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Goals of this part of the tutorial

® Effective methods for clusters of
SMP node
->Mismatch problems & Pitfalls

Core
CPU(socket)
SMP board
ccNUMA node

® Technical aspects of hybrid
programming
—>Programming models on clusters
—2>“How-To”

® Opportunities with hybrid
programming > Application categories
that
can benefit from hybrid parallelization
—>Case studies

L1 cache

L2 cache
Intra-node network

Inter-node network

Inter-blade newtrok
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Motivation
Hybrid MPI/OpenMP programming seems natural

SMP nod SMP nod . .
L L ® Which programming
Socket 1 Socket 1 model is fastest?
| _Quad-core__ | _ Quad-core__ MPI everywhere?
CPU CPU
[ X XN N ]
Socket 2 Socket 2 Fu"y hybrld
MPI & OpenMP?
| _ Quad-core__ | _Quad-core__
CPU CPU .
Something between?
(Mixed model)
Often hybrid
Node Interconnect .
programming -
slower than pure MPI
- Examples, Reasons, “
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Pure MPI versus Explicit/Semi Implicit C154N6 SEAM
Hybrid MPI+OpenMP (Masteronly) | 3 . 'ST!70PSTSWW, 16 Level, NCAR
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- it depends on? ® ——
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-
L - 4
e o // Figures: Richard D. Loft, Stephen J. Thomas,
E 10} 1 John M. Dennis:
2 L Terascale Spectral Element Dynamical Core for
© Atmospheric General Circulation Models.
g 0 ' ' ' ' Proceedings of SC2001, Denver, USA, Nov. 2001.
£ 0 200 400 600 800 1000 http://www.sc2001.org/papers/pap.pap189.pdf
Processors Fig. 9 and 10.
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< Motivation

Minimizing )
- Communication overhead,
» e.g., messages inside of one SMP node

Synchronization overhead
= e.9., OpenMP fork/join .
J =P : Optimal

10 ObenMP aided workshari > parallel
= e.g., using Open uided worksharin :
schedule® " J J scaling

Load imbalance

Memory consumption
= e.9., replicated data in MPI parallelization
Computation overhead

* e.g., duplicated calculations in MPI
parallelization J
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Hybrid Programming — Outline

® Programming Models on Clusters of SMP nodes

Author: L
j Hager|
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Programming Models for Hierarchical Systems

® Pure MPI (one MPI process on each CPU)

¢ Hybrid MPI+OpenMP
- shared memory OpenMP
- distributed memory MPI

[ OpenMP Tnsids of the ]_’

MPI between the nodes |
via node interconnect Node Interconnect

® Other: Virtual shared memory systems, PGAS, HPF, ...
® Often hybrid programming (MPI+OpenMP) slower than pure MPI

- why?
MPI local data in each process || OpenMP  (shared data) Master thread,
Sequential some_serial_code other threads
program on #pragma omp parallel for

each CPU N

Explicit Message Passing
by calling MPI_Send & MPI_Recv

again_some_serial_code

block_to_be_parallelized

|E| sIeEjnglE'

Author:
seifner
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MPI and OpenMP Programming Models

pure MPI

one MPI process
on each core

hybrid MP1+OpenMP
MPI: inter-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads
while other threads are computing

Masteronly

MPI only outside
of parallel regions

Author:
seifner
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Pure MPI

pure MPI
one MPI process
on each core

Advantages

- MPI library need not to support multiple threads
Major problems
Does MPI library use internally different protocols?
= Shared memory inside of the SMP nodes
= Network communication between the nodes
Does application topology fit on hardware topology?

Discussed
in detail later on
in the section
Mismatch

Problems - Unnecessary MPIl-communication inside of SMP
nodes!
:::;‘n‘:r ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Masteronly

Masteronly Advantages
MPI only outside

of parallel regions - No message passing inside of the SMP nodes
- No topology problem
for (iteration ....) Major Problems
{#pragma omp paralle - All pther threads are sleeping.
numerical code while master thread communicates!
f"end omp parallel */ — Which inter-node bandwidth?
[* on master thread only */ — MPI-lib must be thread-safe

MPI_Send (original data
to halo areas
in other SMP nodes)
MPI_Recv (halo data
from the neighbors)
} /*end for loop

\uthor:
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wthor:
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Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

if (my_thread_rank < ...) {

MPI_Send/Recv....
i.e., communicate all halo data

}else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

Execute those parts of the application
that need halo data
(on all threads)

¢ Distributed shared virtual memory system needed\
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Pure OpenMP (on the cluster)

Must support clusters of SMP nodes
e.d., Intel® Cluster OpenMP >
- Shared memory parallel inside of SMP nodes

- Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier) J

OpenMP only
distributed virtual
shared memory

g!by rule of thumb:

Communication
may be
10 times slower
than with MPI

i.e., the OpenMP memory and parallelization model

is prepared for clusters!
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MPI Memory Model

Message Passing Interface
Memory Model:

- MPI assumes a private address space
- Private address space for each MPI Process

- Data needs to be explicitly comm

unicated

Applies to distributed and shared memory computer architectures

Message buffers|

mpi_receive

mpi_send

Address
Space PO

Address
Space PO

process 0

/

process 1

process 2 process 3

MPI Program
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General Structures

® |In MPI/OpenMP all

processes start up
at the same time

Initialize Initialize

Il 1l

® Two ways to
handle input:

Il 1l

- Parallel 11O

Execute parallel work Execute parallel work

i [

finalize finalize
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OpenMP Memory Model

OpenMP assumes a shared address space
No communication is required between threads
Thread Synchronization is required when accessing shared data

Applies to shared memory or distributed shared memory, e.g. Intel’s

Cluster OpenMP®™

process 0

J

Shared address space
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OpenMP Code General Structure

* Fork-Join Model:

» Execution begins with a single “Master Thread”

» Ateam of threads is created at each parallel region

» Threads are joined at the end of parallel regions

» Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time

: rial ; ,
execution Seria Parallel Serial Parallel Serial

Core

Master Thread Multi-Threaded

15
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Comparison of MPI and OpenMP

* OpenMP
Memory Model « Memory Model
- Data private by default — Data shared by default
- Data accessed by — Access to shared data requires
multiple processes synchronization

needs to be explicitly

. — Private data needs to be explicitly
communicated

] declared
Program Execution Program Execution
- One start and beginning _ Fork-Join Model

Parallelization
- Domain decomposition

- Explicitly programmed
by user

* Parallelization

— Typically on loop level
— Based on compiler directives

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 17

Support of Hybrid Programming

* OpenMP
— MPI-1 no concept of threads ~ — None
— MPI-2: — API only for one execution unit,

which is one MPI process

— For example: No means to specify
the total number of threads across
several MPI processes.

— Thread support
— MPIL_Init_thread

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 18



MPI2 MPI_Init_thread

Syntax
call MPL_Init_thread( irequired, iprovided, ierr)
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)
int MPI::Init_thread(int& argc, char**& argy, int required)

Support Levels Description
MPI_THREAD_SINGLE Only one thread will execute.
MPI_THREAD_FUNNELED Process may be multi-threaded, but only main

thread will make MPI calls (calls are "funneled" to
main thread). Default
MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be
"serialized").
MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.
If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 19
Funneling through Master
Forfran C
include ‘mpif.h’ #include <mpi.h>
program hybmas int main(int argc, char **argv){
int rank, size, ierr, i;
call mpi_init_thread(...) ierr = MPI_Init_thread {(..)
#pragma omp parallel
ISOMP parallel {
#pragma omp barrier
ISOMP barrier #pragma omp master
ISOMP master {
‘ierr:MPl_<Whatever>(...) ‘
‘ call MPI_<whatever>(...,ierr) ‘ }
ISOMP end master
#pragma omp barrier
ISOMP barrier
}
ISOMP end parallel }
end
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Serialize through Single

Fortran C
include ‘mpif.h’ #include <mpi.h>
program hybsing int main(int argc, char **argv){
call mpi_init_thread(MPI_THREAD_SINGLE, int rank, size, ierr, i;
iprovided, ierr) mpi_init_thread(MP|_THREAD_SINGLE,
ISOMP parallel iprovided)
#pragma omp parallel
ISOMP barrier {
ISOMP single #pragma omp barrier
#pragma omp single
call MPI_<whatever>(...,ierr) {
‘!SOI\/IP end single ‘ ‘ierrzMP/_<Whatever>(...) ‘
}
ISOMP end parallel
end }
}
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 21

Overlapping Communication and Work

® One core can saturate the PCl-e <—>network bus. Why use

all to communicate?

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Communicate with one or several cores.

Work with others during communication.

Need at least MPI_THREAD_FUNNELED support.
Can be difficult to manage and load balance!

22



Overlapping Communication and Work

Fortran C
include ‘mpi.h’ #include <mpi.h>
program hybover int main(int argc, char **argv){
int rank, size, ierr, i;
call mpi_init_thread(MPI_THREAD_FUNNELED,...)
ierr= MPI_Init_thread(...)
ISOMP parallel
#pragma omp parallel
if‘(lthread .eq. 0) then { ‘ ‘
call MPI_<whatever>(...,ierr) if (thread == 0){
else ierr=MPI_<Whatever>(...)
<work> }
endif if(thread = 0){
work
ISOMP end parallel }
end
}
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Thread-rank Communication

éall mpi_init_thread( MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size( MPI_COMM_WORLD,nranks, ierr)

ISOMP parallel private(i, ithread, nthreads)

nthreads=OMP_GET_NUM_THREADS() Communicate between ranks.
ithread =OMP_GET_THREAD_NUM()
call pwork(ithread, irank, nthreads, nranks...) Threads use tags to differentiate.

if(irank == 0) then
call mpi_send(ithread,1,MPI_INTEGER, [1,||thread,MPI_COMM_WORLD, ierr)
else

call mpi_recv( j»1,MPL_INTEGER, [0,||thread,MPI_COMM_WORLD, istatus,ierr)
print*, "Yep, this is ",irank," thread ", ithread," | received from ", j
endif

ISOMP END PARALLEL
end

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 24



Running Hybrid Codes

* Running the code
- Highly non-portable! Consult system docs
- Things to consider:
= |s environment available for MPI Processes:
—E.g.: mpirun —np 4 OMP NUM THREADS=4
a.out instead of your binary alone may be necessary
= How many MPI Processes per node?
» How many threads per MPI Process?
Which cores are used for MPI?
Which cores are used for threads?
Where is the memory allocated?

2

——

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others
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Hybrid Programming — Outline

Practical “How-To” on hybrid programming & Case Studies

Author:
j Hager|

\uthor:
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Hybrid Programming How-To: Overview

® A practical introduction to hybrid programming
- How to compile and link
- Getting a hybrid program to run on a cluster

® Running hybrid programs efficiently on multi-core clusters
- Affinity issues
= ccNUMA
= Bandwidth bottlenecks

- Intra-node MPI1/OpenMP anisotropy
= MPI communication characteristics
= OpenMP loop startup overhead

- Thread/process binding

Courtesy of Georg Hager (RRZE)
Author:
Hager
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How to compile, link and run

® Use appropriate OpenMP compiler switch (-openmp, -xopenmp,

-mp, -gsmp=openmp, ...) and MPI compiler script (if available)
¢ Link with MPI library

- Usually wrapped in MPI compiler script

- If required, specify to link against thread-safe MPI library

= Often automatic when OpenMP or auto-parallelization is switched on

¢ Running the code

- Highly non-portable! Consult system docs! (if available...)

- If you are on your own, consider the following points

- Make sure OMP_NUM_THREADS etc. is available on all MPI processes

= Start “env VAR=VALUE ... <YOUR BINARY>" instead of your binary
alone

= Use Pete Wyckoff's mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

- Figure out how to start less MPI processes than cores on your nodes

Author: Courtesy of Georg Hager (RRZE)
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Some examples for compilation and
execution (1)

« Standard Intel Xeon cluster:
— Intel Compiler
- mpif90 -openmp ..
— Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun ssh -np <num MPI procs> -hostfile machines a.out

Courtesy of Gabriele Jost (TACC/NPS)
Author:
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Some examples for compilation and
execution (2)

Handling of OMP_NUM_THREADS
® without any support by mpirun:
- E.g. with mpich-1
- Problem:

mpirun has no features to export environment variables to the via ssh automatically
started MPI processes

- Solution: Set
export OMP_NUM THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

- If you want to set OMP_NUM_THREADS individually when starting the MPI processes:

= Add
test -s ~/myexports && . ~/myexports
in your ~/.bashrc
= Add
echo 'SOMP_NUM THREADS=<# threads per MPI process>' > ~/
myexports

before invoking mpirun

= Caution: Several invocations of mpirun cannot be executed at the same time with
this trick!

Author:

seifner ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 30



Some examples for compilation and

execution (3)

Handling of OMP_NUM_THREADS (continued)

| ® with support by OpenMPI —x option:
export OMP_NUM THREADS= <# threads per MPI process>
mpiexec -x OMP_NUM THREADS -n <# MPI processes> ./

1seifner

executable

[ ®* Sun Constellation Cluster:

sle Jost

mpif90 -fastsse -tp barcelona-64 —mp ...

SGE Batch System

setenv OMP_NUM_THREADS

ibrun numactl.sh a.out

Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)
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Some examples for compilation and

execution (4)

* Cray XT4:

ftn -fastsse -tp barcelona-64 -mp=nonuma ..

aprun -n nprocs -N nprocs per node a.out

* NEC SX8

Author:

v » v |

NEC SX8 compiler

mpif90 —-C hopt -P openmp .. # —ftrace for profiling info
Execution:

export OMP_NUM THREADS=<num_threads>

MPIEXPORT="OMP_NUM THREADS”

mpirun -nn <# MPI procs per node> -nnp <# of nodes> a.out

Courtesy of Gabriele Jost (TACC/NPS)

sle Jost
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Interlude: Advantages of mpiexec

® Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI
processes on nodes

- As opposed to starting remote processes with ssh/rsh:
= Correct CPU time accounting in batch system
= Faster startup
= Safe process termination
» Understands PBS per-job nodefile
= Allowing password-less user login not required between nodes
- Support for many different types of MPI
= All MPICHs, MVAPICHS, Intel MPI, ...
- Interfaces directly with batch system to determine number of procs
- Downside: If you don’t use PBS or Torque, you’re out of luck...
®* Provisions for starting less processes per node than available cores
- Required for hybrid programming
- “-pernode” and “-npernode #’ options — does not require messing around
with nodefiles
Courtesy of Georg Hager (RRZE)
Hager|
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Running the code

¢ Example for using mpiexec on a dual-socket dual-core
cluster:

$ export OMP NUM THREADS=4
$ mpiexec -pernode ./a.out

¢ Same but 2 MPI processes per node:

$ export OMP NUM THREADS=2
$ mpiexec -npernode 2 ./a.out

® Pure MPI:

$ export OMP NUM THREADS=1 # or nothing if
serial code
$ mpiexec ./a.out

T Courtesy of Georg Hager (RRZE)
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Running the code efficiently?

¢* Symmetric, UMA-type compute nodes have become rare animals
- NEC SX
- Intel 1-socket (“Port Townsend/Melstone”) — see case studies

®* Instead, systems have become “non- |sotrop|c” on the node level

- ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), larger Sun Enterprise
systems, )

- Multi-core, multi-socket
= Shared vs. separate caches
= Multi-chip vs. single-chip
= Separate/shared buses

thor:
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Issues for running code efficiently
on “non-isotropic” nodes

® ccNUMA locality effects
- Penalties for inter-LD access
- Impact of contention
- Consequences of file |/O for page placement
- Placement of MPI buffers

® Multi-core /| multi-socket anisotropy effects
- Bandwidth bottlenecks, shared caches
- Intra-node MPI performance
= Core <> core vs. socket « socket

- OpenMP loop overhead depends on mutual position of threads in
team

35
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A short introduction to ccNUMA

* ccNUMA:

- whole memory is transparently accessible by all
processors

- but physically distributed
- with varying bandwidth and latency
- and potential contention (shared memory paths)

C C C C C C C C
M M M M
Author:
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Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server

$ CPU
- 64 kB L1 per core
1 MB L2 per core
No shared caches
- On-chip memory controller (I\V1])

— 10.6 GB/s local memory bandwidth| |Memery L FLI
® HyperTransport 1000 network HT HTj
- 4 GB/s per link per direction Kiowsay MowaAW

® 3 distance categories for
core-to-memory connections:
- same LD
- 1hop
- 2hops
® Q1: What are the real penalties for non-local accesses?
® Q2: What is the impact of contention?

Author:
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Effect of non-local access on HP DL585

G5:

Serial vector triad A (- Y=R(-Y4+C(-Y*D(-)
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Contention vs. parallel access on HP
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Author:
Hager|
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ccNUMA Memory Locality Problems

® |Locality of reference is key to scalable performance on ccNUMA
- Less of a problem with pure MPI, but see below
® What factors can destroy locality?
® MPI programming:
- processes lose their association with the CPU the mapping took
place on originally
- OS kernel tries to maintain strong affinity, but sometimes fails
¢ Shared Memory Programming (OpenMP, hybrid):
- threads losing association with the CPU the mapping took place on
originally
- improper initialization of distributed data
- Lots of extra threads are running on a node, especially for hybrid
¢ All cases:

- Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

Author:
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Avoiding locality problems

® How can we make sure that memory ends up where it is close to
the CPU that uses it?

- See the following slides

® How can we make sure that it stays that way throughout program
execution?

- See end of section

Author:
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Solving Memory Locality Problems: First
Touch

¢ "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the processor
that first touches it!

- Except if there is not enough local memory available
- this might be a problem, see later
- Some OSs allow to influence placement in more direct ways
= cf. libnuma (Linux), MPO (Solaris), ...
® (Caveat: "touch™ means "write", not "allocate"
* Example:

double *huge = (double*)malloc (N*sizeof (double));
// memory not mapped yet
for (i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

* |tis sufficient to touch a single item to map the entire page

Author:
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ccNUMA problems beyond first touch

disk buffer (FS) cache 5

- If FS cache fills part of memory,:
apps will probably allocate from!
foreign domains

_ > non-local access! \| """ '
- Locality problem even on hybrid i
and pure MPI with “asymmetric” | & (/—) data®
file I/O, i.e. if not all MPI processe{ = ,
perform 1/0 ol BC
® Remedies
- Drop FS cache pages after user job has run (admin’s job)
= Only prevents cross-job buffer cache “heritage”
- “Sweeper” code (run by user)

- Flush buffer cache after I/O if necessary (“sync” is not
sufficient!)

Author:
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ccNUMA problems beyond first touch

® Real-world example: ccNUMA vs. UMA and the Linux buffer

cache

d Compare two 4-wav svetems: AMD Onteron ccNLIMA vs._ Intel

UMA, 4 GB main "

® Run 4 concurrent i
triads (512 MB ea , [
after writing a lar ggzoo i

file

= L
®* Report perfor- 150
mance vs. file siz

® DropFS cacheaf |
each data point

Author:
Hager|

450
400

<250
==
£200-

100~

50

0—0 ccNUMA (2-socket Opteron 275)
2—A UMA (2-socket Xeon 5150)

| 1

0

1000 2000

3000
Disk Cache Size [MB] before running benchmark

4000
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Intra-node MPI characteristics: IMB Ping-Pong
benchmark

® Code (to be run on 2 processors):

we = MPI_WTIME ()

do i=1,NREPEAT

if (rank.eq.0) then
MPI_SEND (buffer,N,MPI_BYTE,1,0,MPI_COMM WORLD,ierr)
MPI_RECV (buffer,N,MPI_BYTE,1,0,MPI_COMM WORLD, &

else

status,ierr)

MPI_RECV(..)
MPI_SEND (..)
endif

enddo

wc = MPI WTIME() - wc

® Intranode (1S): mpirun
® Intranode (2S): mpirun
¢ Internode:

Author:
Hager|

mpirun

-np 2 -pin “1 37
-np 2 -pin “2 3”7
-np 2 —-pernode

45

ele

| Memory |

./a.out

./a.out
./a.out

Courtesy of Georg Hager (RRZE)
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IMB Ping-Pong on DDR-IB Woodcrest cluster:
Bandwidth Characteristics

3000 T IIH\Hl T WIHIII‘ T IIIIIII‘ T TTT Hll T IIIIHI| T T TTTTT T !IIHII‘ T IIIHII|
Shared cache
2500 advantage
—— 1B internode
— 1B intranode 2S
@ 2000 —— 1B intranode 1S
2 Between two sockets BetV\_/een _tV\_'o nodes
2 Between two cores of G TERE via InfiniBand
; 1500 one socket
]
E .
= intrasocke
o / .
/= 1000 intranode
02 13 \‘w
EE EE
ol fmom !

------- ek IIIIIII‘ | I\IIHIl 1 I|IIH|| 1 II\IIHl 1 \IIHII‘ 1L
10' 10° 10’ 10" 10° 10° 10’ 10°
Message length [bytes]

| Affinity matters!

Courtesy of Georg Hager (RRZE)
Author:
Hager|
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Hybrid Programming — Outline

Mismatch Problems & Pitfalls

- ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 48



Mismatch Problems & Pitfalls

Core
None of the programming models —————
fits to the hierarchical hardware SM;S:C :)
(cluster of SMP nodes) oar
ccNUMA node

Several mismatch problems

-> following slides

Benefit through hybrid programming
—-> opportunities, see next section
Quantitative implications

-> depends on you application

In most
Examples: No.1 No.2 | cases:
Benefit through hybrid (see next section)30%10% Both
Loss by mismatch problems —10%| —25% categories!
Total +20% —15%
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 49
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The Topology Problem with| pure MPI

one MPI process
on each core

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains D eeeece
® On system with 10 x dual socket x quad-core

[o] [ (2] 5] (5] (o] (IH[e] [s] 4 [1{g 8 [d 8

i [17 (13 (190 b1 [ P3l{ed (3 d [27fesd b9 B9 B

g6l b7 (8 (o940 (49 [47 [a3—fad 45 [4d [a7]
63

!

]
]
A

46
54 b3 b4 [d|-[s9 57 4 [s9bo b1 £ b9

6] e o8 6 b 9 Tl

&l
&]
]
]

+ 17 xinter-node connections per node = Sequential ranking of
1 x inter-socket connection per node MPI_COMM_WORLD

Does it matter? .
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The Topology Problem with| pure MPI

one MPI process
on each core

L2

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains
® On system with 10 x dual socket x quad-core

4+ 32 x inter-node connections per node Round robin ranking of
0 x inter-socket connection per node  MPI_COMM_WORLD
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The Topology Problem with| pure MPI

one MPI process
on each core

il

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains L seeees 2L
® On system with 10 x dual socket x quad-core

|
a

2IHE]
H
S|
al
]
=
N
B3
SRS
]
B
3]
8]
=H

E.
=i
=i
I

E.

34 alBe 31 3 39{Rd [¢] 2 [}
[ T 1T 1 [ T 1T 1 [ 1 1 ]
w8l 9 59 Bill52 53 &4 B3Hbe 57 5d Bal

4 8 o8 [l b9 b0 [

+ 10 x inter-node connections per node Two levels of
+ 4 xinter-socket connection per node domain decomposition
Bad affinity of cores to thread ranks

2]
2]
R]
2]

o
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The Topology Problem with| pure MPI

one MPI process
on each core

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains Ll veeee IH-H
® On system with 10 x dual socket x quad-core

‘@ [1i(2] @1@ HgQd 1@
hd [7f1d [olr2d Raved B3lied [si{zel P

‘ @5@1@ T 1 Gl iz @3
w8 @50 BilE2 E3sd 5|8 ({8 e

[64 [6d [6d [edr—s] [6d [rd [il[{lz2 [z [74 [79-re| 77 [ [r9

o] 18]
e
Rl &
B &l

EIN |

BREERS
B =
B &

-+ 10 x inter-node connections per node Two levels of
+ 2 xinter-socket connection per node domain decomposition
Good affinity of cores to thread ranks

o

:gf;"e’r ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 53

The Topology Problem with hybrid MPI+OpenMP

MPI: inter-node communication
OpenMP: inside of each SMP node

Exa.: 2 SMP nodes, 8 cores/node

Optimal ? Problem
[|P| TrTch |° ]{“ﬁ' '°"|’°|es|s |1] _ Does application topology inside of SMP
Loop-worksharing parallelization fit on inner hardware topology of
on 8 threads each SMP node?
Optimal ? Solutions:
( )i 1| - Domain decomposition inside of each thread-
( 1| )] J parallel MPI process, and
Minimizing ccNUMA . .
data traffic through - first touch strategy with OpenMP
domain decomposition
inside of each Successful examples:
MPI process .
- Multi-Zone NAS Parallel Benchmarks (MZ-NPB)
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The Topology Problem with | hybrid MPI+OpenMP

MPI: inter-node communication
OpenMP: inside of each SMP node

Application example:
® Same Cartesian application aspect ratio: 5 x 16 = Povevey mE=

® On system with 10 x dual socket x quad-core
® 2 x5 domain decomposition

|Application|[[T (1]
| MPI Level [ [H]

00 O
0| 0 [H

(1 [
(1 [

L1 [
[0

00000 oo O
[ 0O 000 00 OH0 0

— | OpenMP DD'D
1 H

0 OtH

(O

O 0 0

U 0

L1 [

U [

mimanlnm
Jolooodoooo

<+ 3 xinter-node connections per node, but ~ 4 x more traffic

<+ 2 xinter-socket connection per node

Affinity of cores to thread ranks !!! -

Author: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 55

seifner

Inside of an SMP node

HOp O

0 000

~— 2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Author: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 56
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pure MPI

The Mapping Problem with mixed model

hybrid MPI+OpenMP

Do we have this? ... or that? Several multi-threaded
SMP node SMP node MPI process per SMP
Socket 1 Socket 1 nOde:
MPI MPI | (| MPI Problem
process pro- k4 pro-
4 x multi- cess Plcess - Where are your
threaded 0 1 processes and threads
[ X N ] [ X ]
] really located?
Socket S t 2
MPI Solutions:
process - B
4 x multi- P Dleft)fends on your
threaded platiorm,
- e.g., Ibrun numactl
| | | | | | option on Su
Node Inter¢onnect Npde Interconnect As seen in case-study on
— Sun Constellation Cluster
Ranger
with BT-MZ and SP-MZ
huthor: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 57

seifner

| pure MPI

Unnecessary intra-node :
. . Mixed model
Com m u n | catlo n (several multi-threaded MPI

processes per SMP node)

Problem:

- If several MPI process on each SMP node
—> unnecessary intra-node communication

Solution:

— Only one MPI process per SMP node
Remarks:

- MPI library must use appropriate N

fabrics / protocol for intra-node communication

- Intra-node bandwidth higher than
inter-node bandwidth Quality aspects
- problem may be small s of the MP!I library

- MPI implementation may cause
unnecessary data copying
- waste of memory bandwidth )

::tipn"er; ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 58



Author:
nseifner

\uthor:

Sleeping threads and network saturation

with| Masteronly

MPI only outside of

; Problem 1:
parallel regions e —

- Can the master thread
for (iteration ....) saturate the network?
{ - Solution:

SMPnode SMPnode .
#pragma omp parallel - If not, use mixed model
numerical code Socket Socket . | MP
/*end omp parallel */ Master 'ﬁaste, - l.e., severa
thread thread processes per SMP node
/* on master thread only */ <
MPI_Send (original data ‘ &q ceose ‘ \(\q Problem 2:
to halo areas X X - Sleeping threads are
in other SMP nodes) g @ wastina CPU time
MPI_Recv (halo data o g
from the neighbors) Solution: )
} /*end for loop - Overlapping of

computation and

communication
| Node Interconnect

L Problem 1&2 together:

- Producing more idle time
through lousy bandwidth
of master thread -

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 59

OpenMP: Additional Overhead & Pitfalls

Using OpenMP
- may prohibit compiler optimization
- may cause significant loss of computational performance

Thread fork / join
On ccNUMA SMP nodes:

- E.g. in the masteronly scheme:
= One thread produces data
= Master thread sends the data with MPI
- data may be internally communicated from one
memory to the other one
Amdahl’s law for each level of parallelism

Using MPI-parallel application libraries?
- Are they prepared for hybrid?

seifner
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Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Three problems:

®* the application problem:
- one must separate application into:
= code that can run before the halo data is received
= code that needs halo data
> very hard to do !!!

® the thread-rank problem: —— if (my_thread_rank < 1) {

- comm. / comp. via
thread-rank

— cannot use

MPI_Send/Recv....

}else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;

work-sharing directives my_high=high+ (my_thread_rank+1+1)*my_range;

2 loss of major
OpenMP support
(see next slide)

® the load balancing problem }

\uthor:
seifner

my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

}
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Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Subteams

¢ Important proposal
for OpenMP 3.x
or OpenMP 4.x

Barbara Chapman et al.:

Toward Enhancing
OpenMP’s Work-Sharing
Directives.

In proceedings, W.E.
Nagel et al. (Eds.): Euro-
Par 2006, LNCS 4128, pp.
645-654, 2006.

#pragma omp parallel

{

#pragma omp single onthreads( 0)

{
MPI_Send/Recv....

}

#pragma omp for onthreads( 1 : omp_get_numthreads()-1)

{ I* work without halo information */
} I* barrier at the end is only inside of the subteam */

#pragma omp barrier
#pragma omp for

for (........ )
{ I* work based on halo information */
}

Author:
iseifner
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Jacobi Solver
Basic implementation (2 arrays; no blocking etc...)

dok =1, Nk Performance Measure:
do j=1, Nj Million Lattice Site Updates per second: MLUPs
doi=1, Ni
y(i,j, k) = a*x(i,j, k) + b*
(x(i-1,3,k)+ x(i+1,3j,k) + x(i,j-1,k)
+x(i,j+1,k)+ x(i,3,k-1) + x(i,3,k

+1))
enddo Equivalent MFLOPs:
enddo 8 FLOP/LUP * MLUPs
enddo

Parallelization through
» Domain Decomposition
* Halo cells

» Data Exchange through cyclic SendReceive operation
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Parallelization — 3-D Jacobi

® Cubic 3-D computational domain with PBC in all directions
® Use single node IB/GE cluster with one dualcore chip per node

® Homogeneous distribution of workload, e.g. on 8 procs
4 nodes;
pure MPI:

4 nodes;
hybrid:

[ =

-m«l Others 64
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Strongscating:

N3 = 480°

Hybrid on GE:
Thread 0: Communication + Boundary cell updates

2500 :

2000

1500

MLUP/s

1000

500

Thll'ead 1: IInner clell/updaltes
ey _-~" | Performance model

| T=Tcomm * Tcomr

1 Teomp = N*/ Py

o—o PureMPI (GE)

-+ PurcMPI (IB) | Tcomm = DaVo / BW
o—o OpenMPMPI (GE)
=--a OpenMPMPI (IB) i
4— FullHybrid (GE) PO =150 MLUP/s
#--¢ FullHybrid (IB) -

— — Perfect Scalability BW( ) = 100 MBlt/S

- =+ Scalability: GE model ]

0() 4

8 12 16 20 24 Data volume of
e halo exchange

9

Performance estimate (GE) for no nodes:

P(no) = N3/ ((Tcomp/n0) + Tcomm(N0))
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Hybrid Programming — Outline

[ ]
[ ]
Author:
[ ]
® Application Categories that Can Benefit from Hybrid
Parallelization/Case Studies
[ ]
L fiere ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 66
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Multi-Level Parallelism in Applications

* Extract additional Parallelism in case of Limited coarse grain

Parallelism

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

Coarse Grain Parallelism:
z1 z2 Subdomains z1, z2, z3, z4 are
mapped onto MPI Processes P1,
23 24 P2, P3, and P4
v v N v
P1 P2 P3 P4
v y y \
TO T T2 TO T T2 TO ™ T2 TO T T2
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Coarse Grain Load-Balancing

¢ Improve Load-Balance
- Restrict #MPI Processes
- Exploit loop level parallelism instead

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

z1 z2
z3 | z4
I
y Y
P1 P2
TO T T2 ’T3 T4 T5 TO T T2 T3 T4 T5

4 MPI Processes:
Load-Imbalance because of
difference in subdomain size

2 MPI Processes:
Balanced load by assigning z1, z3
to P1 and z2, z4 to P2.

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others
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Fine Grain Load-Balancing

®* Improve Load-Balance on Fine Grain

- Assign more threads to MPI Process with high workload

Fine Grain Parallelism:
Assign 4 threads to P1, P2
Assign 2 threads to P3, P4

Coarse Grain Parallelism:

z1 z2
z3 |z4
L
[ K Y] Y]
P1 P2 P3 P4
T | T To T1

Load-Imbalance because of
difference in subdomain size
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The Multi-Zone NAS Parallel Benchmarks

timestep

set up zones

1,7

initialize

——

exchange
boundaries

l,i

verify

zZones

zZones

Nested

MPI/OpenMP MLP OpenMP
Time step sequential sequential sequential
inter-zones A= AL OpenMP

Processes Processes

exchange | o\ | datacopyt | onoyp
boundaries sync.
intra-zones OpenMP OpenMP OpenMP

LU,SP, and BT
Two hybrid sample implementations
Load balance heuristics part of sample codes
www.nas.nasa.gov/Resources/Software/software.html
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® Multi-zone versions of the NAS Parallel Benchmarks
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Benchmark Characteristics

* Aggregate sizes:
- Class C: 480 x 320 x 28 grid points Expectations:
- Class D: 1632 x 1216 x 34 grid points
- Class E: 4224 x 3456 x 92 grid points
Pure MPI: Load-
¢ BT-MZ: (Block-tridiagonal Solver) (balancing problems!w
- #Zones: 256 (C), 1024 (D), 4096 (E) Good candidate for
- Size of the zones varies widely: MPI1+OpenMP
* large/small about 20
* requires multi-level parallelism to achieve a good load-balance
LU not used
* LU-MZ: (Lower-Upper Symmetric Gauss Seidel So Limited MPI in this study
- #Zones: 16 (C, D, and E) Parallelism: because of
- Size of the zones identical: - MPI+OpenMP small number
* no load-balancing required increases of cores on

* limited parallelism on outer level Parallelism

the systems

* SP-MZ: (Scalar-Pentadiagonal Solver)
- #Zones: 256 (C), 1024 (D), 4096 (E)
- Size of zones identical
* no load-balancing required

Load-balanced on MPI
level: Pure MPI should
perform best
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BT-MZ based on MPI/OpenMP

Coarse-grain MP! Parallelism Fine-grain OpenMP Parallelism

subroutine x solve (u, rhs,
! SOMP PARALLEL DEFAUL (SHARED)

call omp_set numthreads (weight)

do step = 1, itmax

call exch gbc(u, gbc, nx,..)

N

<call mpi_send/reD

do zone = 1, num_zones

if (iam .eg.pzone id(zone))
then
call comp rhs(u,rsd,..)
call x solve (u, rhs,..)
call y solve (u, rhs,..)
call z solve (u, rhs,..)
call add (u, rhs,...)
end if
end do

end do

1 SOMP& PRIVATE (i,73,k,isize...)
isize = nx-1
! SOMP DO
do k = 2, nz-1
do j = 2, ny-1

call lhsinit (lhs, isize)
do i =2, nx-1
lhs(m,i,3,k)= ..
end do
call matvec ()
call matmul ()....
end do
end do
end do
!$SOMP END DO nowait
!'SOMP END PARALLEL
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Author:
sle Jost

Author:
sle Jost

NEC SX8:MPI/ /

Located at HLRS, Stuttgart, Germany
72 SX8 vector nodes with 8 CPUs each
12 TFlops peak performance
Node-node interconnect IXS 16 GB/s per node
Compilation:
sxmpif90 —C hopt —P openmp
Execute:
export MPIMULTITASK=0ON
export OMP_NUM_THREADS=<#num threads pr MPI| proc>
mpirun —nn <#nodes> —nnp <#MPI procs per node> a.out
Vectorization is required to achieve good performance
A maximum of 64 nodes (512 CPUs) were used for the study
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x86/x86-64 SSE vs SX8 Vectorization

® SSE + SX8 Vector Processor
- Vector length: — Vector length is 256
= 2 (double prec) — No special alignment requirement
» 4 (single prec) — Compiler to will vectorize non-unit
— Vector memory load alignment stride, HW allows any stride on
must be 128 bit memory ops
- Difficult for compiler to vectorize — Full vectorization is necessary to
non-unit stride, SSE registers achieve good performance
must be filled in piece-meal _ Caution:
fashion )
. . — Data dependences can prevent
- Increasingly important for new torizati
AMD and Intel chips with 128-bit- vectorization
wide floating point pipeline — OpenMP parallelization might

interfere with vectorization!

73
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BT-MZ Cache Optimized Version

®* NPB 3.2 optimized for cache based architectures with limited memory

bandwidth

- Use 1D temporary arrays to store intermediate values of 3d arrays

- Decreases memory use but introduces data dependences

do zone = myzone_ first, myzone_ last
( MPI communication )

do k

do j
do i

rhs 1d(i) = ¢ * rhs_1d(i-1) + ....

Author:

o ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ Vectorizable

+ SX8 requires vectorization:
— Re-introduce 3D arrays
— Loop interchange to remove data dependence from inner loop
— manual procedure in-lining to allow vectorization
— Note: OpenMP directives within routines prevented automatic
inlining
do zone = myzone first, myzone last
( MPI communication_) B

do k
do j
do i

rhs 3d(i, ,k) = ¢ * rhs 3d(i-1,7,k) + ...

Author:

75
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NPB-MZ Class D Scalability on SX8

NPB-MZ Scalability on SX8

1600
1400 SP-MZ MPI
® SP-MZ MPI+OpenMP
1200 - BT-MZ MPI
1000 ~  ®BT-MZ MPI+OpenMP

Gopls

800
600
400
200
0 4
16 32 64 128 256 512
#cores

Three dimensions of variation: Nodes, Processes per Node, Threads per Process

® Hybrid: Reported is the best performance for a given number of CPUs on a combination
of Nodes

-MZ performs best for pure MPI
T-MZ benefits from hybrid

Meets expectations!

Author:
sle Jost
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BT-MZ on SX-8: Combining MPI and OpenMP

® Metrics for MPI Procs Max/Min

® 8x8x1: 75 GFlops
_ TOtal time: 8 sec |__pure MPI BT-MZ Class B on 64 CPUs NEC SX8
- Workload size:59976 /2992 X | best | .
- Vector length 75/12 100 — /N

- Communication:
= Time (sec): 6.4 /0.6 v [
= Count: 1608/ 1608 ] | | edn 1
= Size: 53 MB /38.6 MB /MOM\ /

® 8x1x8: 117 GFlops v

Gflops

- Total time: 5.2 sec [ hybrid MP1+OpenMP |

- Workload size: 17035/16704 Does not use all
- Vector length: 53/35 available cores:
- Communication: Bad!

* Time (sec): 1.1 /0.4
= Count: 13668 /8040
= Size: 230 MB/120 MB

Author:
sle Jost
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BT-MZ on SX-8: Combining MPI and OpenMP

® The charts show

communication time and size of

communicated data per MPI
process

® The time spent in

communication is reciprocal to

the size of data that is
communicated

® The communication time is
caused by load-imbalance

BT-MZ Class B 8x1x8 on SX8
—e— Comm Time ins secs

Size in GB

1.2
1 RN

0.8
0.6 N . ——

0.4
0.2 ———=—

MPI Proc ID

O=_2NWHdOONO®
.

BT-MZ Class B 8x8x1

—«— Comm Time in secs.
Size in 10MB
- my,w’?
g P ST
CAEAVARZAIRAN [

KRN 0| { |

L
-~

i i J Y
T T Py K3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
MPI Proc ID
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Sun Constellation Cluster Ranger (1)

* Located at the Texas Advanced Computing Center (TACC), University of
Texas at Austin (http://www.tacc.utexas.edu)

e 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per node

(blade), 62976 cores total
e 123TB aggregrate memory

e Peak Performance 579 Tflops

¢ InfiniBand Switch interconnect

e Sun Blade x6420 Compute Node:
— 4 Sockets per node
— 4 cores per socket

HyperTransport System Bus
32GB memory

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others
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Sun Constellation Cluster Ranger (2)

*  Compilation:
— PGl pgf90 7.1

— mpif90 -tp barcelona-64 -r8
* Cache optimized benchmarks Execution:

- MPI MVAPICH

— setenv OMP_NUM_THREAD NTHREAD

Default script for process

— ibrun bt-mz.exe placement available on
+ numactl controls Ranger
— Socket affinity: select sockets to run
— Core affinity: select cores within socket
— Memory policy: where to allocate memory
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 81

NPB-MZ Class E Scalability on Ranger

5000000

4000000

3000000

MFlop/s

2000000

1000000

0

6000000

4| OSP-MZ MPI+OpenMP

1 | ®BT-MZ MPI+OpenMP

NPB-MZ Class E Scalability on Sun Constellation

BSP-MZ (MPI)

OBT-MZ (MPI)

ol BN

1024 2048

#core

4096

8192

BT-MZ
Significant improve-
ment (235%):
Load-balancing issues
solved with MPI
+OpenMP

7~ sp-Mz

Pure MPI is already
load-balanced.
But hybrid
programming

\_  9.6% faster

Scalability in Mflops with increasing number of cores

Unexpected!

MPI/OpenMP: Best Result over all MPI/OpenMP combinations for a
fixed number of cores

Use of numactl essential to achieve scalability
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Sun Constellation Cluster

1400

1200

1000

Effective Bandwidth (MB/s)
N 2 2
8 58 2 2
g 8 8 8

o

* Highly hierarchical 2“5 4‘§
® Shared Memory: —SL_1_Ja
- Cache-coherent, Non- 1
uniform memory access -1 IRC T 5
(ccNUMA) Blade mm| mwl, | £
¢ Distributed memory: l": =ﬂQ 2
- Network of ccNUMA 5 4‘3
blades ‘“‘ Gl o | |
= Core-to-Core e B | R
= Socket-to-Socket l
+ Blade o Biace ~Harn
= Chassis-to-Chassis 1”‘ =ﬂ 0
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Ranger Network Bandwidth

On-Node Communication Scaling (between 2 Sockets)

—A—1:0-1
1:0-2
—6—1:0-3
—A—2:0-1
" 2:0-2
—®—2:0-3
——4:0-1
»4:0-2
—4—4:0-3

0.1k8 1k8 10k8 100k8 1ms
Message Size

MPI ping-pong micro
benchmark results

“Exploiting Multi-Level Parallelism
on the Sun Constellation System”.,
L. Koesterke, et. al., TACC,
TeraGrid08 Paper

10m8

Bandwidth per Communication

On NEM Node-2-Node Communication Scaling

1000

@
<3
3

600

400

Effective Bandwidth (MB/s)

200

0.1k8

10k8

1008 M8 10m8

Message Size

NEM to NEM Scaling Performance

Channel (MB/s)

10k8
Message Size

100k8 1mB 10me
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NUMA Control: Process Placement

* Affinity and Policy can be changed externally through numactl
at the socket and core level.

Command: numactl <options> ./a.out

2 3 8,9,10,11 12,13,14,15
Core Core Core Core Core Core Core Core
*—0 —e
Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core
q o] = +—e
Core Core Core Core Core Core Core Core
1 0 4,5,6,7 0,1,2,3
Socket References Core References
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NUMA Operations: Memory Placement

2 3 .
“F coe o | | o coe 4“ ® Memory allocation:

T iml | o ® MPI - local allocation is best

)| ®* OpenMP
Core Core Core | Core — Interleave best for large, completely
*-—4 *—

o B o shared arrays that are randomly

1 V: ‘“ 0 accessed by different threads
B — local best for private arrays

Memory: Socket References °

Once allocated, a memory
structure’s is fixed
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NUMA Operations (cont. 3)

omd option arguments description
Only execute
numactl N 0,12,3) process on cores

of this (these)
socket(s).

numactl

{no argument}

Allocate on
current socket.

Allocate round

numactl {0,1,2,3} robin (interleave)
on these sockets.
Allocate on this
_  1{0,1,2,3} socket; fallback
numactl --preferred= .
select only one [to any other if
full .
Only allocate on
numactl -m {0,1,2,3} this (these)
socket(s).
o {251',(2;3 Only execute.
Core Affinity numactl -C DO process on this
St 00 1 (these) Core(s)
12,13,14,15} )

for mvapich2

Hybrid Batch Script 4 tasks, 4 threads/task
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job script (Bourne shell

export OMP_NUM_THREADS=4

ibrun numa.sh

job script (C shell)

#! -pe 4way 32

setenv OMP_NUM_THREADS 4

ibrun numa.csh

numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN="echo $PE | sed 's/way//"
[!$TPN ] && echo TPN NOT defined!
[ $TPN ] && exit 1

socket=$(( $PMI_RANK % $TPN ))

numactl -N $socket -m $socket ./a.out

numa.csh
#l/bin/tcsh
setenv

MV2_USE_AFFINITY 0

setenv MV2_ENABLE_AFFINITY 0
setenv VIADEV_USE_AFFINITY 0

#TasksPerNode

set TPN = "echo $PE | sed 's/way//"
if(! ${%TPN}) echo TPN NOT defined!

if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out
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Modes of Hybrid Operation

Pure

4 MPI Tasks 1 MPI Tasks
16 MPI Tasks 4Threads/Task 16 Threads/Task
Haa_aa- aa_aa- Has _as-
| | |
s == aa aa- I-aa s

Master Thread of MPI Task

E MPI Task on Core

!1 Master Thread of MPI Task
[l Slave Thread of MPI Task
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Numactl: Using Threads across
Sockets

| s
bt-mz.1024x8 yields rank 1 (| |HE)[(HE

best load-balance EEVak e

-pe 2way 8192 ... ...._.
export OMP_NUM_ THREADS=8 Rank 0 o e | ) | o Bl =ﬂ

my_ rank=$PMI_ RANK
local rank=$(( $my rank % S$myway ))
numnode=$(( $local rank + 1 ))

Original: CEeELE e

(68}

=
ylomiau

N
T
H
&
=
H
| -
|

numactl -N S$Snumnode -m $numnode S$*

=

Bad performance!
*Each process runs 8 threads on 4 cores
*Memory allocated on one socket
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Numactl: Using Threads across Sockets

bt-mz.1024x8 2 4‘ 3
export OMP_NUM THREADS=8 T e e Sl lnle
— den
Core Core Core Core
my_rank=$PMI_RANK
local rank=$(( $my rank % $myway )) 1
numnode=$(( $local rank + 1 )) o 1 5
a— +—e gl
Original: Core Core Core Core g
........ 1 0 =
numactl -N $numnode -m $numnode $*
2| 2N\ N\ ‘ 3
MOdIerd Core Core /Core Core
-------- Core Core Core Core‘
if [ $local rank -eq 0 ]; then
numactl -N 0,3 -m 0,3 $* I
else \ Core VCore Core Core
numactl -N 1,2 -m 1,2 $* 1 1
fl %re Core/ \Qe Core/
1] === Rank 02
Achieves Scalability! ank 1 an
*Process uses cores and memory across 2
sockets

 Suitable for 8 threads
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NPB-MZ Class D Scalability on Ranger

NPB-MZ Class D Scalability on Sun
Constellation

1400000
1200000 —
B SP-MZ (MPI)
1000000 +——OSP-MZ MPI+OpenMP
& OBT-MZ (MPI)
2 800000 g pr.M7 MPI+OpenMP
E 600000
400000
200000
o LI
256 512 1024 2048
#core
¢ SP-MZ hybrid outperforms SP-MZ pure MPI
for
® ClassD

®* Does not meet expectations!

Author:
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BT-MZ: Combining MPl and OpenMP

» Performance Metrics Class D

+ 128x4 :
— 4 MPI Processes per node
— 1 MPI Process per socket
595 Gflops
Total time: 86.5 sec
Workload: 536962/523124 points

* 512x1:
— 16 MPI Processes per node
— 4 MPI Processes per socket
334 Gflops
Total time: 154 sec
Workload: 243236/14450 points

Subroutine Timings Class D

-
N
o

128x4

-
o
o

“512x1

o]
o

N
o

Max/Proc Time in Seconds
N (2]
o o

rhs

ysolve

zsolyé

xsolve

o

@,

\

Computation S
Communication:
mpi_waitall
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Execution Timelines for BT-MZ 128 MPI Processes

Process State View

® Paraver Performance
Analysis System

http:www.cepba.upc.es/
paraver/

®* 10 time steps Class

Process ID--->

100

=
TIME {in %) |

yal i

D
® 128 MPI Processes

® Most of the time
spent doing useful
work

¢ Small amount of time
in communication

® Well load-balanced

MPI Call View

Time --=>

REDRAW | I” Comm i Recy f Send I” FIBAJ"COMI’. W ﬂ ﬂ 1] ﬁ i]
o m— ¢ S gy < R
i
§
) i

JIE

mpi_isend/
mpi_waitall
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Execution Timelines for BT-MZ 512 MPI Processes

Process State View

e

®* 10 time steps Class D

® 512 MPI Processes

* A lot of time spent in
Waiting and E— =
Synchronization e e S £ ( =L e et

® Large amount of time Time = @/Synchrenizing
spent in mpi_waitall _

¢ Unbalanced Workload
on MPI Level

Process ID--->

—

7]

MPI Call View mpi_waitall
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Communication Timings BT-MZ Class D 512 Processes

X-Axis  Semantic _|| Statistic Time = Begin time: 0.00 us
End time: 9767785.00 us

Control Window: MPI call il Data Window:

MPI_Sen MP: oV MPI_Isend| MPI_Irecy) Waitall] MPI_Bcas MPI_)
THREAD 1.505.1 Al
THREAD 1.506.1 4
THREAD 1.507.1
THREAD 1.508.1
THREAD 1.509.1 /|
THREAD 1.510.1 |'
THREAD 1.511.1
THREAD 1.512.1 [
Total] 789,086 us | 101,318,393 us | 1,976,791 us | 1,934,170 us 1,775,957,374 77,543 us | 830, 865,; [
Average| 1,541 us 137, 887 us 3,861 us 3,778 u. 3,468, 668 1. 151 us 1,622, | .
Maximum| 94,442 us 828, 965 us 104,364 us | 1,134,077 us 5,042,082 438 us 2,943, [
¥ inimom| 107 us 30,4390 us 467 us 391 us 483,130 97 us
Stdev) 5,745 us 80,977 us 8,523 us 50,173 us | 863, 308ﬁs 63 us 758, |
C.¥. 4 us 0 us 2 us 13 us |\ M us 0 us o
N\ C1))
I~ ! v -
Repeat | Alitrace | Allwindow | Anayze | Large differences in time
spent in mpi_waitall
Min III Max I:AI S I:I ﬂ Min I;f P wEA_lya‘ouuuo

IR

Min Value IEM]NDDUBLE Max Value |§MAXDDUBLE
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Compressed View of MPI Calls BT-MZ 512 Processes

X-Axis Semantic I Statistic Time

~
Control Window: MPIcal =| Data m NPt

Repeat |  Altrace | Al wiNow

0.00 us
9767785.00 us

Begin time:
End time:

= w =z (|2 A

0K I

win [ Max | 41 & |1

s

Max |§754asns

Min Value IEMINDUUBLE Max Value I:EMAKDOUBLE
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Time MPI_WAITALL:
Gradient Color

Dark blue is high value
Light green is low value

SP-MZ based on MPI/OpenMP

Coarse-grain MPI Parallelism

Fine-grain OpenMP Parallelism

97

call omp set numthreads (weight)

do step = 1, itmax

call exch gbc(u, gbc,

caII mpi_send/recv D
ne = 1, num zoO

1am

nx, ..)

.eg.pzone_id(zone)
then

call
call
call
call
call
call
end if
end do
end do

txinvr (u, rsd,..)
comp_rhs (u, rsd,..)
rhs, ..)
rhs,..)
rhs,..)
rhs,...)

(
x solve (u,
y_solve (u,
z_solve (u,
add (u,
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subroutine x solve (u, rsd
1SOMP& PRIVATE (i

! SOMP DO
do k = 2,
do j = 2,

nz-1

ny-1

do i = 2, nx-1
lhs(m,1i,j,k)= .
rhs(m,I,j,k) =
end do
end do
end do
end do
!SOMP END DO nowait
!SOMP END PARALLEL
(rhs,..)

call ninvr

!SOMP PARALLEL DEFAUL (SHARED)
-)

;Jrk,isize. .
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SP-MZ: Combining MPI and OpenMP

* Performance Metrics Class D
* 64x4 :153 Gflops . .
— Total time-1p69 Subroutine Timings Class D
— Communication: §90
» Count: 4531 isend /MPI Proc 880
« Size: 802 MB / MPI Proc aro
« Total Size:~51328MB éso Gaxd
. =50 m256x1
e 256x1: 14§ GFlops §40
— Total time:174 0:_30
— Communication: 20
» Count: 2004 isend/MPI Proc 10
+ Size:436 MB/MPI Proc 0
« Total Size:~110000MB rhs zsolye

All solver routines benefit from
multithreading, ysolve most
significantly

Time spent in mpi_wait/barrier
of communication reduced for
fewer processes
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SP-MZ Execution on 256 Processes

S E
289 (M= 432006788 us

MPI Wait/
Barrier

*Timeline view of MPI calls for 10 iterations on 256 MPI Processes
°Little time spent in MPI calls
*No workload imbalance

°Light unbalance develops during the course of the execution:
Time spent in MPI_Wait/Barrier increases over multiple iterations.
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Analysis of SP-MZ Execution

Iteration 10 I

Increased
amount of time
in MPI_waitall
in later
iterations!

Iteration 1
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IPM Performance Monitor

* |IPM:
- Integrated Performance Monitoring
- http://ipm-hpc.sourceforge.net/home.html

® Summary at end of program

® Detailed Information:
- Example: BT-MZ 1024x1
— Hostlist
- Executable
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Author:
iele Jost

IPM Summary Information

Replicated Data
\ MPI Message Buffer

P Ty

/

SP-MZ 64x4

D) #IPHw0, 92
#
# command ¢ ,/bin/sp-nz,D,256 Acompleted) command ¢ ,/bin/sp-mz,D,64 (completed)
# host + 1101-402/x86_64_|Ainux mpi_tasks : 256 on 16 nodes host + 1111-403/x86_64_Linux mpi_tasks : 64 on 16 nodes
# sta LML 08/00:04: 30 wallclock ¢ 6,731512 sec 5 207356 wallclock ¢ 4,912151 sec
# stop + 09/25/08/0 Zcomm + 32,85 stop 09/25/08/003 057 Acomm : 6,31
# gbytes 3 3,96945e+01 oflop/sec ¢ 3,66761e+02 total < gbytes ¢ 1,80950e+01 tota gflop/sec 3 1,02274e+02 total
# region 3 * [ntasks] = 256 region $ * [ntasks] = 64
#
# [totall <avg> min max [totall <avg> min max
# entries 256 1 1 1 entries 64 1
# wallclock 1723,16 6.73109 6.7306 6,73151 wallclock 314,375 4,9121 4,91206 4,91215
# user 1910,09 7.46129 7.14445 7.53647 user 1228,28 19,1919 19,1292 19,2932
# system 43,8986 0,171479 0,068004 0,240015 system 16,789 0,262328 0,16401 0,32802
# mpi 566,162 2,21157 2,01036 2,39116 npi 19,8324 0,309881 0,18546 0,423585
# Zcomm 32,854 29,8662 35,5239 Zcomm £,30845 3,77559 8,62331
# gflop/sec 366,761 1,43266 1,14317 1,48659 gflop/sec 102,274 1,59802 1,56701 1,62619
# ghytes 39,6345 0,155057 0,154233 0,247147 ghytes 18,095 0,282735 0,281651 0,31538
#
# PAPI_RES_STL 2,46886e+12  9,64398e+03  7,69526e+03 1,0007e+10 PAPI_RES_STL 5,02383e+11  7,84973e+09  7,69737e+03  7,98811e+09
# PAPI_TOT_CYC 3,7230%e+12  1,45463e+10  1,01678e+10  1,46223e+10 PAPI_TOT_CYC 7,02834e+11  1,09818e+10  1,08508e+10  1,10058e+10
# PAPI_L1_DCH 9,4843e+03  3,70504e+07  2,98643e+07  1,88519e+08 PAPI_L1_DCH 2,02927e+03  3,17073e+07  3,01009e+07  4,479%e+07
# PAPI_L2_DCH 2,79355e+03  1,09123e+07  1,02886e+07  1,56143e+07 PAPT_L2_DCH 7.6661e+08  1,19783e+07  1,14856e+07  1,26603e+07
#
e <{Empi> <Zwall> 'ﬂp/k [time] <Ldmpi> <Awall>
465,088 82,15 26,99 I_Waitall 9,60437 2816 48,43 3,06
50,3843 8,90 2,92 < HPI_Barrier 4,7828 128 24,12 1,52
23,905 4,22 1,39 = 2,77577 14,00 0,88
435578 2,42 0,79 MPI_Bcast o 768 7,05 0,44
# MPI_Reduce 12,0214 768 2,12 0,70 HPI_Reduce 0,802732 192 4,05 0,26
# MPI_Isend 0,286147 11264 0,05 0,02 HPI_Sendrecy 0,328601 2384 1,66 0,10
# MPI_Sendrecv 0,222154 11856 0,04 0,01 HPI_Isend 0,052586 2816 0,27 0,02
# MPI_Connm_size 0,132859 1280 0,02 0,01 HPI_Send 0,0410128 315 0,21 0,01
# MPI_Allreduce 0,132542 512 0,02 0,01 HPI_Irecw 0,0308591 2816 0,16 0,01
# MPI_Irecy 0,131822 11264 0,02 0,01 HPI_Allreduce 0,00675192 128 0,03 0,00
# MPI_Allgather 0,0320441 256 0,02 0,01 MPI_Allgather 0,00525232 64 0,03 0,00
# MPI_Send 0,066374 1275 0,01 0,00 MPI_Comm_size 0,00246013 320 0,01 0,00
# MPI_Comm_rank 0,00157302 1808 0,00 0,00 HPI_Comm_rank 0,000310361 464 0,00 0,00
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SP-MZ:Hybrid vs Pure MPI

ePerformance metrics for Class D:

*64x4:

256x1:

—Workload: HW FP OPS: 91G pe

—Workload: HW FP OPS:91G x 4 per
MPI Process

—Communication:
eTime (sec): 3.4sec max

eCount: 4531 isend per MPI
Process

eSize: 802MB per MPI Process
eTotal size: ~51328MB

ePerformance issues for pure MPI:

MPI Process
—Communication:

eTime (sec):17 sec Max

eCount: 2004 isend
Process

eSize: 436 MB Max,
Min

eTotal Size: ~110000MB.

eLarge amount of data communicated (2 x hybrid)
eImbalance in message size across processes

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

mpi_waitall

104



Hybrid Programming — Outline

[ J
[ J
Author:
j Hager|
[ J
[

¢ Summary on Hybrid Parallelization

\uthor:
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Elements of Successful Hybrid Programming

® System Requirements:
- Some level of shared memory parallelism, such as within a multi-core node

- Runtime libraries and environment to support both models
= Thread-safe MPI library
= Compiler support for OpenMP directives, OpenMP runtime libraries

- Mechanisms to map MPI processes onto cores and nodes
® Application Requirements:

- Expose multiple levels of parallelism
= Coarse-grained and fine-grained
= Enough fine-grained parallelism to allow OpenMP scaling to the number of cores per node

¢ Performance:
- Highly dependent on optimal process and thread placement
- No standard API to achieve optimal placement

- Optimal placement may not be be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution

- Memory traffic yields resource contention on multi-core nodes
- Cache optimization more critical than on single core nodes
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Recipe for Successful Hybrid Programming

®* Familiarize yourself with the layout of your system:
- Blades, nodes, sockets, cores?
- Interconnects?
- Level of Shared Memory Parallelism?
® Check system software
- Compiler options, MPI library, thread support in MPI
- Process placement
¢ Analyze your application:

- Does MPI scale? If not, why?
= Load-imbalance => OpenMP might help
= Too much time in communication? Load-imbalance? Workload too small?

- Does OpenMP scale?
® Performance Optimization
- Optimal process and thread placement is important
- Find out how to achieve it on your system
- Cache optimization critical to mitigate resource contention
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Hybrid Programming: Does it Help?

¢ Hybrid Codes provide these opportunities:
- Lower communication overhead
= Few multi-threaded MPI processes vs Many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
- Lower memory requirements
= Reduced amount of replicated data
= Reduced size of MPI internal buffer space
= May become more important for systems of 100’s or 1000’s cores per node
- Provide for flexible load-balancing on coarse and fine grain
= Smaller #of MPI processes leave room to assign workload more even
= MPI processes with higher workload could employ more threads
- Increase parallelism
= Domain decomposition as well as loop level parallelism can be exploited

YES, IT CAN!
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