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Abstract. Concurrent computing can be applied to heuristic methods
for combinatorial optimization to shorten computation time, or equiva-
lently, to improve the solution when time is fixed. This paper presents
several communication schemes for parallel simulated annealing, focus-
ing on a combination of OpenMP nested in MPI. Strikingly, even though
many publications devoted to either intensive or sparse communication
methods in parallel simulated annealing exist, only a few comparisons
of methods from these two distinctive families have been published;
the present paper aspires to partially fill this gap. Implementation for
VRPTW—a generally accepted benchmark problem—is used to illus-
trate the advantages of the hybrid method over others tested.
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1 Introduction

The paper presents a new algorithm for parallel simulated annealing—a heuristic
method of optimization—that uses both MPI [9] and OpenMP [12] to achieve
significantly better performance than a pure MPI implementation. This new
hybrid method is compared to other versions of parallel simulated annealing,
distinguished by varying level of inter-process communication intensity. Defining
the problem as searching for the optimal solution given a pool of processors
available for a specified period of time, the hybrid method yields distinctively
better optima as compared to other parallel methods. The general reader (i.e.,
not familiar with simulated annealing) will find the paper interesting as it refers
to a practical parallel application run on a cluster of SMPs with the number of
processors ranging into hundreds.

Simulated annealing (SA) is a heuristic optimization method used when the
solution space is too large to explore all possibilities within a reasonable amount
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of time. The vehicle routing problem with time windows (VRPTW) is an example
of such a problem. Other examples of VRPTW are school bus routing, newspaper
and mail distribution or delivery of goods to department stores. Optimization of
routing lowers distribution costs and parallelization allows to find a better route
within the given time constraints.

The SA bibliography focuses on the sequential version of the algorithm
(e.g., [2, 15]), however parallel versions are investigated too, as the sequential
method is considered to be slow when compared with other heuristics [16]. In [1,
3, 8, 10, 17] and many others, directional recommendations for parallelization of
SA can be found. The only known detailed performance analyses of intensive
versus sparse communication algorithms are in [4, 11, 13].

VRPTW—formally formulated by Solomon [14], who also proposed a suite of
tests for benchmarking, has a rich bibliography as well (e.g., [16]). Nevertheless,
parallel SA to solve the VRPTW is discussed only in [4, 6, 7].

The parallel implementation of SA presented in this paper had to overcome
many practical issues in order to achieve good parallel speedups and efficiency.
Tuning of the algorithms for distributed as well as for shared memory environ-
ment was conducted.

The plan of the paper is as follows: Section 2 presents the theoretical basis
of the sequential and parallel SA algorithm. Section 3 describes how the MPI
and OpenMP parallelization was done, while Section 4 presents the results of
the experiments. Conclusions follows.

2 Parallel simulated annealing

In simulated annealing, one searches for the optimal state, i.e., the state that
gives either the minimum or maximum value of the cost function. It is achieved
by comparing the current solution with a random solution from a specific neigh-
borhood. With some probability, worse solutions could be accepted as well, which
can prevent convergence to local optima. However, the probability of accepting
a worse solution decreases during the process of annealing, in sync with the
parameter called temperature. An outline of the SA algorithm is presented in
Figure 1, where a single execution of the innermost loop step is called a trial.
The sequence of all trials within a temperature level forms a chain. The returned
final solution is the best one ever found.

2.1 Decomposition and communication

Although SA is often considered to be an inherently sequential process since
each new state contains modifications to the previous state, one can isolate
serialisable sets [8]—a collection of rejected trials which can be executed in any
order, and the result will be the same (starting state). Independence of searches
within a serialisable set makes the algorithm suitable for parallelization, where
the creation of random solutions is decomposed among processors. From the
communication point of view SA may require broadcasting when an acceptable
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01 S ← GetInitialSolution();
02 T ← InitialTemperature;
03 for i← 1 to NumberOfTemperatureReduction do
04 for j ← 1 to EpochLength do
05 S′ ← GetSolutionFromNeighborhood();
06 ∆C ← CostFunction(S′) - CostFunction(S);
07 if (∆C < 0 or AcceptWithProbabilityP(∆C, T ))
08 S ← S′; {i.e., the trial is accepted}
09 end if;
10 end for;
11 T ← λT ; {with λ < 1}
12 end for;

Fig. 1. SA algorithm

solution is found. This communication requirement suggests message passing as
the suitable paradigm of communication, particularly if intended to run on a
cluster.

2.2 Possible intensity of communication in parallel simulated
annealing

Selection of both decomposition and communication paradigms seems to be nat-
urally driven by the nature of the problem, but setting the right intensity of com-
munication is not a trivial task. The universe of possible solutions is spanned by
two extremes: communicating each event, where event means an accepted trial,
and, independent runs method, where no event is communicated. The former
method results in the single chain algorithm—only a single path in the search
space is carried out, while the latter results in the multiple chains algorithm—
several different paths are evaluated simultaneously (see Figure 2). The location
of starting points depends on implementation.

Intensive communication algorithm—the time stamp method. In cur-
rent research the intensive communication algorithm is represented by its speed-
up optimized version called the time stamp method. The communication model
with synchronization at solution acceptance events proposed in [7] was the start-
ing point. The main modification, made for efficiency reasons, is to let processes
work in an asynchronous way, instead of frequent computation interruptions by
synchronization requests that resulted in idle time. After finding an accepted
trial, the process announces the event and continues its computation without
any synchronization. In the absence of the mechanism which ensures that all
processes are aware of the same, global state and choose the same, accepted
solution, a single process can decide only locally, based on its own state and in-
formation included in received messages. Information about the real time when
the accepted solution was found—the time stamp—is used as the criterion for
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Fig. 2. One single chain versus multiple chains.

choosing among a few acceptable solutions (known locally). The solution with
the most recent time stamp is accepted, while older ones are rejected. From the
global point of view the same solutions will be preferred.

Generally, the single chain approach is believed to have two main drawbacks:
only limited parallelism is exploited due to the reduction to a single search path
and noticeable communication overhead. The second drawback especially re-
duces the application of this method to a small number of engaged processes.

Non-communication algorithm—independent runs. The main assump-
tions for independent runs were formulated in [2], where the division algorithm
is proposed. The method uses all available processors to run basically sequential
algorithms, where the original chain is split into subchains of EpochLength (see
Figure 1) divided by the number of processes. At the end, the best solution found
is picked up as the final one; thus the communication is limited to merely one
reduction operation.

Although the search space is exploited in a better way than in the approach
described previously, very likely only a few processes work in the “right” areas
while the rest perform useless computation. Additionally, excessive shortening
of the chain length negatively affects the quality of results, so application of this
method is not suitable for a great number (e.g., hundreds) of engaged processes.

Lightweight communication—periodically interacting searches. Recog-
nizing the extreme character of the independent runs method, especially when
using a large number of processes, one is tempted to look for the golden mean in
the form of periodic communication. The idea was fully developed in [11]. In that
approach processes communicate after performing a subchain called a segment,
and the best solution is selected and mandated for all of them. In this study a
segment length is defined by a number of temperature decreases. As suggested
in [11] to prevent search paths from being trapped in local minima areas as a
result of communication, the period of the information exchange needs to be
carefully selected. Additionally, the influence of the periodic exchange doesn’t
always result in a positive effect and varies according to the optimized problem.

Hybrid communication method—nesting OpenMP in MPI. In this study
a new approach is proposed, which tries to adopt the advantages of the meth-
ods mentioned above while minimizing their disadvantages. In contrast with
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these methods, this implementation is intended to run on modern clusters of
SMP nodes. The parallelization is accomplished using two levels: the outer par-
allelization which uses MPI to communicate between SMP nodes, and the inner
parallelization which uses OpenMP for shared memory parallelization within
nodes.

Outer-level parallelization. It can be assumed that the choice of an appropriate
algorithm should be made between independent runs or periodically interacting
searches, as they are more suitable for more than few processes. The maximal
number of engaged nodes is limited by reasonable shortening of the chain length,
to preserve an acceptable quality of results.

Inner-level parallelization. Within a node a few threads can build one subchain
of a length determined at the outer-level. Negligible deterioration of quality is
a key requirement. If this requirement is met, the limit on the total number of
processors to achieve both speed-up and preserve quality is determined by the
product of the processes number limit at the outer level and the threads number
limit at the inner level. An efficient implementation can also take advantage of
the fact that CPUs on SMP nodes communicate by fast shared memory and
communication overhead should be minimal relative to that between nodes. In
this study a modified version of the simple serialisable set algorithm [8] was ap-
plied (see Section 3). For a small number of processors (i.e., 2 to 8), apart from
preserving the quality of solutions, it should provide speed-up.

3 Implementation of communication with MPI and
OpenMP

3.1 Intensive communication algorithm

Every message contains a solution together with its time stamp. As the assump-
tion was to let the processes work asynchronously polling is applied to detect
moments when data is to be received. An outline of the algorithm is presented
in Figure 3.

In practice, as described in [7], the implementation underwent a few stages
of improvement to yield acceptable speed-up. Among others: a long message
containing a solution was split into two, to test the differences in performance
when sending different types of data, data structure was reorganized—an array
of structures was substituted by a structure of arrays, MPICH2 was used since
there was a bug in MPICH that prevented the program from running.

3.2 Non– and lightweight communication algorithms

In case of both independent runs and periodically interacting searches methods,
MPI reduction instructions (MPI Bcast, MPI Allreduce) are the best tools for
exchanging the data.
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01 MyData .TimeStamp ← 0;
02 do in parallel
03 do
04 MPI Iprobe(); { check for incoming messages }
05 if (there is a message to receive)
06 MPI Recv(ReceivedData, . . . );
07 if (MyData .TimeStamp < ReceivedData .TimeStamp)
08 update MyData and current TimeStamp;
09 end if;
10 end if;
11 while (there is any message to receive);
12 performTrial();
13 if (an acceptable solution was found, placed in MyData.Solution)
14 MyData .TimeStamp ← MPI Wtime();
15 for all cooperating processors do
16 MPI Send(MyData, . . . );
17 end for;
18 end if;
19 while (not Finish);

Fig. 3. The outline of the intensive communication algorithm

3.3 Hybrid communication method

The duality of the method is extended to its communication environment: MPI
is used for communication between the nodes and OpenMP for communication
among processors within a single node. The former algorithm is implemented as
described in the previous section (3.2), whereas an outline of the latter one is
presented in Figure 4.

At the inner-level, the total number of trials (EpochLength from the outer
level) in each temperature step is divided into short sets of trials All trials in
such a set are done independently. This modification is the basis for the OpenMP
parallelization with loop worksharing. To achieve an acceptable speed-up, the
following optimizations are necessary:

– The parallel threads must not be forked and joined for each inner loop be-
cause the total execution time for a set of trials can be too short, compared
to the OpenMP fork-join overhead;

– The size of such a set must be larger than the number of threads to minimize
the load imbalance due to the potentially extremely varying execution time
for each trial. Nevertheless, for keeping quality, the size of the set of trials
should be as short as possible to minimize the number of accepted but unused
trials;

– Each thread has to use its own independent random number generator to
minimize OpenMP synchronization points.
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01 for i← 1 to NumberOfTemperatureReduction do
02 {entering OpenMP parallel region}
03 for j ← 1 to EpochLength do
04 {OpenMP parallel for loop worksharing}
05 for i← 0 to set of trials size do
06 performTrial();
07 end for;
08 {OpenMP entering master section}
09 select one solution, common for all threads, from all

accepted ones, based on ∆C < 0 or AcceptWithProbabilityP(∆C, T )
10 j ← j + set of trials size;
11 {OpenMP end of master section}
12 end for;
13 {end of OpenMP parallel region}
14 T ← λT ;
15 end for;

Fig. 4. Parallel SA algorithm within a single node

4 Experimental results

In the vehicle routing problem with time windows it is assumed that there is a
warehouse, centrally located to n customers. The objective is to supply goods
to all customers at the minimum cost. The solution with lesser number of route
legs (the first goal of optimization) is better then a solution with smaller total
distance traveled (the second goal of optimization). Each customer as well as
the warehouse has a time window. Each customer has its own demand level and
should be visited only once. Each route must start and terminate at the ware-
house and should preserve maximum vehicle capacity. The sequential algorithm
from [5] was the basis for parallelization.

Experiments were carried out on NEC Xeon EM64T Cluster installed at the
High Performance Computing Center Stuttgart (HLRS). Additionally, for tests
of the OpenMP algorithm, NEC TX-7 (ccNUMA) system was used. The numer-
ical data were obtained by running the program 100 times for Solomon’s [14]
R108 set with 100 customers and the same set of parameters.

The quality of results, namely the number of final solutions with the minimal
number of route legs generated by pure MPI-based algorithms in 100 experiments
is shown in Table 1. Experiments stopped after 30 consecutive temperature de-
creases without improving the best solution. As can be seen in the table, the in-
tensive communication method gives acceptable results only for a small number
of cooperating processes. Secondly, excessively frequent periodical communica-
tion hampers the annealing process and deteriorates the convergence. The best
algorithm for the investigated problem on a large number of CPUs, as far as the
quality of results is concerned, is the algorithm of independent runs, so this one
was chosen for the development of the hybrid method.
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Table 1. Comparison of quality results for MPI based methods

No. of Percentage of solutions with minimal no. of route legs

processes Non-comm. Periodic communication with the period of Intensive

1 5 10 20 30 comm.

seq 94 N/A N/A N/A N/A N/A N/A
2 97 95.6 96.2 96.8 94.2 96 91
4 95 93 96 93 93 96 96
8 91 91 82 86 90 91 93

10 94 85 88 85 88 96 82
20 84 70 77 77 74 89 69
40 85 56 60 63 71 74 N/A
60 76 30 46 55 60 68 N/A

100 60 32 38 35 44 55 N/A
200 35 12 23 30 38 37 N/A

The results generated by the hybrid algorithm are shown in Table 2. It com-
pares two methods using the same number of processors, e.g., 20 processor in-
dependent runs (MPI parallelization) versus computation on 10 nodes with 2
CPUs each or on 5 nodes with 4 CPUs each (MPI/OMP parallelization). For
better comparison, a real time limit was fixed for each independent set of pro-
cessors. The time limit is the average time needed by the sequential algorithm to
find the minimal-leg solution divided by the number of processors. The hybrid
version of the algorithm with 2 OMP threads per each node ran on NEC Xeon
Cluster, while the usage of 4 OMP threads per node was emulated, due to the
lack of access to the desired machine. Because a separate set of experiments
with 4 OMP threads demonstrated the speed-up of 2.7, then the emulation was
carried out by multiplying the applied time limit by the this factor, as if undoing
the speed-up to be observed on a real cluster of SMP nodes. The accumulated
CPU time of a real experiment would be shortened by the factor 2.7/4 = 0.67.

It should be noted that both variants of the hybrid method give a distinctively
greater number of solutions with the minimal number of route legs if one uses 32
or more CPUs. Additionally, for smaller number of CPUs, the 4 OMP threads
version could be competitive as well (up to 40 CPUs), despite the loss of CPU-
time due to the limited efficiency of the parallelization inside of each SMP node.
If one can accept a reduced quality, e.g. 85%, then only a speed-up of 40 can be
achieved without SMP parallelization. With hybrid parallelization, the speed-up
can be raised to 60 (with 2 threads) and 120 (with 4 threads), i.e., an interactive
time-scale of about 15 sec can be reached.

5 Conclusions and future work

In this study a new implementation of the multiple chain parallel SA that uses
OpenMP with MPI was developed. Additionally, within the framework of the
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Table 2. Comparison of quality results for hybrid and independent runs methods

Hyb., 2 OMP threads Hyb., 4 OMP threads Non-comm.

Total no. Used Speed No. of No. of sol. No. of No. of sol. No. of sol.
of used time -up MPI with min. MPI with min. with min.

processors limit processes no. of route processes no. of route no. of route
[s] legs legs legs

1 1830.0 N/A N/A N/A N/A N/A 97
4 457.5 4 2 92 1 96 95

16 114.4 16 8 93 4 97 93
20 91.5 20 10 93 5 93 94
32 57.2 32 16 90 8 90 85
40 45.8 40 20 92 10 93 85
60 30.5 60 30 86 15 91 76
80 22.9 80 40 78 20 88 69

100 18.3 100 50 87 25 87 64
120 15.3 120 60 67 30 85 62
200 9.2 200 100 55 50 78 34
400 4.6 400 200 27 100 57 9
600 3.1 600 300 9 150 31 0
800 2.3 800 400 N/A 200 13 0

single chain parallel SA, a time-stamp method was proposed. Based on experi-
mental results the following conclusions may be drawn:

– Multiple chain methods outperform single chain algorithms, as the latter
lead to a faster worsening of results quality and are not scalable. Single
chain methods could be used only in environments with a few processors;

– The periodically interacting searches method prevails only in some specific
situations; generally the independent runs method achieves better results;

– The hybrid method is very promising, as it gives distinctively better results
than other tested algorithms and satisfactory speed-up;

– Emulated results shown need verification on a cluster of SMPs with 4 CPUs
on a single node.

Specifying the time limit for the computation, by measurements of the elapsed
time, gives a new opportunity to determine the exact moment to exchange data.
Such a time-based scheduling could result in much better balancing than the
investigated temperature-decreases-based one (used within the periodically in-
teracting searches method). The former could minimize idle times, as well as
enables setting the number of data exchanges. Therefore, future work will focus
on forcing a data exchange (e.g., after 90% of specified limit time), when—
very likely—the number of route legs was finally minimized (first goal of op-
timization). Then, after selecting the best solution found so far, all working
processes—instead of only one—could minimize the total distance (the second
goal of optimization), leading to significant improvement of the quality of results.
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