#— 4x8 CPUs, Hybrid Multiple,

& oo | |=lessbandwidth 6/8 CPUs Stride 1

7] —@— 4x8 CPUs, Hybrid Multiple,

g 5000 4/8 CPUs Stride 1

£ —A— 4x8 CPUS, Hybrid Multiple,

5 3/8 CPUs Stride 1

S 04000

S %) —o— 4x8 CPUs, Hybrid Multiple,

2 3000 /p 2/8 CPUs Stride 1

3 ;/ - -6 - 4x8 CPUs, Hybrid Multiple,

3 2000 2/8 CPUs Stride 4

g Y —#— 4x8 CPUs, Hybrid

3 1000 +/ Masteronly, MPI: 1 of 8 CPUs

< %f” —o— 4x8 CPUS, Pure MPI,

horizontal + vertical
o =2

T T T T
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Message size (used with pure MPI on each CPU)

Fig. 9. Aggregated bandwidth per SMP node on NEC SX-6.

Cray X1, 4 MSPs / node (1 MSP = 4 CPUs), preliminary results
000 1

1 MSP achieves —@— 8x4 MSPs, Hybrid Multiple,
sooo || already 80% of full Fp | aamsPs Side
inter-node bandwidth. ¥ _|—a— sxamsPs, Hybrid Muttiple,
1000 | SaMe communication 3/ MSPs Stride 1
time with —o— 8x4 MSPs, Hybrid Multiple,
pure MPI and 2/4 MSPs Stride 1
so00 1 | hybrid masteronly. —&- - 8x4 MSPs, Hybrid Multiple,

2/4 MSPs Stride 2

2000 —o— 8x4 MSPs, Pure MPI,
horizontal + vertical

1000 —m— 8x4 MSPs, Hybrid
Masteronly, MPI: 1 of 4 MSPs

y |
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPl on each MSP)

Accumulated bandwidth per SMP node
[MB/s]

Fig. 10. Aggregated bandwidth per SMP node on Cray X1, MSP-based MPI-
parallelization.

Cray X1, 4 MSPs/ node (1 MSP = 4 CPUs), shmem put, preliminary results
14000

—o— x4 MSPs, put, Hybrid Muttiple,

12000 1 Highest parallel 4/4 MSPs Stride 1
bandwidth: 12.0 GF/s
—=4— 8x4 MSPs, put, Hybrid Multiple,

10000 (AR 3/4 MSPs Stride 1

&
1 MSP achieves W exa ISP out. Hybrid Mutio
already 75% of full |2 —o— 8x s, put, Hybrid Multiple,

2/4 MSPs Stride 1
inter-node bandwidth |

8000 1

— ¢ - 8x4 MSPs, put, Hybrid Multiple,

Accumulated bandwidth per SMP node
[MB/s]

6000 7 2/4 MSPs Stride 2
4000 4 —S— 8x4 MSPs, put, Pure MPI,
horizontal + vertical
2000 —— 8x4 MSPs, put, Hybrid Masteronly,
MPI: 1 of 4 MSPs
0 : ‘ ‘ : !
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each MSP)

Fig. 11. Aggregated bandwidth per SMP node on Cray X1. MSP-based and
MPI_Sendrecv is substituted by shmem_put.

12 Rolf Rabenseifner and Gerhard Wellein

inter-node bandwidth. At least 3 CPU per node must communicate in the
hybrid model to beat the pure MPI model. Fig. 7 shows the ratio of the ex-
ecution time in the hybrid models to the pure MPI model. A ratio greater
than 1 shows that the hybrid model is slower than the pure MPI model.

On systems with 8 CPUs per node, the problem may be reduced, e.g., as one
can see on a Hitachi SR 8000 in Fig.8. On some vector type systems, one
CPU may already be able to saturate the inter-node network, as shown in
Fig.9-11. Note: the aggregated inter-node bandwidth on the SX-6 is reduced,
if more than one CPU per node tries to communicate at the same time over
the IXS. Fig. 10 and 11 show preliminary results on a Cray X1 system with
16 nodes. Each SMP node consists of 4 MSPs (multi streaming processors).

Each MSP itself consists of 4 SSPs (single streaming processors). With
MSP-based programming, each MSP is treated as a CPU, i.e., each SMP
node has 4 CPUs (=MSPs) that internally use an (automatic) thread-based
parallelization (= streaming). With SSP-based programming, each SMP node
has 16 CPUs (=SSPs). Preliminary results with the SSP-mode have shown,
that the inter-node bandwidth is partially bound to the CPUs, i.e., that the
behavior is similar to the 16-way IBM system.

Similar to the multi-threaded implementation of MPI on the Cray MSPs; it
would be also possible on all other platforms to use multiple threads inside of
the MPI communication routines if the application uses the hybrid masteronly
scheme. The MPI library can easily detect whether the application is inside or
outside of a parallel region. With this optimization (described in more detail
in Sect.5), the communication time of the hybrid masteronly model should
always be shorter than the communication time in the pure MPI scheme.

On the other hand, looking on the Myrinet cluster with only 2 CPUs per
SMP node, the hybrid communication model hasn’t any drawback on such
clusters because one CPU is already able to saturate the inter-node network.

Programming with overlap of communication and computation

Although overlapping communication with computation is the chance to
achieve fastest execution, this parallel programming style isn’t widely used due
to the lack of ease of use. It requires a coarse-grained and thread-rank-based
OpenMP parallelization, the separation of halo-based computation from the
computation that can be overlapped with communication, and the threads
with different tasks must be load balanced. Advantages of the overlapping
scheme are: (a) the problem that one CPU may not achieve the inter-node
bandwidth is no longer relevant as long as there is enough computational work
that can be overlapped with the communication; (b) the saturation problem
is solved as long as not more CPUs communicate in parallel than necessary to
achieve the inter-node bandwidth; (c) the sleeping threads problem is solved
as long as all computation and communication is load balanced among the
threads. A detailed analysis of the performance benefits of overlapping com-
munication and computation can be found in [16].

Comparison of Parallel Programming Models on Clusters of SMP Nodes 13

5 Optimization Chance

On Cray X1 with MSP-based programming and on NEC SX-6, the hybrid
masteronly communication pattern is faster than the pure MPI Although
both systems have vector-type CPUs, the reasons for these performance results
are quite different: On the NEC SX-6, the hardware of one CPU is really able
to saturate the inter-node network if the user data resides in global memory.
On the Cray X1, each MSP consists of 4 SSPs (=CPUs). MPI communication
issued by one MSP seems internally to be multi-streamed by all 4 SSPs. With
this multi-threaded implementation of the communication, Cray can achieve
75-80% of the full inter-node bandwidth, i.e., of the bandwidth that can be
achieved if all MSPs (or all SSPs) communicate in parallel.

This approach can be generalized for the masteronly style. Depending on
whether the application itself is translated for pure MPI approach, hybrid
MPI + automatic SMP-parallelization, or hybrid MPI+OpenMP, the linked
MPI library itself can also be parallelized with OpenMP directives or vendor-
specific directives.

Often, the major basic capabilities of an MPI library are to put data into
a shared memory region of the destination process (RDMA put), or to get
data from the source process (RDMA get), or to locally calculate reduction
operations on a vector, or to handle derived datatypes and data. All these op-
erations (and not the envelop handling of the message passing interface) can
be implemented multi-threaded, e.g., inside of a parallel region. In the case,
that the application calls the MPI routines outside of parallel application re-
gions, the parallel region inside of the MPI routines will allow a thread-parallel
handling of these basic capabilities. In the case, the application overlaps com-
munication and computation, the parallel region inside of the MPI library
is a nested region and will get only the (one) thread on which it is already
running. Of course, the parallel region inside of MPI should only be launched,
if the amount of data that must be transferred (or reduced) exceeds a given
threshold.

This method optimizes the bandwidth without a significant penalty to
the latency. On the Cray X1, currently only 4 SSPs are used to stream the
communication in MSP mode achieving only 75-80% of peak. It may be
possible to achieve full inter-node bandwidth, if the SSPs of an additional
MSP would also be applied. With such a multi-threaded implementation of
the MPI communication for masteronly-style applications, there is no further
need (with respect to the communication time) to split large SMP nodes into
several MPI processes each with a reduced number of threads (as proposed in
Sect. 3.2).

5 A degradation may be caused by system processes because the benchmark used
all processors of the SMP nodes.

5 Columns 1, 2, 4 are benchmark results, Col. 3 is calculated from Col. 1 & 2, Col. 5
& 6 “peak” are theoretical values, Col. 6 “Linpack” is based on the TOP500 values
for the total system [14], and Col. 7 is calculated from Col. 1, 2 & 6.

14 Rolf Rabenseifner and Gerhard Wellein

Master- pure | Master- pure [memory Peak max.|#nodes * #CPUs
only, MPI, | only bw MPI, band- and inter- per
inter- inter-| / max. intra- width Linpack| node bw SMP node
node node| ' inter- node perfor-| / peak or

bandw.| bandw.|[node bw| bandw.| bandw. mance Linpack

perf.
[GB/s] [GB/s] [%]| [GB/s]| [GB/s]|[GFLOP/s]|[B/FLOP]
Cray X1, shmem_put 9.27 12.34 75 % 33.0 136 51.20 0.241 8 * 4 MSPs
preliminary results 45.08 0.274
Cray X1, MPI 4.52 5.52 82 % 19.5 136 51.20 0.108 8 ¥ 4 MSPs
preliminary results 45.03 0.123
NEC SX-6, MPI with 7.56 4.98 100 % 78.7 256 64 0.118 4 * 8 CPUs
global memory 93.7+) 61.83 0.122
NEC SX-5Be 2.27 2.50 91 % 35.1 512 64 0.039 2 ¥16 CPUs
local memory a) 60.50 0.041| a) only 8 CPUs
Hitachi SR8000 0.45 0.91 49 % 5.0 32432 8 0.114 8 * 8 CPUs
6.82 0.133
IBM SP Power3+ 0.16| 0.57+) 28 % 2.0 16 24 0.023 8 *16 CPUs
14.27 0.040
SGI O3800 600MHz [0.427+)[1.74+) 25 %[1.73+) 3.2 4.80 0.363 16 *4 CPUs
(2 MB messages) 3.6 0.478
SGI O3800 600MHz 0.156 0.400 39 % 0.580 3.2 4.80 0.083 16 *4 CPUs
(16 MB messages) 3.64 0.110
SGI O3000 400MHz 0.10[0.30+) 33 %[0.39+) 3.2 3.20 0.094 16 *4 CPUs
(preliminary results) 2.46 0.122
SUN Fire 6800° 0.15 0.85 18 % 1.68 43.1 0.019 4 *24 CPUs
(preliminary results) 23.3 0.036
HELICS Dual-PC 0.127+4)[0.1294) 98 %(0.186+) 2.80 0.046 32 * 2 CPUs
cluster with Myrinet 1.61 0.080
HELICS Dual-PC 0.105 0.091 100 % 0.192 2.80 0.038 32 * 2 CPUs
cluster with Myrinet 1.61 0.065
HELICS Dual-PC 0.118+4)[0.1194) 99 %(0.104+) 2.80 0.043 128 * 2 CPUs
cluster with Myrinet 1.61 0.074
HELICS Dual-PC 0.093 0.082 100 % 0.101 2.80 0.033 128 ¥ 2 CPUs
cluster with Myrinet 1.61 0.058
HELICS Dual-PC 0.087 0.077 100 % 0.047 2.80 0.031 239 * 2 CPUs
cluster with Myrinet 1.61 0.05/
Column® 1 2 3 4 5 6 7 8

Table 1. Inter- and Intra-node bandwidth for large messages compared with mem-
ory bandwidth and peak performance. All values are aggregated over one SMP node.
Each message counts only once for the bandwidth calculation. Message size is 16
MB, except +) with 2 MB.

6 Conclusions

Different programming schemes on clusters of SMPs show different perfor-
mance benefits or penalties on the hardware platforms benchmarked in this
paper. Table 1 summarizes the results. Cray X1 with MSP-based programming
and NEC SX-6 are well designed for the hybrid MPI+OpenMP masteronly
scheme. On the other platforms, as well as on the Cray X1 with SSP-based
programming, the master thread cannot saturate the inter-node network
which is a significant performance bottleneck for the masteronly style.

To overcome this disadvantage, a multi-threaded implementation of the
basic device capabilities in the MPI libraries is proposed in Sect. 5. Partially,
this method is already implemented in the Cray X1 MSP-based MPI-library.
Such MPI optimization would allow the saturation of the network bandwidth
in the masteronly style. The implementation of this feature is important es-
pecially on platforms with more than 8 CPUs per SMP node.

This enhancement of current MPI implementations implies that the hybrid
masteronly communication should be always faster than pure MPI communi-
cation. Both methods still include the sleeping threads or saturated network
problem, i.e., that more CPUs are used for communicating than really needed

Comparison of Parallel Programming Models on Clusters of SMP Nodes 15

to saturate the network. This drawback can be solved with overlapping of
communication and computation, but this programming style needs extreme
programming effort.

To achieve an optimal usage of the hardware, one can also try to use
the idling CPUs for other applications, especially low-priority single-threaded
or multi-threaded non-MPI applications if the parallel high-priority hybrid
application does not use the total memory of the SMP nodes.

Acknowledgments

The authors would like to acknowledge their colleagues and all the people
that supported this project with suggestions and helpful discussions. They
would especially like to thank Dieter an Mey at RWTH Aachen, Thomas Lud-
wig, Stefan Friedel, Ana Kovatcheva, and Andreas Bogacki at IWR, Monika
Wierse, Wilfried Oed, and Tom Goozen at CRAY, Holger Berger at NEC,
Reiner Vogelsang at SGI, Gabriele Jost at NASA, and Horst Simon at NERSC
for their assistance in executing the benchmark on their platforms. This re-
search used resources of the HLRS Stuttgart, LRZ Munich, RWTH Aachen,
University of Heidelberg, Cray Inc., NEC, SGI, NASA/AMES, and resources
of the National Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of Energy. Part of this
work was supported by KONWIHR project cxHPC.

References

1. Rudolf Berrendorf, Michael Gerndt, Wolfgang E. Nagel and Joachim Prumerr,
SVM Fortran, Technical Report I1B-9322, KFA Jlich, Germany, 1993.
www.fz-juelich.de/zam/docs/printable/ib/ib-93/ib-9322.ps

2. Frank Cappello and Daniel Etiemble, MPI versus MPI+OpenMP on the IBM
SP for the NAS benchmarks, in Proc. Supercomputing’00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappelloOOmpi.html

3. The Earth Simulator. www.es. jamstec.go.jp

4. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum, A high-
performance, portable implementation of the MPI message passing interface
standard, in Parallel Computing 226, Sep. 1996, pp 789-828.
http://citeseer.nj.nec.com/gropp96highperformance.html

5. Shinichi Habataa, Mitsuo Yokokawa, and Shigemune Kitawaki, The Earth Sim-
ulator System, in NEC Research & Development, Vol. 44, No. 1, Jan. 2003,
Special Issue on High Performance Computing.

6. Jonathan Harris, FEzxtending OpenMP for NUMA Architectures, in pro-
ceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings .html

7. D. S. Henty, Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling, in Proc. Supercomputing’00, Dallas, TX,
2000. http://citeseer.nj.nec.com/hentyOOperformance.html
www.sc2000. org/techpapr/papers/pap.pap154.pdf

16

10

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

Rolf Rabenseifner and Gerhard Wellein

. Matthias Hess, Gabriele Jost, Matthias Miiller, and Roland Riihle, Ezperiences
using OpenMP based on Compiler Directed Software DSM on a PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Re-
gion Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/ people/mueller/papers/wompat2002/wompat2002.pdf

. Georg Karypis and Vipin Kumar. A parallel algorithm for multilevel graph par-
titioning and sparse matriz ordering, Journal of Parallel and Distributed Com-
puting, 48(1): 71-95, 1998. http://www-users.cs.umn.edu/~karypis/metis/
http://citeseer.nj.nec.com/karypis98parallel.html

. R. D. Loft, S. J. Thomas, and J. M. Dennis, Terascale spectral element dynam-

ical core for atmospheric general circulation models, in proceedings, SC 2001,

Nov. 2001, Denver, USA.

www.sc2001.org/papers/pap.papl89.pdf

John Merlin, Distributed OpenMP: Extensions to OpenMP for SMP Clusters,

in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.

www.epcc.ed.ac.uk/ewomp2000/proceedings .html

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

Rel. 1.1, June 1995, wuw.mpi-forum.org.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing

Interface, July 1997, www.mpi-forum.org.

Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst D. Simon, Universities of

Mannheim and Tennessee, TOP500 Supercomputer Sites, wuw.top500.org.

OpenMP Group, www.openmp.org.

Rolf Rabenseifner and Gerhard Wellein, Communication and Optimization As-

pects of Parallel Programming Models on Hybrid Architectures, International

Journal of High Performance Computing Applications, Sage Science Press,

Vol. 17, No. 1, 2003, pp 49-62.

Rolf Rabenseifner, Hybrid Parallel Programming: Performance Problems and

Chances, in proceedings of the 45th CUG Conference 2003, Columbus, Ohio,

USA, May 12-16, 2003, www.cug.org.

Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka, De-

sign of OpenMP Compiler for an SMP Cluster, in proceedings of the 1st Euro-

pean Workshop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999, pp 32-39.

http://citeseer.nj.nec.com/sato99design.html

A. Scherer, H. Lu, T. Gross, and W. Zwaenepoel, Transparent Adaptive Paral-

lelism on NOWs using OpenMP, in proc. of the Seventh Conference on Principles

and Practice of Parallel Programming (PPoPP ’99), May 1999, pp 96-106.

Weisong Shi, Weiwu Hu, and Zhimin Tang, Shared Virtual Memory: A Sur-

vey, Technical report No. 980005, Center for High Performance Comput-

ing, Institute of Computing Technology, Chinese Academy of Sciences, 1998,

www.ict.ac.cn/chpc/dsm/tr980005.ps.

Lorna Smith and Mark Bull, Development of Mized Mode MPI / OpenMP

Applications, in proceedings of Workshop on OpenMP Applications and Tools

(WOMPAT 2000), San Diego, July 2000. www.cs.uh.edu/wompat2000/

Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske, Fast

sparse matriz-vector multiplication for TeraFlop/s computers, in proceedings

of VECPAR’2002, 5th Int’l Conference on High Performance Computing and

Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.

http://vecpar.fe.up.pt/

Index

cache effects 8,9
clusters of SMP nodes 1
Cray X1 5,7,11-14

distributed shared memory (DSM) 4
Earth Simulator 1
funneled hybrid 3

Hitachi SR 8000 7,10, 14

hybrid parallel programming 1
funneled 3
masteronly 2,3,3,4,5,7,9,12-14
MPI+OpenMP 3
multiple 3
with coarse-grained OpenMP 9
with fine-grained OpenMP 8

IBM SP 7-10,12,14
inter-node bandwidth problem 5-7

massively parallel processing 3

masteronly hybrid 2,3,3,4,5,7,9,
12-14

message passing interface

mismatch problems 4—9

MPI 1

MPI and threads 1

MPI+OpenMP 3

MPP 3

MSP (Cray)

see MPI

12-14

multi streaming processors see MSP
multiple hybrid 3

Myrinet 5,7,12
NEC SX-6 5,7,11,13,14

OpenMP 1

OpenMP overhead 8,9

optimization of hybrid parallelization
13

overlapping communication and
computation 3,12

parallel programming models see

hybrid parallel programming
pure MPI 2,3,4,6,7,9,13,14
pure OpenMP 4

saturation problem 7,9

SGI Origin 3000 7,14

shmem (Cray) 7,11,14

single streaming processors see SSP
sleeping-threads problem 7,9

SMP 1

SSP (Cray) 12-14

SUN Starfire 7,14

threads and MPI 1

virtual distributed shared memory
systems 4

