
ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 1

Programming Models

•! A programming model is an abstraction that we program by
writing instructions for

•! Programming models are implemented in languages and libraries

•! Implementations of the “standard” serial model of a CPU

–! Assembly language

–! Language models

!! C

!! C++

!! Fortran

•! Implementations of various parallel models

–! For shared memory: OpenMP (C and Fortran versions), pthreads

library

–! For multiple-memory systems: Message Passing (MPI)

–! Hybrid models for hybrid systems

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 2

Higher-Level Models

•! Parallel Languages

–! UPC

–! Co-Array Fortran

–! Titanium

•! Abstract, declarative models

–! Logic-based (Prolog)

–! Spreadsheet-based (Excel)

•! The programming model research problem: Define a model
(and language) that

–! Can express complex computations

–! Can be implemented efficiently on parallel machines

–! Is easy to use

•! It is hard to get all three

–! Specialized libraries can implement very high-level, even
application-specific models

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 3

Parallel Programming Models

•! Multiple classes of models differ in how we think about
communication and synchronization among processes or
threads.

–! Shared memory

–! Distributed memory

–! Some of each

–! Less explicit

•! Shared Memory (really globally addressable)

–! Processes (or threads) communicate through memory

addresses accessible to each

•! Distributed memory

–! Processes move data from one address space to another via
sending and receiving messages

•! Multiple cores per node make the shared-memory model
efficient and inexpensive; this trend encourages all shared-
memory and hybrid models.

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 4

Writing Parallel Programs

•! Parallel programming models are expressed:

–! In libraries callable from conventional languages

–! In languages compiled by their own special compilers

–! In structured comments that modify the behavior of a
conventional compiler

•! The new multicore chips are sparking a revolution in parallel
programming languages and models

–! OpenMP + MPI is one choice

–! MPI + ??? Is another

–! Or, a totally new paradigm/language

•! Here are some examples to get a feel for various languages

–! (examples from Rusty Lusk, SC08 tutorial)

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 5

The Poisson Problem

•! Simple elliptic partial differential equation

•! Occurs in many physical problems

–! Fluid flow, electrostatics, equilibrium heat flow

•! Many algorithms for solution

•! We illustrate a sub-optimal one, since it is easy to understand
and is typical of a data-parallel algorithm

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 6

Jacobi Iteration (Fortran Ordering)

•! Simple parallel data structure

•! Processes exchange columns with neighbors

•! Local part declared as xlocal(m,0:n+1)

Process 0 Process 1 Process 2 Process 3

Boundary Point

Interior Node

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 7

Serial Fortran Version

 real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

 ! Code to initialize f, u(0,*), u(n:*), u(*,0), and
 ! u(*,n) with g

 h = 1.0 / n
 do k=1, maxiter
 do j=1, n-1
 do i=1, n-1
 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
 u(i,j+1) + u(i,j-1) - &
 h * h * f(i,j))
 enddo
 enddo
 ! code to check for convergence of unew to u.
 ! Make the new value the old value for the next iteration
 u = unew
 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 8

MPI

•! The Message-Passing Interface (MPI) is a standard library
interface specified by the MPI Forum

•! It implements the message passing model, in which the
sending and receiving of messages combines both data
movement and synchronization. Processes have separate
address spaces.

•! Send(data, destination, tag, comm) in one process matches
Receive(data, source, tag, comm) in another process, at which
time data is copied from one address space to another

•! Data can be described in many flexible ways

•! SendReceive can be used for exchange

•! Callable from Fortran-77, Fortran-90, C, C++ as specified by the
standard

–! Other bindings (Python, java) available, non-standard

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 9

MPI Version

 use mpi

 real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)
 real f(1:n-1, js:je), h
 integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

 ! Code to initialize f, u(0,*), u(n:*), u(*,0), and

 ! u(*,n) with g

 h = 1.0 / n

 do k=1, maxiter
 ! Send down

 call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &
 u(1,je+1), n-1, MPI_REAL, nbr_up, k, &
 MPI_COMM_WORLD, status, ierr)

 ! Send up
 call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

 u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&
 MPI_COMM_WORLD, status, ierr)
 do j=js, je

 do i=1, n-1
 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

 u(i,j+1) + u(i,j-1) - &
 h * h * f(i,j))
 enddo

 enddo
 ! code to check for convergence of unew to u.

 ! Make the new value the old value for the next iteration
 u = unew
 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 10

HPF

•! HPF is a specification for an extension to Fortran 90 that
focuses on describing the distribution of data among
processes in structured comments.

•! Thus an HPF program is also a valid Fortran-90 program and
can be run on a sequential computer

•! All communication and synchronization if provided by the
compiled code, and hidden from the programmer

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 11

HPF Version

 real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h

!HPF$ DISTRIBUTE u(:,BLOCK)
!HPF$ ALIGN unew WITH u
!HPF$ ALIGN f WITH u

 ! Code to initialize f, u(0,*), u(n:*), u(*,0),

 ! and u(*,n) with g

 h = 1.0 / n
 do k=1, maxiter
 unew(1:n-1,1:n-1) = 0.25 * &

 (u(2:n,1:n-1) + u(0:n-2,1:n-1) + &
 u(1:n-1,2:n) + u(1:n-1,0:n-2) - &
 h * h * f(1:n-1,1:n-1))
 ! code to check for convergence of unew to u.
 ! Make the new value the old value for the next iteration

 u = unew
 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 12

OpenMP

•! OpenMP is a set of compiler directives (in comments, like HPF)
and library calls

•! The comments direct the execution of loops in parallel in a
convenient way.

•! Data placement is not controlled, so performance is hard to get
except on machines with real shared memory

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 13

OpenMP Version

 real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

 ! Code to initialize f, u(0,*), u(n:*), u(*,0),
 ! and u(*,n) with g

 h = 1.0 / n
 do k=1, maxiter
!$omp parallel
!$omp do
 do j=1, n-1
 do i=1, n-1
 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
 u(i,j+1) + u(i,j-1) - &
 h * h * f(i,j))
 enddo
 enddo
!$omp enddo
 ! code to check for convergence of unew to u.

 ! Make the new value the old value for the next iteration
 u = unew
!$omp end parallel
 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 14

The PGAS Languages

•! PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with
awareness of data locality, for performance

–! Co-Array Fortran, an extension to Fortran-90)

–! UPC (Unified Parallel C), an extension to C

–! Titanium, a parallel version of Java

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 15

Co-Array Fortran

•! SPMD – Single program, multiple data

•! Replicated to a number of images

•! Images have indices 1,2, …

•! Number of images fixed during execution

•! Each image has its own set of local variables

•! Images execute asynchronously except when explicitly
synchronized

•! Variables declared as co-arrays are accessible of another
image through set of array subscripts, delimited by [] and
mapped to image indices by the usual rule

•! Intrinsics: this_image, num_images, sync_all, sync_team,
flush_memory, collectives such as co_sum

•! Critical construct

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 16

CAF Version

 real u(0:n,js-1:je+1,0:1)[*], f (0:n,js:je), h

 integer np, myid, old, new

 np = NUM_IMAGES()

 myid = THIS_IMAGE()

 new = 1

 old = 1-new

 ! Code to initialize f, and the first and last columns of u on the extreme

 ! processors and the first and last row of u on all processors

 h = 1.0 / n

 do k=1, maxiter

 if (myid .lt. np) u(:,js-1,old)[myid+1] = u(:,je,old)

 if (myid .gt. 0) u(:,je+1,old)[myid-1] = u(:,js,old)

 call sync_all

 do j=js,je

 do i=1, n-1

 u(i,j,new) = 0.25 * (u(i+1,j,old) + u(i-1,j,old) + &

 u(i,j+1,old) + u(i,j-1,old) - &

 h * h * f(i,j))

 enddo

 enddo

 ! code to check for convergence of u(:,:,new) to u(:,:,old).

 ! Make the new value the old value for the next iteration

 new = old

 old = 1-new

 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 17

UPC

•! UPC is an extension of C (not C++) with shared and local
addresses

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 18

UPC Version

#include <upc.h>

#define n 1024
shared [*] double u[n+1][n+1];
shared [*] double unew[n+1][n+1];

shared [*] double f[n][n];
int main() {

 int maxiter = 100;
 // Code to initialize f, u(0,*), u(n:*), u(*,0), and
 // u(*,n) with g

 double h = 1.0 / n;
 for (int k=0; k < maxiter; k++) {

 for (int i=1; i < n; i++) {
 upc_forall (int j=1; j < n; j++; &unew[i][j]) {
 unew[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] +

 u[i][j+1] + u[i][j-1] -
 h * h * f[i][j]);

 }
 }
 upc_barrier;

 // code to check for convergence of unew to u.
 // Make the new value the old value for the next iteration

 for (int i = 1; i < n; i++) {
 upc_forall(int j = 1; j < n; j++; &u[i][j]) {
 u[i][j] = unew[i][j];

 }
 }

 }
}

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 19

Titanium

•! Titanium is a PGAS language based on Java

–! Implementations do not use the JVM

•! We show both a serial and parallel version

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 20

Titanium Serial Version

public class Poisson_seq {

 public static void main (String[] argv) {
 int n = 10; // grid side length of f grid

 int maxiter = 100; // number of iterations

 double [2d] u = new double [[0,0]:[n+1,n+1]];
 double [2d] unew = new double [u.domain()];
 double [2d] f = new double [u.domain().shrink(1)];

 double [2d] temp; // used for switching arrays

 // initialize u and f

 double h = 1.0/n;

 for (int i = 0; i < maxiter; i++) {
 foreach (p in unew.domain().shrink(1)) {

 // perform computation
 unew[p] = 0.25 * (u[p + [1, 0]] + u[p + [-1, 0]]
 + u[p + [0, 1]] + u[p + [0, -1]]

 - h * h * f[p]);
 }

 // swap u and unew
 temp = unew;

 unew = u;
 u = temp;

 }
 }
}

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 21

Titanium Version – Part 1

public class Poisson_par {
 public static single void main (String[] argv) {
 int n = 10; // grid side length of f (RHS) grid
 int single maxiter = 100; // number of iterations

 RectDomain<2> myDomain = [[0, Ti.thisProc() * n / Ti.numProcs()] :
 [n+1, (Ti.thisProc()+1)* n / Ti.numProcs()+ 1]];
 RectDomain<2> myInterior = myDomain.shrink(1);

 // create distributed array (auto-initialized to zero)
 double [1d][1d] single [2d] allu = new double [0:1][0:Ti.numProcs()-1] single [2d];
 allu[0].exchange(new double [myDomain]);
 allu[1].exchange(new double [myDomain]);

 // create & initialize f
 double [2d] f = new double [myInterior];
 f.set(1.0);

 double h = 1.0/n;
 for (int single i = 0; i < maxiter; i++) {
 // fetch reference to local arrays
 double [2d] local u = (double [2d] local)allu[0][Ti.thisProc()];
 double [2d] local unew = (double [2d] local)allu[1][Ti.thisProc()];

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 22

Titanium Version – Part 2

 // update ghost cells

 if (Ti.thisProc() > 0)
 allu[0][Ti.thisProc()-1].copy(u.restrict(myInterior));
 if (Ti.thisProc()+1 < Ti.numProcs())
 allu[0][Ti.thisProc()+1].copy(u.restrict(myInterior));
 Ti.barrier();

 // perform computation
 foreach (p in myInterior) {
 unew[p] = 0.25 * (u[p + [1, 0]] + u[p + [-1, 0]]
 + u[p + [0, 1]] + u[p + [0, -1]]

 - h * h * f[p]);
 }
 // swap u and unew
 double [1d] single [2d] temp = allu[0];
 allu[0] = allu[1];

 allu[1] = temp;
 }
 }
}

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 23

Global Operations

•! Example: checking for convergence

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 24

Serial Version

 real u(0:n,0:n), unew(0:n,0:n), twonorm

 ! ...

 twonorm = 0.0

 do j=1, n-1

 do i=1, n-1

 twonorm = twonorm + (unew(i,j) - u(i,j))**2

 enddo

 enddo

 twonorm = sqrt(twonorm)

 if (twonorm .le. tol) ! ... declare convergence

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 25

MPI Version

 use mpi
 real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), twonorm
 integer ierr

 ! ...

 twonorm_local = 0.0
 do j=js, je
 do i=1, n-1
 twonorm_local = twonorm_local + &
 (unew(i,j) - u(i,j))**2
 enddo
 enddo
 call MPI_Allreduce(twonorm_local, twonorm, 1, &
 MPI_REAL, MPI_SUMM, MPI_COMM_WORLD, ierr)
 twonorm = sqrt(twonorm)
 if (twonorm .le. tol) ! ... declare convergence

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 2

6

HPF Version

 real u(0:n,0:n), unew(0:n,0:n), twonorm

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew with u

!HPF$ ALIGN f with u

 ! ...

 twonorm = sqrt (&

 sum ((unew(1:n-1,1:n-1) - u(1:n-1,1:n-1))**2))

 if (twonorm .le. tol) ! ... declare convergence

 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 2

7

OpenMP Version

real u(0:n,0:n), unew(0:n,0:n), twonorm

 ! ..
 twonorm = 0.0
!$omp parallel
!$omp do private(ldiff) reduction(+:twonorm)
 do j=1, n-1
 do i=1, n-1
 ldiff = (unew(i,j) - u(i,j))**2
 twonorm = twonorm + ldiff
 enddo
 enddo
!$omp enddo
!$omp end parallel
 twonorm = sqrt(twonorm)
 enddo

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others 2

8

The HPCS languages

•! DARPA funded three vendors to develop next-generation
languages for programming next-generation petaflops
computers

–! Fortress (Sun)

–! X10 (IBM)

–! Chapel (Cray)

•! All are global-view languages, but also with some notion for
expressing locality, for performance reasons.

–! They are more abstract than UPC and CAF in that they do not

have a fixed number of processes.

•! Sun’s DARPA funding was discontinued, and the Fortress
project made public. See http://fortressproject.sun.com

•! Work continues at Cray and IBM

ParCFD09 Tutorial © Jost, Wellein, Hager, Koniges, Rabenseifner, Lusk, and others

OpenCL

•! A new standard Platform for Heterogeneous Parallel
Computers

•! For programming GPUs, CPUs, etc. in one model

•! Supports data- and task- parallel compute models

•! Based on C

•! See upcoming tutorials by Tim Mattson, and the OpenCL
Working Group, et al.

2

9

