Hybrid Programming — Outline

® |ntroduction / Motivation
® Programming Models on Clusters of SMP nodes

Author:
j Hager|

Practical “How-To” on hybrid programming & Case Studies

® Mismatch Problems & Pitfalls

® Application Categories that Can Benefit from Hybrid
Parallelization/Case Studies

® Summary on hybrid parallelization

\uthor:
seifner

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 1

Goals of this part of the tutorial

® Effective methods for clusters of
SMP node
->Mismatch problems & Pitfalls

Core
CPU(socket)
SMP board
ccNUMA node

® Technical aspects of hybrid
programming
—>Programming models on clusters
—2>“How-To”

® Opportunities with hybrid
programming > Application categories
that
can benefit from hybrid parallelization
—>Case studies

L1 cache

L2 cache
Intra-node network

Inter-node network

Inter-blade newtrok

::f;"e’r ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 2

Author:
seifner

\uthor:
seifner

Motivation
Hybrid MPI/OpenMP programming seems natural

SMP nod SMP nod . .
L L ® Which programming
Socket 1 Socket 1 model is fastest?
| _Quad-core__ | _ Quad-core__ MPI everywhere?
CPU CPU
[X XN N]
Socket 2 Socket 2 Fu"y hybrld
MPI & OpenMP?
| _ Quad-core__ | _Quad-core__
CPU CPU .
Something between?
(Mixed model)
Often hybrid
Node Interconnect .
programming -
slower than pure MPI
- Examples, Reasons, “
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 3
Example from SC
Pure MPI versus Explicit/Semi Implicit C154N6 SEAM
Hybrid MPI+OpenMP (Masteronly) | 3 . 'ST!70PSTSWW, 16 Level, NCAR
o vp MPI -
What's better? E’_ e AM EXP: HYBRID 4 e
- it depends on? ® ——
3 PSTSWM: 4 MPI ---a-- ~
2 15
Explicit C154N6 16 Level SEAM: —
— NPACI Results with o 10f
% 7 or 8 processes or threads per node ‘E
o 35 T - <| — T T c 5 i
= SEAM EXP: 7 MPI —&-— o s
g 3or A = o
[« - E E*_..!
& 25[GEAM EXP: HYBRID § emetemm 7 g 0 ' ' ‘ ' :
3 x it po- - £ 0 100 200 300 400 500 600
> 201 - o 1 = Processors
-
L - 4
e o // Figures: Richard D. Loft, Stephen J. Thomas,
E 10} 1 John M. Dennis:
2 L Terascale Spectral Element Dynamical Core for
© Atmospheric General Circulation Models.
g 0 ' ' ' ' Proceedings of SC2001, Denver, USA, Nov. 2001.
£ 0 200 400 600 800 1000 http://www.sc2001.org/papers/pap.pap189.pdf
Processors Fig. 9 and 10.

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 4

< Motivation

Minimizing)
- Communication overhead,
» e.g., messages inside of one SMP node

Synchronization overhead
= e.9., OpenMP fork/join .
J =P : Optimal

10 ObenMP aided workshari > parallel
= e.g., using Open uided worksharin :
schedule® " J J scaling

Load imbalance

Memory consumption
= e.9., replicated data in MPI parallelization
Computation overhead

* e.g., duplicated calculations in MPI
parallelization J

- ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming — Outline

® Programming Models on Clusters of SMP nodes

Author: L
j Hager|

- ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Programming Models for Hierarchical Systems

® Pure MPI (one MPI process on each CPU)

¢ Hybrid MPI+OpenMP
- shared memory OpenMP
- distributed memory MPI

[OpenMP Tnsids of the]_’

MPI between the nodes |
via node interconnect Node Interconnect

® Other: Virtual shared memory systems, PGAS, HPF, ...
® Often hybrid programming (MPI+OpenMP) slower than pure MPI

- why?
MPI local data in each process || OpenMP (shared data) Master thread,
Sequential some_serial_code other threads
program on #pragma omp parallel for

each CPU N

Explicit Message Passing
by calling MPI_Send & MPI_Recv

again_some_serial_code

block_to_be_parallelized

|E| sIeEjnglE'

Author:
seifner

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 7

MPI and OpenMP Programming Models

pure MPI

one MPI process
on each core

hybrid MP1+OpenMP
MPI: inter-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads
while other threads are computing

Masteronly

MPI only outside
of parallel regions

Author:
seifner

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 8

Pure MPI

pure MPI
one MPI process
on each core

Advantages

- MPI library need not to support multiple threads
Major problems
Does MPI library use internally different protocols?
= Shared memory inside of the SMP nodes
= Network communication between the nodes
Does application topology fit on hardware topology?

Discussed
in detail later on
in the section
Mismatch

Problems - Unnecessary MPIl-communication inside of SMP
nodes!
:::;‘n‘:r ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Masteronly

Masteronly Advantages
MPI only outside

of parallel regions - No message passing inside of the SMP nodes
- No topology problem
for (iteration) Major Problems
{#pragma omp paralle - All pther threads are sleeping.
numerical code while master thread communicates!
f"end omp parallel */ — Which inter-node bandwidth?
[* on master thread only */ — MPI-lib must be thread-safe

MPI_Send (original data
to halo areas
in other SMP nodes)
MPI_Recv (halo data
from the neighbors)
} /*end for loop

\uthor:

seifnor ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 10

wthor:
ieifner

Author:
seifner

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

if (my_thread_rank < ...) {

MPI_Send/Recv....
i.e., communicate all halo data

}else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

Execute those parts of the application
that need halo data
(on all threads)

¢ Distributed shared virtual memory system needed\

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 11

Pure OpenMP (on the cluster)

Must support clusters of SMP nodes
e.d., Intel® Cluster OpenMP >
- Shared memory parallel inside of SMP nodes

- Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier) J

OpenMP only
distributed virtual
shared memory

g!by rule of thumb:

Communication
may be
10 times slower
than with MPI

i.e., the OpenMP memory and parallelization model

is prepared for clusters!

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 12

MPI Memory Model

Message Passing Interface
Memory Model:

- MPI assumes a private address space
- Private address space for each MPI Process

- Data needs to be explicitly comm

unicated

Applies to distributed and shared memory computer architectures

Message buffers|

mpi_receive

mpi_send

Address
Space PO

Address
Space PO

process 0

/

process 1

process 2 process 3

MPI Program

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 13

General Structures

® |In MPI/OpenMP all

processes start up
at the same time

Initialize Initialize

Il 1l

® Two ways to
handle input:

Il 1l

- Parallel 11O

Execute parallel work Execute parallel work

i [

finalize finalize

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 14

OpenMP Memory Model

OpenMP assumes a shared address space
No communication is required between threads
Thread Synchronization is required when accessing shared data

Applies to shared memory or distributed shared memory, e.g. Intel’s

Cluster OpenMP®™

process 0

J

Shared address space

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

OpenMP Code General Structure

* Fork-Join Model:

» Execution begins with a single “Master Thread”

» Ateam of threads is created at each parallel region

» Threads are joined at the end of parallel regions

» Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time

: rial ; ,
execution Seria Parallel Serial Parallel Serial

Core

Master Thread Multi-Threaded

15

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

16

Comparison of MPI and OpenMP

* OpenMP
Memory Model « Memory Model
- Data private by default — Data shared by default
- Data accessed by — Access to shared data requires
multiple processes synchronization

needs to be explicitly

. — Private data needs to be explicitly
communicated

] declared
Program Execution Program Execution
- One start and beginning _ Fork-Join Model

Parallelization
- Domain decomposition

- Explicitly programmed
by user

* Parallelization

— Typically on loop level
— Based on compiler directives

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 17

Support of Hybrid Programming

* OpenMP
— MPI-1 no concept of threads ~ — None
— MPI-2: — API only for one execution unit,

which is one MPI process

— For example: No means to specify
the total number of threads across
several MPI processes.

— Thread support
— MPIL_Init_thread

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 18

MPI2 MPI_Init_thread

Syntax
call MPL_Init_thread(irequired, iprovided, ierr)
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)
int MPI::Init_thread(int& argc, char**& argy, int required)

Support Levels Description
MPI_THREAD_SINGLE Only one thread will execute.
MPI_THREAD_FUNNELED Process may be multi-threaded, but only main

thread will make MPI calls (calls are "funneled" to
main thread). Default
MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be
"serialized").
MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.
If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 19
Funneling through Master
Forfran C
include ‘mpif.h’ #include <mpi.h>
program hybmas int main(int argc, char **argv){
int rank, size, ierr, i;
call mpi_init_thread(...) ierr = MPI_Init_thread {(..)
#pragma omp parallel
ISOMP parallel {
#pragma omp barrier
ISOMP barrier #pragma omp master
ISOMP master {
‘ierr:MPl_<Whatever>(...) ‘
‘ call MPI_<whatever>(...,ierr) ‘ }
ISOMP end master
#pragma omp barrier
ISOMP barrier
}
ISOMP end parallel }
end

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 20

Serialize through Single

Fortran C
include ‘mpif.h’ #include <mpi.h>
program hybsing int main(int argc, char **argv){
call mpi_init_thread(MPI_THREAD_SINGLE, int rank, size, ierr, i;
iprovided, ierr) mpi_init_thread(MP|_THREAD_SINGLE,
ISOMP parallel iprovided)
#pragma omp parallel
ISOMP barrier {
ISOMP single #pragma omp barrier
#pragma omp single
call MPI_<whatever>(...,ierr) {
‘!SOI\/IP end single ‘ ‘ierrzMP/_<Whatever>(...) ‘
}
ISOMP end parallel
end }
}
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 21

Overlapping Communication and Work

® One core can saturate the PCl-e <—>network bus. Why use

all to communicate?

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Communicate with one or several cores.

Work with others during communication.

Need at least MPI_THREAD_FUNNELED support.
Can be difficult to manage and load balance!

22

Overlapping Communication and Work

Fortran C
include ‘mpi.h’ #include <mpi.h>
program hybover int main(int argc, char **argv){
int rank, size, ierr, i;
call mpi_init_thread(MPI_THREAD_FUNNELED,...)
ierr= MPI_Init_thread(...)
ISOMP parallel
#pragma omp parallel
if‘(lthread .eq. 0) then { ‘ ‘
call MPI_<whatever>(...,ierr) if (thread == 0){
else ierr=MPI_<Whatever>(...)
<work> }
endif if(thread = 0){
work
ISOMP end parallel }
end
}
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 23

Thread-rank Communication

éall mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD,nranks, ierr)

ISOMP parallel private(i, ithread, nthreads)

nthreads=OMP_GET_NUM_THREADS() Communicate between ranks.
ithread =OMP_GET_THREAD_NUM()
call pwork(ithread, irank, nthreads, nranks...) Threads use tags to differentiate.

if(irank == 0) then
call mpi_send(ithread,1,MPI_INTEGER, [1,||thread,MPI_COMM_WORLD, ierr)
else

call mpi_recv(j»1,MPL_INTEGER, [0,||thread,MPI_COMM_WORLD, istatus,ierr)
print*, "Yep, this is ",irank," thread ", ithread," | received from ", j
endif

ISOMP END PARALLEL
end

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 24

Running Hybrid Codes

* Running the code
- Highly non-portable! Consult system docs
- Things to consider:
= |s environment available for MPI Processes:
—E.g.: mpirun —np 4 OMP NUM THREADS=4
a.out instead of your binary alone may be necessary
= How many MPI Processes per node?
» How many threads per MPI Process?
Which cores are used for MPI?
Which cores are used for threads?
Where is the memory allocated?

2

——

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

5 25

Hybrid Programming — Outline

Practical “How-To” on hybrid programming & Case Studies

Author:
j Hager|

\uthor:

seifner ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 26

Hybrid Programming How-To: Overview

® A practical introduction to hybrid programming
- How to compile and link
- Getting a hybrid program to run on a cluster

® Running hybrid programs efficiently on multi-core clusters
- Affinity issues
= ccNUMA
= Bandwidth bottlenecks

- Intra-node MPI1/OpenMP anisotropy
= MPI communication characteristics
= OpenMP loop startup overhead

- Thread/process binding

Courtesy of Georg Hager (RRZE)
Author:
Hager

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 27

How to compile, link and run

® Use appropriate OpenMP compiler switch (-openmp, -xopenmp,

-mp, -gsmp=openmp, ...) and MPI compiler script (if available)
¢ Link with MPI library

- Usually wrapped in MPI compiler script

- If required, specify to link against thread-safe MPI library

= Often automatic when OpenMP or auto-parallelization is switched on

¢ Running the code

- Highly non-portable! Consult system docs! (if available...)

- If you are on your own, consider the following points

- Make sure OMP_NUM_THREADS etc. is available on all MPI processes

= Start “env VAR=VALUE ... <YOUR BINARY>" instead of your binary
alone

= Use Pete Wyckoff's mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

- Figure out how to start less MPI processes than cores on your nodes

Author: Courtesy of Georg Hager (RRZE)
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 28

Some examples for compilation and
execution (1)

« Standard Intel Xeon cluster:
— Intel Compiler
- mpif90 -openmp ..
— Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun ssh -np <num MPI procs> -hostfile machines a.out

Courtesy of Gabriele Jost (TACC/NPS)
Author:

sle Jost ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 29

Some examples for compilation and
execution (2)

Handling of OMP_NUM_THREADS
® without any support by mpirun:
- E.g. with mpich-1
- Problem:

mpirun has no features to export environment variables to the via ssh automatically
started MPI processes

- Solution: Set
export OMP_NUM THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

- If you want to set OMP_NUM_THREADS individually when starting the MPI processes:

= Add
test -s ~/myexports && . ~/myexports
in your ~/.bashrc
= Add
echo 'SOMP_NUM THREADS=<# threads per MPI process>' > ~/
myexports

before invoking mpirun

= Caution: Several invocations of mpirun cannot be executed at the same time with
this trick!

Author:

seifner ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 30

Some examples for compilation and

execution (3)

Handling of OMP_NUM_THREADS (continued)

| ® with support by OpenMPI —x option:
export OMP_NUM THREADS= <# threads per MPI process>
mpiexec -x OMP_NUM THREADS -n <# MPI processes> ./

1seifner

executable

[®* Sun Constellation Cluster:

sle Jost

mpif90 -fastsse -tp barcelona-64 —mp ...

SGE Batch System

setenv OMP_NUM_THREADS

ibrun numactl.sh a.out

Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 31

Some examples for compilation and

execution (4)

* Cray XT4:

ftn -fastsse -tp barcelona-64 -mp=nonuma ..

aprun -n nprocs -N nprocs per node a.out

* NEC SX8

Author:

v » v |

NEC SX8 compiler

mpif90 —-C hopt -P openmp .. # —ftrace for profiling info
Execution:

export OMP_NUM THREADS=<num_threads>

MPIEXPORT="OMP_NUM THREADS”

mpirun -nn <# MPI procs per node> -nnp <# of nodes> a.out

Courtesy of Gabriele Jost (TACC/NPS)

sle Jost

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 32

Interlude: Advantages of mpiexec

® Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI
processes on nodes

- As opposed to starting remote processes with ssh/rsh:
= Correct CPU time accounting in batch system
= Faster startup
= Safe process termination
» Understands PBS per-job nodefile
= Allowing password-less user login not required between nodes
- Support for many different types of MPI
= All MPICHs, MVAPICHS, Intel MPI, ...
- Interfaces directly with batch system to determine number of procs
- Downside: If you don’t use PBS or Torque, you’re out of luck...
®* Provisions for starting less processes per node than available cores
- Required for hybrid programming
- “-pernode” and “-npernode #’ options — does not require messing around
with nodefiles
Courtesy of Georg Hager (RRZE)
Hager|

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 33

Running the code

¢ Example for using mpiexec on a dual-socket dual-core
cluster:

$ export OMP NUM THREADS=4
$ mpiexec -pernode ./a.out

¢ Same but 2 MPI processes per node:

$ export OMP NUM THREADS=2
$ mpiexec -npernode 2 ./a.out

® Pure MPI:

$ export OMP NUM THREADS=1 # or nothing if
serial code
$ mpiexec ./a.out

T Courtesy of Georg Hager (RRZE)
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 34

Running the code efficiently?

¢* Symmetric, UMA-type compute nodes have become rare animals
- NEC SX
- Intel 1-socket (“Port Townsend/Melstone”) — see case studies

®* Instead, systems have become “non- |sotrop|c” on the node level

- ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), larger Sun Enterprise
systems,)

- Multi-core, multi-socket
= Shared vs. separate caches
= Multi-chip vs. single-chip
= Separate/shared buses

thor:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Issues for running code efficiently
on “non-isotropic” nodes

® ccNUMA locality effects
- Penalties for inter-LD access
- Impact of contention
- Consequences of file |/O for page placement
- Placement of MPI buffers

® Multi-core /| multi-socket anisotropy effects
- Bandwidth bottlenecks, shared caches
- Intra-node MPI performance
= Core <> core vs. socket « socket

- OpenMP loop overhead depends on mutual position of threads in
team

35

thor:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

36

A short introduction to ccNUMA

* ccNUMA:

- whole memory is transparently accessible by all
processors

- but physically distributed
- with varying bandwidth and latency
- and potential contention (shared memory paths)

C C C C C C C C
M M M M
Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 37

Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server

$ CPU
- 64 kB L1 per core
1 MB L2 per core
No shared caches
- On-chip memory controller (I\V1])

— 10.6 GB/s local memory bandwidth| |Memery L FLI
® HyperTransport 1000 network HT HTj
- 4 GB/s per link per direction Kiowsay MowaAW

® 3 distance categories for
core-to-memory connections:
- same LD
- 1hop
- 2hops
® Q1: What are the real penalties for non-local accesses?
® Q2: What is the impact of contention?

Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 38

Effect of non-local access on HP DL585

G5:

Serial vector triad A (- Y=R(-Y4+C(-Y*D(-)

I I [I [[I [[[[I I

H n B
240 —

200

- _ _

local

39

< 220
&
E — -
=
¥ e
160 = —
I I I I I | I I I | | I I I I I
(=] — o [op] (=] — ol o (=] — o o (=] ko o o
T | N | A A AN A A N TAR |
= 2 2 =2 =2 =2 =2 =2 =2 =2 23 =2 = =2 3 =
T 7T T oW T oW o9 oa e s T ToT@
©o v v v v 0 u v v U v U v U U U
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others
Contention vs. parallel access on HP
. V=R (- *
6000 T IIIIII| T IIIIII| T IIIIII| T IIIIIlI T IIIIIII T IIIIIII T 1T
i — T=1 T = # threads)
| — T=2S=1 S =+#sockets |
ALl —— T=4 S=2 parallel access
In-cache performance —— T=8 S=4 parallel access i
unharmed by ccNUMA — T=4 S=2 serial access
4000 — T=8 S=4 serial access —
2 woo e a0 T =
2 3000~ | Single LD saturated
= by 2 cores!

ok A1)
Affinity matters!

\%

1000

Perfect scaling
across LDs

1]

1 IIIIIIII

1 IIIIIIII

1 IIIIIII| 1 IIIIIII|

I‘I Ivlllh.lv Iv I‘II‘IIIII 111

0 2 4
10° 10° 10* 10° 10°
N

Author:
Hager|

10

7 108

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

40

ccNUMA Memory Locality Problems

® |Locality of reference is key to scalable performance on ccNUMA
- Less of a problem with pure MPI, but see below
® What factors can destroy locality?
® MPI programming:
- processes lose their association with the CPU the mapping took
place on originally
- OS kernel tries to maintain strong affinity, but sometimes fails
¢ Shared Memory Programming (OpenMP, hybrid):
- threads losing association with the CPU the mapping took place on
originally
- improper initialization of distributed data
- Lots of extra threads are running on a node, especially for hybrid
¢ All cases:

- Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 41

Avoiding locality problems

® How can we make sure that memory ends up where it is close to
the CPU that uses it?

- See the following slides

® How can we make sure that it stays that way throughout program
execution?

- See end of section

Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 42

Solving Memory Locality Problems: First
Touch

¢ "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the processor
that first touches it!

- Except if there is not enough local memory available
- this might be a problem, see later
- Some OSs allow to influence placement in more direct ways
= cf. libnuma (Linux), MPO (Solaris), ...
® (Caveat: "touch™ means "write", not "allocate"
* Example:

double *huge = (double*)malloc (N*sizeof (double));
// memory not mapped yet
for (i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

* |tis sufficient to touch a single item to map the entire page

Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 43

ccNUMA problems beyond first touch

disk buffer (FS) cache 5

- If FS cache fills part of memory,:
apps will probably allocate from!
foreign domains

_ > non-local access! \| """ '
- Locality problem even on hybrid i
and pure MPI with “asymmetric” | & (/—) data®
file I/O, i.e. if not all MPI processe{ = ,
perform 1/0 ol BC
® Remedies
- Drop FS cache pages after user job has run (admin’s job)
= Only prevents cross-job buffer cache “heritage”
- “Sweeper” code (run by user)

- Flush buffer cache after I/O if necessary (“sync” is not
sufficient!)

Author:
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 44

ccNUMA problems beyond first touch

® Real-world example: ccNUMA vs. UMA and the Linux buffer

cache

d Compare two 4-wav svetems: AMD Onteron ccNLIMA vs._ Intel

UMA, 4 GB main "

® Run 4 concurrent i
triads (512 MB ea , [
after writing a lar ggzoo i

file

= L
®* Report perfor- 150
mance vs. file siz

® DropFS cacheaf |
each data point

Author:
Hager|

450
400

<250
==
£200-

100~

50

0—0 ccNUMA (2-socket Opteron 275)
2—A UMA (2-socket Xeon 5150)

| 1

0

1000 2000

3000
Disk Cache Size [MB] before running benchmark

4000

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Intra-node MPI characteristics: IMB Ping-Pong
benchmark

® Code (to be run on 2 processors):

we = MPI_WTIME ()

do i=1,NREPEAT

if (rank.eq.0) then
MPI_SEND (buffer,N,MPI_BYTE,1,0,MPI_COMM WORLD,ierr)
MPI_RECV (buffer,N,MPI_BYTE,1,0,MPI_COMM WORLD, &

else

status,ierr)

MPI_RECV(..)
MPI_SEND (..)
endif

enddo

wc = MPI WTIME() - wc

® Intranode (1S): mpirun
® Intranode (2S): mpirun
¢ Internode:

Author:
Hager|

mpirun

-np 2 -pin “1 37
-np 2 -pin “2 3”7
-np 2 —-pernode

45

ele

| Memory |

./a.out

./a.out
./a.out

Courtesy of Georg Hager (RRZE)

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

46

IMB Ping-Pong on DDR-IB Woodcrest cluster:
Bandwidth Characteristics

3000 T IIH\Hl T WIHIII‘ T IIIIIII‘ T TTT Hll T IIIIHI| T T TTTTT T !IIHII‘ T IIIHII|
Shared cache
2500 advantage
—— 1B internode
— 1B intranode 2S
@ 2000 —— 1B intranode 1S
2 Between two sockets BetV_/een _tV_'o nodes
2 Between two cores of G TERE via InfiniBand
; 1500 one socket
]
E .
= intrasocke
o / .
/= 1000 intranode
02 13 \‘w
EE EE
ol fmom !

------- ek IIIIIII‘ | I\IIHIl 1 I|IIH|| 1 II\IIHl 1 \IIHII‘ 1L
10' 10° 10’ 10" 10° 10° 10’ 10°
Message length [bytes]

| Affinity matters!

Courtesy of Georg Hager (RRZE)
Author:
Hager|

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 47

Hybrid Programming — Outline

Mismatch Problems & Pitfalls

- ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 48

Mismatch Problems & Pitfalls

Core
None of the programming models —————
fits to the hierarchical hardware SM;S:C :)
(cluster of SMP nodes) oar
ccNUMA node

Several mismatch problems

-> following slides

Benefit through hybrid programming
—-> opportunities, see next section
Quantitative implications

-> depends on you application

In most
Examples: No.1 No.2 | cases:
Benefit through hybrid (see next section)30%10% Both
Loss by mismatch problems —10%| —25% categories!
Total +20% —15%
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 49

2L

The Topology Problem with| pure MPI

one MPI process
on each core

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains D eeeece
® On system with 10 x dual socket x quad-core

[o] [(2] 5] (5] (o] (IH[e] [s] 4 [1{g 8 [d 8

i [17 (13 (190 b1 [P3l{ed (3 d [27fesd b9 B9 B

g6l b7 (8 (o940 (49 [47 [a3—fad 45 [4d [a7]
63

!

]
]
A

46
54 b3 b4 [d|-[s9 57 4 [s9bo b1 £ b9

6] e o8 6 b 9 Tl

&l
&]
]
]

+ 17 xinter-node connections per node = Sequential ranking of
1 x inter-socket connection per node MPI_COMM_WORLD

Does it matter? .

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 50

The Topology Problem with| pure MPI

one MPI process
on each core

L2

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains
® On system with 10 x dual socket x quad-core

4+ 32 x inter-node connections per node Round robin ranking of
0 x inter-socket connection per node MPI_COMM_WORLD

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 51

The Topology Problem with| pure MPI

one MPI process
on each core

il

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains L seeees 2L
® On system with 10 x dual socket x quad-core

|
a

2IHE]
H
S|
al
]
=
N
B3
SRS
]
B
3]
8]
=H

E.
=i
=i
I

E.

34 alBe 31 3 39{Rd [¢] 2 [}
[T 1T 1 [T 1T 1 [1 1]
w8l 9 59 Bill52 53 &4 B3Hbe 57 5d Bal

4 8 o8 [l b9 b0 [

+ 10 x inter-node connections per node Two levels of
+ 4 xinter-socket connection per node domain decomposition
Bad affinity of cores to thread ranks

2]
2]
R]
2]

o

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 52

The Topology Problem with| pure MPI

one MPI process
on each core

Application example on 80 cores:
® Cartesian application with 5 x 16 = 80 sub-domains Ll veeee IH-H
® On system with 10 x dual socket x quad-core

‘@ [1i(2] @1@ HgQd 1@
hd [7f1d [olr2d Raved B3lied [si{zel P

‘ @5@1@ T 1 Gl iz @3
w8 @50 BilE2 E3sd 5|8 ({8 e

[64 [6d [6d [edr—s] [6d [rd [il[{lz2 [z [74 [79-re| 77 [[r9

o] 18]
e
Rl &
B &l

EIN |

BREERS
B =
B &

-+ 10 x inter-node connections per node Two levels of
+ 2 xinter-socket connection per node domain decomposition
Good affinity of cores to thread ranks

o

:gf;"e’r ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 53

The Topology Problem with hybrid MPI+OpenMP

MPI: inter-node communication
OpenMP: inside of each SMP node

Exa.: 2 SMP nodes, 8 cores/node

Optimal ? Problem
[|P| TrTch |°]{“ﬁ' '°"|’°|es|s |1] _ Does application topology inside of SMP
Loop-worksharing parallelization fit on inner hardware topology of
on 8 threads each SMP node?
Optimal ? Solutions:
()i 1| - Domain decomposition inside of each thread-
(1|)] J parallel MPI process, and
Minimizing ccNUMA . .
data traffic through - first touch strategy with OpenMP
domain decomposition
inside of each Successful examples:
MPI process .
- Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

::tipn"er; ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 54

The Topology Problem with | hybrid MPI+OpenMP

MPI: inter-node communication
OpenMP: inside of each SMP node

Application example:
® Same Cartesian application aspect ratio: 5 x 16 = Povevey mE=

® On system with 10 x dual socket x quad-core
® 2 x5 domain decomposition

|Application|[[T (1]
| MPI Level [[H]

00 O
0| 0 [H

(1 [
(1 [

L1 [
[0

00000 oo O
[0O 000 00 OH0 0

— | OpenMP DD'D
1 H

0 OtH

(O

O 0 0

U 0

L1 [

U [

mimanlnm
Jolooodoooo

<+ 3 xinter-node connections per node, but ~ 4 x more traffic

<+ 2 xinter-socket connection per node

Affinity of cores to thread ranks !!! -

Author: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 55

seifner

Inside of an SMP node

HOp O

0 000

~— 2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Author: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 56

seifner

pure MPI

The Mapping Problem with mixed model

hybrid MPI+OpenMP

Do we have this? ... or that? Several multi-threaded
SMP node SMP node MPI process per SMP
Socket 1 Socket 1 nOde:
MPI MPI | (| MPI Problem
process pro- k4 pro-
4 x multi- cess Plcess - Where are your
threaded 0 1 processes and threads
[X N] [X]
] really located?
Socket S t 2
MPI Solutions:
process - B
4 x multi- P Dleft)fends on your
threaded platiorm,
- e.g., Ibrun numactl
| | | | | | option on Su
Node Inter¢onnect Npde Interconnect As seen in case-study on
— Sun Constellation Cluster
Ranger
with BT-MZ and SP-MZ
huthor: ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 57

seifner

| pure MPI

Unnecessary intra-node :
. . Mixed model
Com m u n | catlo n (several multi-threaded MPI

processes per SMP node)

Problem:

- If several MPI process on each SMP node
—> unnecessary intra-node communication

Solution:

— Only one MPI process per SMP node
Remarks:

- MPI library must use appropriate N

fabrics / protocol for intra-node communication

- Intra-node bandwidth higher than
inter-node bandwidth Quality aspects
- problem may be small s of the MP!I library

- MPI implementation may cause
unnecessary data copying
- waste of memory bandwidth)

::tipn"er; ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 58

Author:
nseifner

\uthor:

Sleeping threads and network saturation

with| Masteronly

MPI only outside of

; Problem 1:
parallel regions e —

- Can the master thread
for (iteration) saturate the network?
{ - Solution:

SMPnode SMPnode .
#pragma omp parallel - If not, use mixed model
numerical code Socket Socket . | MP
/*end omp parallel */ Master 'ﬁaste, - l.e., severa
thread thread processes per SMP node
/* on master thread only */ <
MPI_Send (original data ‘ &q ceose ‘ \(\q Problem 2:
to halo areas X X - Sleeping threads are
in other SMP nodes) g @ wastina CPU time
MPI_Recv (halo data o g
from the neighbors) Solution:)
} /*end for loop - Overlapping of

computation and

communication
| Node Interconnect

L Problem 1&2 together:

- Producing more idle time
through lousy bandwidth
of master thread -

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 59

OpenMP: Additional Overhead & Pitfalls

Using OpenMP
- may prohibit compiler optimization
- may cause significant loss of computational performance

Thread fork / join
On ccNUMA SMP nodes:

- E.g. in the masteronly scheme:
= One thread produces data
= Master thread sends the data with MPI
- data may be internally communicated from one
memory to the other one
Amdahl’s law for each level of parallelism

Using MPI-parallel application libraries?
- Are they prepared for hybrid?

seifner

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 60

Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Three problems:

®* the application problem:
- one must separate application into:
= code that can run before the halo data is received
= code that needs halo data
> very hard to do !!!

® the thread-rank problem: —— if (my_thread_rank < 1) {

- comm. / comp. via
thread-rank

— cannot use

MPI_Send/Recv....

}else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;

work-sharing directives my_high=high+ (my_thread_rank+1+1)*my_range;

2 loss of major
OpenMP support
(see next slide)

® the load balancing problem }

\uthor:
seifner

my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

}

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 61

Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Subteams

¢ Important proposal
for OpenMP 3.x
or OpenMP 4.x

Barbara Chapman et al.:

Toward Enhancing
OpenMP’s Work-Sharing
Directives.

In proceedings, W.E.
Nagel et al. (Eds.): Euro-
Par 2006, LNCS 4128, pp.
645-654, 2006.

#pragma omp parallel

{

#pragma omp single onthreads(0)

{
MPI_Send/Recv....

}

#pragma omp for onthreads(1 : omp_get_numthreads()-1)

{ I* work without halo information */
} I* barrier at the end is only inside of the subteam */

#pragma omp barrier
#pragma omp for

for (........)
{ I* work based on halo information */
}

Author:
iseifner

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 62

Jacobi Solver
Basic implementation (2 arrays; no blocking etc...)

dok =1, Nk Performance Measure:
do j=1, Nj Million Lattice Site Updates per second: MLUPs
doi=1, Ni
y(i,j, k) = a*x(i,j, k) + b*
(x(i-1,3,k)+ x(i+1,3j,k) + x(i,j-1,k)
+x(i,j+1,k)+ x(i,3,k-1) + x(i,3,k

+1))
enddo Equivalent MFLOPs:
enddo 8 FLOP/LUP * MLUPs
enddo

Parallelization through
» Domain Decomposition
* Halo cells

» Data Exchange through cyclic SendReceive operation

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 63

Parallelization — 3-D Jacobi

® Cubic 3-D computational domain with PBC in all directions
® Use single node IB/GE cluster with one dualcore chip per node

® Homogeneous distribution of workload, e.g. on 8 procs
4 nodes;
pure MPI:

4 nodes;
hybrid:

[=

-m«l Others 64

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabens:

Strongscating:

N3 = 480°

Hybrid on GE:
Thread 0: Communication + Boundary cell updates

2500 :

2000

1500

MLUP/s

1000

500

Thll'ead 1: IInner clell/updaltes
ey _-~" | Performance model

| T=Tcomm * Tcomr

1 Teomp = N*/ Py

o—o PureMPI (GE)

-+ PurcMPI (IB) | Tcomm = DaVo / BW
o—o OpenMPMPI (GE)
=--a OpenMPMPI (IB) i
4— FullHybrid (GE) PO =150 MLUP/s
#--¢ FullHybrid (IB) -

— — Perfect Scalability BW() = 100 MBlt/S

- =+ Scalability: GE model]

0() 4

8 12 16 20 24 Data volume of
e halo exchange

9

Performance estimate (GE) for no nodes:

P(no) = N3/ ((Tcomp/n0) + Tcomm(N0))

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 65

Hybrid Programming — Outline

[]
[]
Author:
[]
® Application Categories that Can Benefit from Hybrid
Parallelization/Case Studies
[]
L fiere ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 66

seifner

Multi-Level Parallelism in Applications

* Extract additional Parallelism in case of Limited coarse grain

Parallelism

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

Coarse Grain Parallelism:
z1 z2 Subdomains z1, z2, z3, z4 are
mapped onto MPI Processes P1,
23 24 P2, P3, and P4
v v N v
P1 P2 P3 P4
v y y \
TO T T2 TO T T2 TO ™ T2 TO T T2

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Coarse Grain Load-Balancing

¢ Improve Load-Balance
- Restrict #MPI Processes
- Exploit loop level parallelism instead

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

z1 z2
z3 | z4
I
y Y
P1 P2
TO T T2 ’T3 T4 T5 TO T T2 T3 T4 T5

4 MPI Processes:
Load-Imbalance because of
difference in subdomain size

2 MPI Processes:
Balanced load by assigning z1, z3
to P1 and z2, z4 to P2.

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

67

68

Fine Grain Load-Balancing

®* Improve Load-Balance on Fine Grain

- Assign more threads to MPI Process with high workload

Fine Grain Parallelism:
Assign 4 threads to P1, P2
Assign 2 threads to P3, P4

Coarse Grain Parallelism:

z1 z2
z3 |z4
L
[K Y] Y]
P1 P2 P3 P4
T | T To T1

Load-Imbalance because of
difference in subdomain size

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Multi-Zone NAS Parallel Benchmarks

timestep

set up zones

1,7

initialize

——

exchange
boundaries

l,i

verify

zZones

zZones

Nested

MPI/OpenMP MLP OpenMP
Time step sequential sequential sequential
inter-zones A= AL OpenMP

Processes Processes

exchange | o\ | datacopyt | onoyp
boundaries sync.
intra-zones OpenMP OpenMP OpenMP

LU,SP, and BT
Two hybrid sample implementations
Load balance heuristics part of sample codes
www.nas.nasa.gov/Resources/Software/software.html

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

® Multi-zone versions of the NAS Parallel Benchmarks

69

70

Benchmark Characteristics

* Aggregate sizes:
- Class C: 480 x 320 x 28 grid points Expectations:
- Class D: 1632 x 1216 x 34 grid points
- Class E: 4224 x 3456 x 92 grid points
Pure MPI: Load-
¢ BT-MZ: (Block-tridiagonal Solver) (balancing problems!w
- #Zones: 256 (C), 1024 (D), 4096 (E) Good candidate for
- Size of the zones varies widely: MPI1+OpenMP
* large/small about 20
* requires multi-level parallelism to achieve a good load-balance
LU not used
* LU-MZ: (Lower-Upper Symmetric Gauss Seidel So Limited MPI in this study
- #Zones: 16 (C, D, and E) Parallelism: because of
- Size of the zones identical: - MPI+OpenMP small number
* no load-balancing required increases of cores on

* limited parallelism on outer level Parallelism

the systems

* SP-MZ: (Scalar-Pentadiagonal Solver)
- #Zones: 256 (C), 1024 (D), 4096 (E)
- Size of zones identical
* no load-balancing required

Load-balanced on MPI
level: Pure MPI should
perform best

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 71

BT-MZ based on MPI/OpenMP

Coarse-grain MP! Parallelism Fine-grain OpenMP Parallelism

subroutine x solve (u, rhs,
! SOMP PARALLEL DEFAUL (SHARED)

call omp_set numthreads (weight)

do step = 1, itmax

call exch gbc(u, gbc, nx,..)

N

<call mpi_send/reD

do zone = 1, num_zones

if (iam .eg.pzone id(zone))
then
call comp rhs(u,rsd,..)
call x solve (u, rhs,..)
call y solve (u, rhs,..)
call z solve (u, rhs,..)
call add (u, rhs,...)
end if
end do

end do

1 SOMP& PRIVATE (i,73,k,isize...)
isize = nx-1
! SOMP DO
do k = 2, nz-1
do j = 2, ny-1

call lhsinit (lhs, isize)
do i =2, nx-1
lhs(m,i,3,k)= ..
end do
call matvec ()
call matmul ()....
end do
end do
end do
!$SOMP END DO nowait
!'SOMP END PARALLEL

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

72

Author:
sle Jost

Author:
sle Jost

NEC SX8:MPI/ /

Located at HLRS, Stuttgart, Germany
72 SX8 vector nodes with 8 CPUs each
12 TFlops peak performance
Node-node interconnect IXS 16 GB/s per node
Compilation:
sxmpif90 —C hopt —P openmp
Execute:
export MPIMULTITASK=0ON
export OMP_NUM_THREADS=<#num threads pr MPI| proc>
mpirun —nn <#nodes> —nnp <#MPI procs per node> a.out
Vectorization is required to achieve good performance
A maximum of 64 nodes (512 CPUs) were used for the study

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

x86/x86-64 SSE vs SX8 Vectorization

® SSE + SX8 Vector Processor
- Vector length: — Vector length is 256
= 2 (double prec) — No special alignment requirement
» 4 (single prec) — Compiler to will vectorize non-unit
— Vector memory load alignment stride, HW allows any stride on
must be 128 bit memory ops
- Difficult for compiler to vectorize — Full vectorization is necessary to
non-unit stride, SSE registers achieve good performance
must be filled in piece-meal _ Caution:
fashion)
. . — Data dependences can prevent
- Increasingly important for new torizati
AMD and Intel chips with 128-bit- vectorization
wide floating point pipeline — OpenMP parallelization might

interfere with vectorization!

73

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

74

BT-MZ Cache Optimized Version

®* NPB 3.2 optimized for cache based architectures with limited memory

bandwidth

- Use 1D temporary arrays to store intermediate values of 3d arrays

- Decreases memory use but introduces data dependences

do zone = myzone_ first, myzone_ last
(MPI communication)

do k

do j
do i

rhs 1d(i) = ¢ * rhs_1d(i-1) +

Author:

o ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ Vectorizable

+ SX8 requires vectorization:
— Re-introduce 3D arrays
— Loop interchange to remove data dependence from inner loop
— manual procedure in-lining to allow vectorization
— Note: OpenMP directives within routines prevented automatic
inlining
do zone = myzone first, myzone last
(MPI communication_) B

do k
do j
do i

rhs 3d(i, ,k) = ¢ * rhs 3d(i-1,7,k) + ...

Author:

75

o ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

76

NPB-MZ Class D Scalability on SX8

NPB-MZ Scalability on SX8

1600
1400 SP-MZ MPI
® SP-MZ MPI+OpenMP
1200 - BT-MZ MPI
1000 ~ ®BT-MZ MPI+OpenMP

Gopls

800
600
400
200
0 4
16 32 64 128 256 512
#cores

Three dimensions of variation: Nodes, Processes per Node, Threads per Process

® Hybrid: Reported is the best performance for a given number of CPUs on a combination
of Nodes

-MZ performs best for pure MPI
T-MZ benefits from hybrid

Meets expectations!

Author:
sle Jost

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 77

BT-MZ on SX-8: Combining MPI and OpenMP

® Metrics for MPI Procs Max/Min

® 8x8x1: 75 GFlops
_ TOtal time: 8 sec |__pure MPI BT-MZ Class B on 64 CPUs NEC SX8
- Workload size:59976 /2992 X | best | .
- Vector length 75/12 100 — /N

- Communication:
= Time (sec): 6.4 /0.6 v [
= Count: 1608/ 1608] | | edn 1
= Size: 53 MB /38.6 MB /MOM\ /

® 8x1x8: 117 GFlops v

Gflops

- Total time: 5.2 sec [hybrid MP1+OpenMP |

- Workload size: 17035/16704 Does not use all
- Vector length: 53/35 available cores:
- Communication: Bad!

* Time (sec): 1.1 /0.4
= Count: 13668 /8040
= Size: 230 MB/120 MB

Author:
sle Jost

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 78

BT-MZ on SX-8: Combining MPI and OpenMP

® The charts show

communication time and size of

communicated data per MPI
process

® The time spent in

communication is reciprocal to

the size of data that is
communicated

® The communication time is
caused by load-imbalance

BT-MZ Class B 8x1x8 on SX8
—e— Comm Time ins secs

Size in GB

1.2
1 RN

0.8
0.6 N . ——

0.4
0.2 ———=—

MPI Proc ID

O=_2NWHdOONO®
.

BT-MZ Class B 8x8x1

—«— Comm Time in secs.
Size in 10MB
- my,w’?
g P ST
CAEAVARZAIRAN [

KRN 0| { |

L
-~

i i J Y
T T Py K3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
MPI Proc ID

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Sun Constellation Cluster Ranger (1)

* Located at the Texas Advanced Computing Center (TACC), University of
Texas at Austin (http://www.tacc.utexas.edu)

e 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per node

(blade), 62976 cores total
e 123TB aggregrate memory

e Peak Performance 579 Tflops

¢ InfiniBand Switch interconnect

e Sun Blade x6420 Compute Node:
— 4 Sockets per node
— 4 cores per socket

HyperTransport System Bus
32GB memory

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

79

80

Sun Constellation Cluster Ranger (2)

* Compilation:
— PGl pgf90 7.1

— mpif90 -tp barcelona-64 -r8
* Cache optimized benchmarks Execution:

- MPI MVAPICH

— setenv OMP_NUM_THREAD NTHREAD

Default script for process

— ibrun bt-mz.exe placement available on
+ numactl controls Ranger
— Socket affinity: select sockets to run
— Core affinity: select cores within socket
— Memory policy: where to allocate memory
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 81

NPB-MZ Class E Scalability on Ranger

5000000

4000000

3000000

MFlop/s

2000000

1000000

0

6000000

4| OSP-MZ MPI+OpenMP

1 | ®BT-MZ MPI+OpenMP

NPB-MZ Class E Scalability on Sun Constellation

BSP-MZ (MPI)

OBT-MZ (MPI)

ol BN

1024 2048

#core

4096

8192

BT-MZ
Significant improve-
ment (235%):
Load-balancing issues
solved with MPI
+OpenMP

7~ sp-Mz

Pure MPI is already
load-balanced.
But hybrid
programming

_ 9.6% faster

Scalability in Mflops with increasing number of cores

Unexpected!

MPI/OpenMP: Best Result over all MPI/OpenMP combinations for a
fixed number of cores

Use of numactl essential to achieve scalability

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 82

Sun Constellation Cluster

1400

1200

1000

Effective Bandwidth (MB/s)
N 2 2
8 58 2 2
g 8 8 8

o

* Highly hierarchical 2“5 4‘§
® Shared Memory: —SL_1_Ja
- Cache-coherent, Non- 1
uniform memory access -1 IRC T 5
(ccNUMA) Blade mm| mwl, | £
¢ Distributed memory: l": =ﬂQ 2
- Network of ccNUMA 5 4‘3
blades ‘“‘ Gl o | |
= Core-to-Core e B | R
= Socket-to-Socket l
+ Blade o Biace ~Harn
= Chassis-to-Chassis 1”‘ =ﬂ 0
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 83

Ranger Network Bandwidth

On-Node Communication Scaling (between 2 Sockets)

—A—1:0-1
1:0-2
—6—1:0-3
—A—2:0-1
" 2:0-2
—®—2:0-3
——4:0-1
»4:0-2
—4—4:0-3

0.1k8 1k8 10k8 100k8 1ms
Message Size

MPI ping-pong micro
benchmark results

“Exploiting Multi-Level Parallelism
on the Sun Constellation System”.,
L. Koesterke, et. al., TACC,
TeraGrid08 Paper

10m8

Bandwidth per Communication

On NEM Node-2-Node Communication Scaling

1000

@
<3
3

600

400

Effective Bandwidth (MB/s)

200

0.1k8

10k8

1008 M8 10m8

Message Size

NEM to NEM Scaling Performance

Channel (MB/s)

10k8
Message Size

100k8 1mB 10me

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 84

NUMA Control: Process Placement

* Affinity and Policy can be changed externally through numactl
at the socket and core level.

Command: numactl <options> ./a.out

2 3 8,9,10,11 12,13,14,15
Core Core Core Core Core Core Core Core
*—0 —e
Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core
q o] = +—e
Core Core Core Core Core Core Core Core
1 0 4,5,6,7 0,1,2,3
Socket References Core References

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NUMA Operations: Memory Placement

2 3 .
“F coe o | | o coe 4“ ® Memory allocation:

T iml | o ® MPI - local allocation is best

)| ®* OpenMP
Core Core Core | Core — Interleave best for large, completely
*-—4 *—

o B o shared arrays that are randomly

1 V: ‘“ 0 accessed by different threads
B — local best for private arrays

Memory: Socket References °

Once allocated, a memory
structure’s is fixed

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NUMA Operations (cont. 3)

omd option arguments description
Only execute
numactl N 0,12,3) process on cores

of this (these)
socket(s).

numactl

{no argument}

Allocate on
current socket.

Allocate round

numactl {0,1,2,3} robin (interleave)
on these sockets.
Allocate on this
_ 1{0,1,2,3} socket; fallback
numactl --preferred= .
select only one [to any other if
full .
Only allocate on
numactl -m {0,1,2,3} this (these)
socket(s).
o {251',(2;3 Only execute.
Core Affinity numactl -C DO process on this
St 00 1 (these) Core(s)
12,13,14,15})

for mvapich2

Hybrid Batch Script 4 tasks, 4 threads/task

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

job script (Bourne shell

export OMP_NUM_THREADS=4

ibrun numa.sh

job script (C shell)

#! -pe 4way 32

setenv OMP_NUM_THREADS 4

ibrun numa.csh

numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN="echo $PE | sed 's/way//"
[!$TPN] && echo TPN NOT defined!
[$TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

numa.csh
#l/bin/tcsh
setenv

MV2_USE_AFFINITY 0

setenv MV2_ENABLE_AFFINITY 0
setenv VIADEV_USE_AFFINITY 0

#TasksPerNode

set TPN = "echo $PE | sed 's/way//"
if(! ${%TPN}) echo TPN NOT defined!

if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

87

88

Modes of Hybrid Operation

Pure

4 MPI Tasks 1 MPI Tasks
16 MPI Tasks 4Threads/Task 16 Threads/Task
Haa_aa- aa_aa- Has _as-
| | |
s == aa aa- I-aa s

Master Thread of MPI Task

E MPI Task on Core

!1 Master Thread of MPI Task
[l Slave Thread of MPI Task

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Numactl: Using Threads across
Sockets

| s
bt-mz.1024x8 yields rank 1 (| |HE)[(HE

best load-balance EEVak e

-pe 2way 8192_.
export OMP_NUM_ THREADS=8 Rank 0 o e |) | o Bl =ﬂ

my_ rank=$PMI_ RANK
local rank=$(($my rank % S$myway))
numnode=$(($local rank + 1))

Original: CEeELE e

(68}

=
ylomiau

N
T
H
&
=
H
| -
|

numactl -N S$Snumnode -m $numnode S$*

=

Bad performance!
*Each process runs 8 threads on 4 cores
*Memory allocated on one socket

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Numactl: Using Threads across Sockets

bt-mz.1024x8 2 4‘ 3
export OMP_NUM THREADS=8 T e e Sl lnle
— den
Core Core Core Core
my_rank=$PMI_RANK
local rank=$(($my rank % $myway)) 1
numnode=$(($local rank + 1)) o 1 5
a— +—e gl
Original: Core Core Core Core g
........ 1 0 =
numactl -N $numnode -m $numnode $*
2| 2N\ N\ ‘ 3
MOdIerd Core Core /Core Core
-------- Core Core Core Core‘
if [$local rank -eq 0]; then
numactl -N 0,3 -m 0,3 $* I
else \ Core VCore Core Core
numactl -N 1,2 -m 1,2 $* 1 1
fl %re Core/ \Qe Core/
1] === Rank 02
Achieves Scalability! ank 1 an
*Process uses cores and memory across 2
sockets

 Suitable for 8 threads

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NPB-MZ Class D Scalability on Ranger

NPB-MZ Class D Scalability on Sun
Constellation

1400000
1200000 —
B SP-MZ (MPI)
1000000 +——OSP-MZ MPI+OpenMP
& OBT-MZ (MPI)
2 800000 g pr.M7 MPI+OpenMP
E 600000
400000
200000
o LI
256 512 1024 2048
#core
¢ SP-MZ hybrid outperforms SP-MZ pure MPI
for
® ClassD

®* Does not meet expectations!

Author:

T ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ: Combining MPl and OpenMP

» Performance Metrics Class D

+ 128x4 :
— 4 MPI Processes per node
— 1 MPI Process per socket
595 Gflops
Total time: 86.5 sec
Workload: 536962/523124 points

* 512x1:
— 16 MPI Processes per node
— 4 MPI Processes per socket
334 Gflops
Total time: 154 sec
Workload: 243236/14450 points

Subroutine Timings Class D

-
N
o

128x4

-
o
o

“512x1

o]
o

N
o

Max/Proc Time in Seconds
N (2]
o o

rhs

ysolve

zsolyé

xsolve

o

@,

\

Computation S
Communication:
mpi_waitall
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 93

Execution Timelines for BT-MZ 128 MPI Processes

Process State View

® Paraver Performance
Analysis System

http:www.cepba.upc.es/
paraver/

®* 10 time steps Class

Process ID--->

100

=
TIME {in %) |

yal i

D
® 128 MPI Processes

® Most of the time
spent doing useful
work

¢ Small amount of time
in communication

® Well load-balanced

MPI Call View

Time --=>

REDRAW | I” Comm i Recy f Send I” FIBAJ"COMI’. W ﬂ ﬂ 1] ﬁ i]
o m— ¢ S gy < R
i
§
) i

JIE

mpi_isend/
mpi_waitall

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 94

Execution Timelines for BT-MZ 512 MPI Processes

Process State View

e

®* 10 time steps Class D

® 512 MPI Processes

* A lot of time spent in
Waiting and E— =
Synchronization e e S £ (=L e et

® Large amount of time Time = @/Synchrenizing
spent in mpi_waitall _

¢ Unbalanced Workload
on MPI Level

Process ID--->

—

7]

MPI Call View mpi_waitall

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 95

Communication Timings BT-MZ Class D 512 Processes

X-Axis Semantic _|| Statistic Time = Begin time: 0.00 us
End time: 9767785.00 us

Control Window: MPI call il Data Window:

MPI_Sen MP: oV MPI_Isend| MPI_Irecy) Waitall] MPI_Bcas MPI_)
THREAD 1.505.1 Al
THREAD 1.506.1 4
THREAD 1.507.1
THREAD 1.508.1
THREAD 1.509.1 /|
THREAD 1.510.1 |'
THREAD 1.511.1
THREAD 1.512.1 [
Total] 789,086 us | 101,318,393 us | 1,976,791 us | 1,934,170 us 1,775,957,374 77,543 us | 830, 865,; [
Average| 1,541 us 137, 887 us 3,861 us 3,778 u. 3,468, 668 1. 151 us 1,622, | .
Maximum| 94,442 us 828, 965 us 104,364 us | 1,134,077 us 5,042,082 438 us 2,943, [
¥ inimom| 107 us 30,4390 us 467 us 391 us 483,130 97 us
Stdev) 5,745 us 80,977 us 8,523 us 50,173 us | 863, 308ﬁs 63 us 758, |
C.¥. 4 us 0 us 2 us 13 us |\ M us 0 us o
N\ C1))
I~ ! v -
Repeat | Alitrace | Allwindow | Anayze | Large differences in time
spent in mpi_waitall
Min III Max I:AI S I:I ﬂ Min I;f P wEA_lya‘ouuuo

IR

Min Value IEM]NDDUBLE Max Value |§MAXDDUBLE

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 96

Compressed View of MPI Calls BT-MZ 512 Processes

X-Axis Semantic I Statistic Time

~
Control Window: MPIcal =| Data m NPt

Repeat | Altrace | Al wiNow

0.00 us
9767785.00 us

Begin time:
End time:

= w =z (|2 A

0K I

win [Max | 41 & |1

s

Max |§754asns

Min Value IEMINDUUBLE Max Value I:EMAKDOUBLE

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Time MPI_WAITALL:
Gradient Color

Dark blue is high value
Light green is low value

SP-MZ based on MPI/OpenMP

Coarse-grain MPI Parallelism

Fine-grain OpenMP Parallelism

97

call omp set numthreads (weight)

do step = 1, itmax

call exch gbc(u, gbc,

caII mpi_send/recv D
ne = 1, num zoO

1am

nx, ..)

.eg.pzone_id(zone)
then

call
call
call
call
call
call
end if
end do
end do

txinvr (u, rsd,..)
comp_rhs (u, rsd,..)
rhs, ..)
rhs,..)
rhs,..)
rhs,...)

(
x solve (u,
y_solve (u,
z_solve (u,
add (u,

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

subroutine x solve (u, rsd
1SOMP& PRIVATE (i

! SOMP DO
do k = 2,
do j = 2,

nz-1

ny-1

do i = 2, nx-1
lhs(m,1i,j,k)= .
rhs(m,I,j,k) =
end do
end do
end do
end do
!SOMP END DO nowait
!SOMP END PARALLEL
(rhs,..)

call ninvr

!SOMP PARALLEL DEFAUL (SHARED)
-)

;Jrk,isize. .

98

SP-MZ: Combining MPI and OpenMP

* Performance Metrics Class D
* 64x4 :153 Gflops . .
— Total time-1p69 Subroutine Timings Class D
— Communication: §90
» Count: 4531 isend /MPI Proc 880
« Size: 802 MB / MPI Proc aro
« Total Size:~51328MB éso Gaxd
. =50 m256x1
e 256x1: 14§ GFlops §40
— Total time:174 0:_30
— Communication: 20
» Count: 2004 isend/MPI Proc 10
+ Size:436 MB/MPI Proc 0
« Total Size:~110000MB rhs zsolye

All solver routines benefit from
multithreading, ysolve most
significantly

Time spent in mpi_wait/barrier
of communication reduced for
fewer processes

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 99

SP-MZ Execution on 256 Processes

S E
289 (M= 432006788 us

MPI Wait/
Barrier

*Timeline view of MPI calls for 10 iterations on 256 MPI Processes
°Little time spent in MPI calls
*No workload imbalance

°Light unbalance develops during the course of the execution:
Time spent in MPI_Wait/Barrier increases over multiple iterations.

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 100

Analysis of SP-MZ Execution

Iteration 10 I

Increased
amount of time
in MPI_waitall
in later
iterations!

Iteration 1

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 101

IPM Performance Monitor

* |IPM:
- Integrated Performance Monitoring
- http://ipm-hpc.sourceforge.net/home.html

® Summary at end of program

® Detailed Information:
- Example: BT-MZ 1024x1
— Hostlist
- Executable

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 102

Author:
iele Jost

IPM Summary Information

Replicated Data
\ MPI Message Buffer

P Ty

/

SP-MZ 64x4

D) #IPHw0, 92
#
command ¢ ,/bin/sp-nz,D,256 Acompleted) command ¢ ,/bin/sp-mz,D,64 (completed)
host + 1101-402/x86_64_|Ainux mpi_tasks : 256 on 16 nodes host + 1111-403/x86_64_Linux mpi_tasks : 64 on 16 nodes
sta LML 08/00:04: 30 wallclock ¢ 6,731512 sec 5 207356 wallclock ¢ 4,912151 sec
stop + 09/25/08/0 Zcomm + 32,85 stop 09/25/08/003 057 Acomm : 6,31
gbytes 3 3,96945e+01 oflop/sec ¢ 3,66761e+02 total < gbytes ¢ 1,80950e+01 tota gflop/sec 3 1,02274e+02 total
region 3 * [ntasks] = 256 region $ * [ntasks] = 64
#
[totall <avg> min max [totall <avg> min max
entries 256 1 1 1 entries 64 1
wallclock 1723,16 6.73109 6.7306 6,73151 wallclock 314,375 4,9121 4,91206 4,91215
user 1910,09 7.46129 7.14445 7.53647 user 1228,28 19,1919 19,1292 19,2932
system 43,8986 0,171479 0,068004 0,240015 system 16,789 0,262328 0,16401 0,32802
mpi 566,162 2,21157 2,01036 2,39116 npi 19,8324 0,309881 0,18546 0,423585
Zcomm 32,854 29,8662 35,5239 Zcomm £,30845 3,77559 8,62331
gflop/sec 366,761 1,43266 1,14317 1,48659 gflop/sec 102,274 1,59802 1,56701 1,62619
ghytes 39,6345 0,155057 0,154233 0,247147 ghytes 18,095 0,282735 0,281651 0,31538
#
PAPI_RES_STL 2,46886e+12 9,64398e+03 7,69526e+03 1,0007e+10 PAPI_RES_STL 5,02383e+11 7,84973e+09 7,69737e+03 7,98811e+09
PAPI_TOT_CYC 3,7230%e+12 1,45463e+10 1,01678e+10 1,46223e+10 PAPI_TOT_CYC 7,02834e+11 1,09818e+10 1,08508e+10 1,10058e+10
PAPI_L1_DCH 9,4843e+03 3,70504e+07 2,98643e+07 1,88519e+08 PAPI_L1_DCH 2,02927e+03 3,17073e+07 3,01009e+07 4,479%e+07
PAPI_L2_DCH 2,79355e+03 1,09123e+07 1,02886e+07 1,56143e+07 PAPT_L2_DCH 7.6661e+08 1,19783e+07 1,14856e+07 1,26603e+07
#
e <{Empi> <Zwall> 'ﬂp/k [time] <Ldmpi> <Awall>
465,088 82,15 26,99 I_Waitall 9,60437 2816 48,43 3,06
50,3843 8,90 2,92 < HPI_Barrier 4,7828 128 24,12 1,52
23,905 4,22 1,39 = 2,77577 14,00 0,88
435578 2,42 0,79 MPI_Bcast o 768 7,05 0,44
MPI_Reduce 12,0214 768 2,12 0,70 HPI_Reduce 0,802732 192 4,05 0,26
MPI_Isend 0,286147 11264 0,05 0,02 HPI_Sendrecy 0,328601 2384 1,66 0,10
MPI_Sendrecv 0,222154 11856 0,04 0,01 HPI_Isend 0,052586 2816 0,27 0,02
MPI_Connm_size 0,132859 1280 0,02 0,01 HPI_Send 0,0410128 315 0,21 0,01
MPI_Allreduce 0,132542 512 0,02 0,01 HPI_Irecw 0,0308591 2816 0,16 0,01
MPI_Irecy 0,131822 11264 0,02 0,01 HPI_Allreduce 0,00675192 128 0,03 0,00
MPI_Allgather 0,0320441 256 0,02 0,01 MPI_Allgather 0,00525232 64 0,03 0,00
MPI_Send 0,066374 1275 0,01 0,00 MPI_Comm_size 0,00246013 320 0,01 0,00
MPI_Comm_rank 0,00157302 1808 0,00 0,00 HPI_Comm_rank 0,000310361 464 0,00 0,00
ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 103

SP-MZ:Hybrid vs Pure MPI

ePerformance metrics for Class D:

*64x4:

256x1:

—Workload: HW FP OPS: 91G pe

—Workload: HW FP OPS:91G x 4 per
MPI Process

—Communication:
eTime (sec): 3.4sec max

eCount: 4531 isend per MPI
Process

eSize: 802MB per MPI Process
eTotal size: ~51328MB

ePerformance issues for pure MPI:

MPI Process
—Communication:

eTime (sec):17 sec Max

eCount: 2004 isend
Process

eSize: 436 MB Max,
Min

eTotal Size: ~110000MB.

eLarge amount of data communicated (2 x hybrid)
eImbalance in message size across processes

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

mpi_waitall

104

Hybrid Programming — Outline

[J
[J
Author:
j Hager|
[J
[

¢ Summary on Hybrid Parallelization

\uthor:

seifner ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 105

Elements of Successful Hybrid Programming

® System Requirements:
- Some level of shared memory parallelism, such as within a multi-core node

- Runtime libraries and environment to support both models
= Thread-safe MPI library
= Compiler support for OpenMP directives, OpenMP runtime libraries

- Mechanisms to map MPI processes onto cores and nodes
® Application Requirements:

- Expose multiple levels of parallelism
= Coarse-grained and fine-grained
= Enough fine-grained parallelism to allow OpenMP scaling to the number of cores per node

¢ Performance:
- Highly dependent on optimal process and thread placement
- No standard API to achieve optimal placement

- Optimal placement may not be be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution

- Memory traffic yields resource contention on multi-core nodes
- Cache optimization more critical than on single core nodes

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 106

Recipe for Successful Hybrid Programming

®* Familiarize yourself with the layout of your system:
- Blades, nodes, sockets, cores?
- Interconnects?
- Level of Shared Memory Parallelism?
® Check system software
- Compiler options, MPI library, thread support in MPI
- Process placement
¢ Analyze your application:

- Does MPI scale? If not, why?
= Load-imbalance => OpenMP might help
= Too much time in communication? Load-imbalance? Workload too small?

- Does OpenMP scale?
® Performance Optimization
- Optimal process and thread placement is important
- Find out how to achieve it on your system
- Cache optimization critical to mitigate resource contention

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 107

Hybrid Programming: Does it Help?

¢ Hybrid Codes provide these opportunities:
- Lower communication overhead
= Few multi-threaded MPI processes vs Many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
- Lower memory requirements
= Reduced amount of replicated data
= Reduced size of MPI internal buffer space
= May become more important for systems of 100’s or 1000’s cores per node
- Provide for flexible load-balancing on coarse and fine grain
= Smaller #of MPI processes leave room to assign workload more even
= MPI processes with higher workload could employ more threads
- Increase parallelism
= Domain decomposition as well as loop level parallelism can be exploited

YES, IT CAN!

ParCFDO09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others 108

