
1 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming Models on Clusters of SMP nodes

•! Practical “How-To” on hybrid programming & Case Studies

•! Mismatch Problems & Pitfalls

•! Application Categories that Can Benefit from Hybrid
Parallelization/Case Studies

•! Summary on hybrid parallelization

08/4/06, Author:
Rolf Rabenseifner

08/29/08, Author:
Georg Hager

2 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Goals of this part of the tutorial

•! Effective methods for clusters of

SMP node

!Mismatch problems & Pitfalls

•! Technical aspects of hybrid

programming

!Programming models on clusters
!“How-To”

•! Opportunities with hybrid
programming !Application categories
that
can benefit from hybrid parallelization
!Case studies

08/28/08, Author:
Rolf Rabenseifner

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

L1 cache

L2 cache

Intra-node network

Inter-node network

Inter-blade newtrok

3 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation
 Hybrid MPI/OpenMP programming seems natural

•! Which programming

model is fastest?

08/28/08, Author:
Rolf Rabenseifner

•! MPI everywhere?

•! Fully hybrid

MPI & OpenMP?

•! Something between?

(Mixed model)

?
•! Often hybrid

programming

slower than pure MPI

–! Examples, Reasons,
…

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

4 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Example from SC

•! Pure MPI versus

Hybrid MPI+OpenMP (Masteronly)

•! What‘s better?

! it depends on?

Figures: Richard D. Loft, Stephen J. Thomas, "

John M. Dennis:#

Terascale Spectral Element Dynamical Core for "
Atmospheric General Circulation Models.#

Proceedings of SC2001, Denver, USA, Nov. 2001.#

http://www.sc2001.org/papers/pap.pap189.pdf#

Fig. 9 and 10.#

Explicit C154N6 16 Level SEAM: !
NPACI Results with"

7 or 8 processes or threads per node"

0 200 400 600 800 1000"

Processors"

35"

30"

25"

20"

15"

10"

5"

0"

In
te

g
ra

ti
o

n
 r

a
te

 [

 Y
e

a
rs

 p
e

r
d

a
y

]
"

Explicit/Semi Implicit C154N6 SEAM !
vs T170 PSTSWM, 16 Level, NCAR"

0 100 200 300 400 500 600"

Processors"

25"

20"

15"

10"

5"

0"

In
te

g
ra

ti
o

n
 r

a
te

 [

 Y
e

a
rs

 p
e

r
d

a
y

]
"

2004-2006, Author:
Rolf Rabenseifner

5 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Motivation

Minimizing

–! Communication overhead,

"!e.g., messages inside of one SMP node

–! Synchronization overhead

"!e.g., OpenMP fork/join

–! Load imbalance

"!e.g., using OpenMP guided worksharing
schedule

–! Memory consumption

"!e.g., replicated data in MPI parallelization

–! Computation overhead

"!e.g., duplicated calculations in MPI
parallelization

Optimal
parallel
scaling

08/28/08, Author:
Rolf Rabenseifner

6 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming Models on Clusters of SMP nodes

•! Practical “How-To” on hybrid programming & Case Studies

•! Mismatch Problems & Pitfalls

•! Application Categories that Can Benefit from Hybrid Parallelization/

Case Studies

•! Summary on hybrid parallelization

08/4/06, Author:
Rolf Rabenseifner

08/29/08, Author:
Georg Hager

7 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Programming Models for Hierarchical Systems

•! Pure MPI (one MPI process on each CPU)

•! Hybrid MPI+OpenMP

–! shared memory OpenMP

–! distributed memory MPI

•! Other: Virtual shared memory systems, PGAS, HPF, …

•! Often hybrid programming (MPI+OpenMP) slower than pure MPI

–! why?

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

 block_to_be_parallelized

again_some_serial_code

Master thread,
 other threads

••• sleeping •••

OpenMP (shared data) MPI local data in each process

data Sequential
program on
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the

SMP nodes
MPI between the nodes

via node interconnect

2004-2006, Author:
Rolf Rabenseifner

8 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

 block_to_be_parallelized

again_some_serial_code

Master thread,
 other threads

••• sleeping •••

OpenMP (shared data) MPI local data in each process

data Sequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

MPI and OpenMP Programming Models

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

2004-2006, Author:
Rolf Rabenseifner

Masteronly
MPI only outside
of parallel regions

9 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Pure MPI

Advantages

–! MPI library need not to support multiple threads

Major problems

–! Does MPI library use internally different protocols?

"! Shared memory inside of the SMP nodes

"! Network communication between the nodes

–! Does application topology fit on hardware topology?

–! Unnecessary MPI-communication inside of SMP
nodes!

pure MPI
one MPI process

on each core

2004-2006, Author:
Rolf Rabenseifner

Discussed
in detail later on

in the section
Mismatch

Problems

10 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Masteronly

Advantages

–! No message passing inside of the SMP nodes

–! No topology problem

for (iteration ….)

{

 #pragma omp parallel
 numerical code

 /*end omp parallel */

 /* on master thread only */
 MPI_Send (original data

 to halo areas

 in other SMP nodes)

 MPI_Recv (halo data

 from the neighbors)
} /*end for loop

Masteronly
MPI only outside
of parallel regions

2004-2006, Author:
Rolf Rabenseifner

Major Problems

–! All other threads are sleeping
while master thread communicates!

–! Which inter-node bandwidth?

–! MPI-lib must be thread-safe

11 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….

 i.e., communicate all halo data

} else {

Execute those parts of the application

 that do not need halo data

 (on non-communicating threads)

}

Execute those parts of the application

 that need halo data

 (on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

08/09/06, Author:
Rolf Rabenseifner

12 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Pure OpenMP (on the cluster)

•! Distributed shared virtual memory system needed

•! Must support clusters of SMP nodes

•! e.g., Intel® Cluster OpenMP

–! Shared memory parallel inside of SMP nodes

–! Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

08/09/06, Author:
Rolf Rabenseifner

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

 by rule of thumb:

Communication

may be

10 times slower
than with MPI

13 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

MPI Memory Model

•! Message Passing Interface

•! Memory Model:

–! MPI assumes a private address space

–! Private address space for each MPI Process

–! Data needs to be explicitly communicated

•! Applies to distributed and shared memory computer architectures

process 1!process 0! process 2! process 3!

Address

Space P0

Message buffers
mpi_send mpi_receive

Address

Space P0

14 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Main

Initialize

master reads input

master broadcasts

input

Execute parallel work

finalize

End

MPI Program General Structures

•! In MPI/OpenMP all

processes start up

at the same time

•! Two ways to

handle input:

–! The master process
reads the input data
and broadcasts it to
the other processes

–! Parallel I/O

Initialize

master reads input

master broadcasts

input

Execute parallel work

finalize

…

15 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

OpenMP Memory Model

•! OpenMP assumes a shared address space

•! No communication is required between threads

•! Thread Synchronization is required when accessing shared data

•! Applies to shared memory or distributed shared memory, e.g. Intel’s
Cluster OpenMP®™

process 0!

T2!T1!T0!

Shared address space

data

16 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

OpenMP Code General Structure

•! Fork-Join Model:
•! Execution begins with a single “Master Thread”
•! A team of threads is created at each parallel region
•! Threads are joined at the end of parallel regions
•! Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time#

Serial#

4 Core#

Parallel#
execution#

Master Thread#
Multi-Threaded#

Serial#

6 Core#

Parallel# Serial#

17 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Comparison of MPI and OpenMP

•! MPI

•! Memory Model

–! Data private by default

–! Data accessed by
multiple processes
needs to be explicitly
communicated

•! Program Execution

–! One start and beginning

•! Parallelization

–! Domain decomposition

–! Explicitly programmed
by user

•! OpenMP

•! Memory Model

–! Data shared by default

–! Access to shared data requires
synchronization

–! Private data needs to be explicitly
declared

•! Program Execution

–! Fork-Join Model

•! Parallelization

–! Typically on loop level

–! Based on compiler directives

18 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Support of Hybrid Programming

•! OpenMP

–! None

–! API only for one execution unit,
which is one MPI process

–! For example: No means to specify
the total number of threads across
several MPI processes.

•! MPI

–! MPI-1 no concept of threads

–! MPI-2:

–! Thread support

–! MPI_Init_thread

19 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

MPI2 MPI_Init_thread

Syntax:
 call MPI_Init_thread(irequired, iprovided, ierr)

 int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)
 int MPI::Init_thread(int& argc, char**& argv, int required)

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED Process may be multi-threaded, but only main
thread will make MPI calls (calls are ’’funneled'' to
main thread). Default

MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be
’’serialized'').

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.

20 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Funneling through Master

!"#$%&'()*+!,-./(

+01203*(.45*36(

call mpi_init_thread(…)

789:;(+303$$'$(

(((789:;(5300!'0(

(((789:;(*36<'0(

(((((#3$$(:;=>?@.3<'A'0BCDE!'00F(

(((789:;('"&(*36<'0(

(((789:;(5300!'0(

789:;('"&(+303$$'$(

'"&(

G!"#$%&'(?*+!-.B(

!"<(*3!"C!"<(302#E(#.30(HH302AFI(
(!"<(03"JE(6!K'E(!'00E(!L(

!'00(M(:;=>="!<><.0'3&(C--F(
G+032*3(1*+(+303$$'$(

I(

!!!"#$%&'%!('#!)%$$*+$!

!!!"#$%&'%!('#!'%,-+$!

!!!.!

!!!!!*+$$/0123456%-+7+$89:;!

!!!<!

!!!"#$%&'%!('#!)%$$*+$(

N(

N(

O10<03"(P(

21 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Serialize through Single

!"#$%&'()*+!,-./(

+01203*(.456!"2(
=%>>!'#*3*?*-3-6$+%@90123ABCDEF3G2HIJDK!!!

!!*#$(7*@+@K*+$$;(

789:;(+303$$'$(

(((789:;(5300!'0(
(((789:;(6!"2$'(

(((((#3$$(:;=>?@.3<'A'0BCDE!'00F(
(((789:;('"&(6!"2$'(

(((779:;(5300!'0(

789:;('"&(+303$$'$(
'"&(

G!"#$%&'(?*+!-.B(

!"<(*3!"C!"<(302#E(#.30(HH302AFI(
!"<(03"JE(6!K'E(!'00E(!L(
'#*3*?*-3-6$+%@90123ABCDEF3G2HIJDK!!

#$(7@+@;!

G+032*3(1*+(+303$$'$(

I(
!!!"#$%&'%!('#!)%$$*+$!

!!!"#$%&'%!('#!,*?&>+!

!!!.!

!!!!!*+$$/0123456%-+7+$89:;!

!!!<!

!!!LL#$%&'%!('#!)%$$*+$(

N(

N(

O10<03"(P(

22 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Overlapping Communication and Work

•! One core can saturate the PCI-e "!network bus. Why use
all to communicate?

•! Communicate with one or several cores.

•! Work with others during communication.

•! Need at least MPI_THREAD_FUNNELED support.

•! Can be difficult to manage and load balance!

23 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Overlapping Communication and Work

!"#$%&'()*+!-./(

+01203*(.451A'0(

call mpi_init_thread(MPI_THREAD_FUNNELED,…)

789:;(+303$$'$(

(((!,(C!<.0'3&(-'Q-(RF(<.'"(

((((((#3$$(:;=>?@.3<'A'0BCDE!'00F(

((('$6'(
((((((?@10JB(

((('"&!,(

789:;('"&(+303$$'$(

'"&(

G!"#$%&'(?*+!-.B(

!"<(*3!"C!"<(302#E(#.30(HH302AFI(
(!"<(03"JE(6!K'E(!'00E(!L(

ierr= MPI_Init_thread(…)

G+032*3(1*+(+303$$'$(
I(

!!!*M!9-6$+%@!//!N;.!

!!!!!!*+$$/0123456%-+7+$89:;!

!!!<!

!!*M9-6$+%@!O/!N;.!

!!!!!!P($Q!

!!<!

N(

O10<03"(P(

24 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Thread-rank Communication
:

call mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, !03"J, ierr)
call mpi_comm_size(MPI_COMM_WORLD,"03"J6, ierr)
:

789:;(+303$$'$(+0!A3<'C!E(!<.0'3&E("<.0'3&6F(
S(

((("<.0'3&6M9:;>TUV>WX:>VYZU[\]CF(

(((!<.0'3&(((M9:;>TUV>VYZU[\>WX:CF(
(((#3$$(+@10JC!<.0'3&E(!03"JE("<.0'3&6E("03"J6DF(

(((!,C!03"J(MM(RF(<.'"(
((((((call mpi_send(ithread,1,MPI_INTEGER, 1, ithread,MPI_COMM_WORLD, ierr)
((('$6'(

((((((call mpi_recv(j,1,MPI_INTEGER, 0, ithread,MPI_COMM_WORLD, istatus,ierr)
((((((+0!"<HE(^_'+E(<.!6(!6(^E!03"JE^(<.0'3&(^E(!<.0'3&E^(=(0'#'!A'&(,01*(^E(`(
((('"&!,(

789:;(UW\(;[Z[aaUa(

'"&(

Communicate between ranks.

Threads use tags to differentiate.

25 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Running Hybrid Codes

•! Running the code

–! Highly non-portable! Consult system docs

–! Things to consider:

"! Is environment available for MPI Processes:

–! E.g.: mpirun –np 4 OMP_NUM_THREADS=4 …

a.out instead of your binary alone may be necessary

"! How many MPI Processes per node?

"! How many threads per MPI Process?

"! Which cores are used for MPI?

"! Which cores are used for threads?

"! Where is the memory allocated?

2
5

26 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming models on clusters of SMP nodes

•! Practical “How-To” on hybrid programming & Case Studies

•! Mismatch Problems & Pitfalls

•! Application categories that can benefit from hybrid parallelization

•! Summary on hybrid parallelization

08/4/06, Author:
Rolf Rabenseifner

08/29/08, Author:
Georg Hager

27 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming How-To: Overview

•! A practical introduction to hybrid programming

–! How to compile and link

–! Getting a hybrid program to run on a cluster

•! Running hybrid programs efficiently on multi-core clusters

–! Affinity issues

"! ccNUMA

"! Bandwidth bottlenecks

–! Intra-node MPI/OpenMP anisotropy

"! MPI communication characteristics

"! OpenMP loop startup overhead

–! Thread/process binding

08/29/08, Author:
Georg Hager

Courtesy of Georg Hager (RRZE)

28 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

How to compile, link and run

•! Use appropriate OpenMP compiler switch (-openmp, -xopenmp,

-mp, -qsmp=openmp, …) and MPI compiler script (if available)

•! Link with MPI library

–! Usually wrapped in MPI compiler script

–! If required, specify to link against thread-safe MPI library

"! Often automatic when OpenMP or auto-parallelization is switched on

•! Running the code

–! Highly non-portable! Consult system docs! (if available…)

–! If you are on your own, consider the following points

–! Make sure OMP_NUM_THREADS etc. is available on all MPI processes

"! Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary
alone

"! Use Pete Wyckoff’s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

–! Figure out how to start less MPI processes than cores on your nodes

08/29/08, Author:
Georg Hager

Courtesy of Georg Hager (RRZE)

29 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Some examples for compilation and
execution (1)

09/26/07, Author:
Gabriele Jost

•! Standard Intel Xeon cluster:

–! Intel Compiler

–! mpif90 –openmp …

–! Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out

Courtesy of Gabriele Jost (TACC/NPS)

30 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Handling of OMP_NUM_THREADS

•! without any support by mpirun:

–! E.g. with mpich-1

–! Problem:
mpirun has no features to export environment variables to the via ssh automatically
started MPI processes

–! Solution: Set
export OMP_NUM_THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

–! If you want to set OMP_NUM_THREADS individually when starting the MPI processes:

"! Add
test -s ~/myexports && . ~/myexports

in your ~/.bashrc

"! Add
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > ~/
myexports
before invoking mpirun

"! Caution: Several invocations of mpirun cannot be executed at the same time with
this trick!

Some examples for compilation and
execution (2)

09/27/07, Author:
Rolf Rabenseifner

31 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Handling of OMP_NUM_THREADS (continued)

•! with support by OpenMPI –x option:

export OMP_NUM_THREADS= <# threads per MPI process>

mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./

executable

•! Sun Constellation Cluster:

- mpif90 -fastsse -tp barcelona-64 –mp …

- SGE Batch System

- setenv OMP_NUM_THREADS

- ibrun numactl.sh a.out

- Details see TACC Ranger User Guide

 (www.tacc.utexas.edu/services/userguides/ranger/#numactl)

Some examples for compilation and
execution (3)

09/27/07, Author:
Rolf Rabenseifner

09/26/07, Author:
Gabriele Jost

32 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Some examples for compilation and
execution (4)

09/26/07, Author:
Gabriele Jost

•! Cray XT4:

•! ftn -fastsse -tp barcelona-64 -mp=nonuma …

•! aprun -n nprocs -N nprocs_per_node a.out

•! NEC SX8
–! NEC SX8 compiler

–! mpif90 –C hopt –P openmp … # –ftrace for profiling info

–! Execution:

$ export OMP_NUM_THREADS=<num_threads>

$ MPIEXPORT=“OMP_NUM_THREADS”

$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

Courtesy of Gabriele Jost (TACC/NPS)

33 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Interlude: Advantages of mpiexec

•! Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI

processes on nodes

–! As opposed to starting remote processes with ssh/rsh:

"! Correct CPU time accounting in batch system

"! Faster startup

"! Safe process termination

"! Understands PBS per-job nodefile

"! Allowing password-less user login not required between nodes

–! Support for many different types of MPI

"! All MPICHs, MVAPICHs, Intel MPI, …

–! Interfaces directly with batch system to determine number of procs

–! Downside: If you don’t use PBS or Torque, you’re out of luck…

•! Provisions for starting less processes per node than available cores

–! Required for hybrid programming

–! “-pernode” and “-npernode #” options – does not require messing around
with nodefiles

08/29/08, Author:
Georg Hager

Courtesy of Georg Hager (RRZE)

34 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Running the code

•! Example for using mpiexec on a dual-socket dual-core

cluster:

$ export OMP_NUM_THREADS=4

$ mpiexec -pernode ./a.out

•! Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=2

$ mpiexec -npernode 2 ./a.out

•! Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if

serial code

$ mpiexec ./a.out

08/29/08, Author:
Georg Hager

Courtesy of Georg Hager (RRZE)

35 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Running the code efficiently?

•! Symmetric, UMA-type compute nodes have become rare animals

–! NEC SX

–! Intel 1-socket (“Port Townsend/Melstone”) – see case studies

–! Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon… (all
dead)

•! Instead, systems have become “non-isotropic” on the node level

–! ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), larger Sun Enterprise
systems, Intel Nehalem)

–! Multi-core, multi-socket

"! Shared vs. separate caches

"! Multi-chip vs. single-chip

"! Separate/shared buses

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Chipset

Memory

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C

08/29/08, Author:
Georg Hager

36 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Issues for running code efficiently
on “non-isotropic” nodes

•! ccNUMA locality effects

–! Penalties for inter-LD access

–! Impact of contention

–! Consequences of file I/O for page placement

–! Placement of MPI buffers

•! Multi-core / multi-socket anisotropy effects

–! Bandwidth bottlenecks, shared caches

–! Intra-node MPI performance

"! Core ! core vs. socket ! socket

–! OpenMP loop overhead depends on mutual position of threads in
team

08/29/08, Author:
Georg Hager

37 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

A short introduction to ccNUMA

•! ccNUMA:

–! whole memory is transparently accessible by all

processors

–! but physically distributed

–! with varying bandwidth and latency

–! and potential contention (shared memory paths)

C C C C

M M

C C C C

M M

08/29/08, Author:
Georg Hager

38 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

•! CPU

–! 64 kB L1 per core

–! 1 MB L2 per core

–! No shared caches

–! On-chip memory controller (MI)

–! 10.6 GB/s local memory bandwidth

•! HyperTransport 1000 network

–! 4 GB/s per link per direction

•! 3 distance categories for
core-to-memory connections:

–! same LD

–! 1 hop

–! 2 hops

•! Q1: What are the real penalties for non-local accesses?

•! Q2: What is the impact of contention?

HT

HT

HT HT

08/29/08, Author:
Georg Hager

39 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Effect of non-local access on HP DL585
G5:

Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops

08/29/08, Author:
Georg Hager

40 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Contention vs. parallel access on HP
DL585 G5:

OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads

S = # sockets

In-cache performance
unharmed by ccNUMA

Single LD saturated
by 2 cores!

Perfect scaling
across LDs

Affinity matters!

08/29/08, Author:
Georg Hager

41 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

ccNUMA Memory Locality Problems

•! Locality of reference is key to scalable performance on ccNUMA

–! Less of a problem with pure MPI, but see below

•! What factors can destroy locality?

•! MPI programming:

–! processes lose their association with the CPU the mapping took
place on originally

–! OS kernel tries to maintain strong affinity, but sometimes fails

•! Shared Memory Programming (OpenMP, hybrid):

–! threads losing association with the CPU the mapping took place on
originally

–! improper initialization of distributed data

–! Lots of extra threads are running on a node, especially for hybrid

•! All cases:

–! Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

08/29/08, Author:
Georg Hager

42 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Avoiding locality problems

•! How can we make sure that memory ends up where it is close to

the CPU that uses it?

–! See the following slides

•! How can we make sure that it stays that way throughout program
execution?

–! See end of section

08/29/08, Author:
Georg Hager

43 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Solving Memory Locality Problems: First
Touch

•! "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor
that first touches it!

–! Except if there is not enough local memory available

–! this might be a problem, see later

–! Some OSs allow to influence placement in more direct ways

"! cf. libnuma (Linux), MPO (Solaris), …

•! Caveat: "touch" means "write", not "allocate"

•! Example:

double *huge = (double*)malloc(N*sizeof(double));
// memory not mapped yet
for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0; // mapping takes place here!

•! It is sufficient to touch a single item to map the entire page

08/29/08, Author:
Georg Hager

44 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

ccNUMA problems beyond first touch

•! OS uses part of main memory for
disk buffer (FS) cache

–! If FS cache fills part of memory,
apps will probably allocate from
foreign domains

–! ! non-local access!

–! Locality problem even on hybrid
and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

•! Remedies

–! Drop FS cache pages after user job has run (admin’s job)

"! Only prevents cross-job buffer cache “heritage”

–! “Sweeper” code (run by user)

–! Flush buffer cache after I/O if necessary (“sync” is not
sufficient!)

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)

d
a

ta
(1

)

08/29/08, Author:
Georg Hager

45 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

ccNUMA problems beyond first touch

•! Real-world example: ccNUMA vs. UMA and the Linux buffer

cache

•! Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel

UMA, 4 GB main memory

•! Run 4 concurrent

triads (512 MB each)
after writing a large

file

•! Report perfor-

mance vs. file size

•! Drop FS cache after

each data point

08/29/08, Author:
Georg Hager

46 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Intra-node MPI characteristics: IMB Ping-Pong
benchmark

•! Code (to be run on 2 processors):

•! Intranode (1S): mpirun –np 2 –pin “1 3” ./a.out

•! Intranode (2S): mpirun –np 2 –pin “2 3” ./a.out

•! Internode: mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

 if(rank.eq.0) then
 MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
 MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

 status,ierr)
 else
 MPI_RECV(…)
 MPI_SEND(…)
 endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

08/29/08, Author:
Georg Hager

Courtesy of Georg Hager (RRZE)

47 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

IMB Ping-Pong on DDR-IB Woodcrest cluster:
Bandwidth Characteristics

Intra-Socket vs. Intra-node vs. Inter-node

Shared cache
advantage

intrasocket

 intranode

 comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

08/29/08, Author:
Georg Hager

Between two cores of
one socket

Between two sockets
of one node

Between two nodes
via InfiniBand

0 2 1 3

Courtesy of Georg Hager (RRZE)

48 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming models on clusters of SMP nodes

•! Case Studies / Practical “How-To” on hybrid programming

•! Mismatch Problems & Pitfalls

•! Opportunities: Application categories that can benefit from

hybrid parallelization

•! Summary on hybrid parallelization

08/4/06, Author:
Rolf Rabenseifner

49 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Mismatch Problems & Pitfalls

•! None of the programming models

fits to the hierarchical hardware

(cluster of SMP nodes)

•! Several mismatch problems

! following slides

•! Benefit through hybrid programming

! opportunities, see next section

•! Quantitative implications

! depends on you application

Examples: No.1 No.2

Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%

Total +20% –15%

In most
cases:
Both

categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

08/28/08, Author:
Rolf Rabenseifner

50 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Application example on 80 cores:

•! Cartesian application with 5 x 16 = 80 sub-domains

•! On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

Sequential alignm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Horizontal ranks

 1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?

09/09/08, Author:
Rolf Rabenseifner

51 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Application example on 80 cores:

•! Cartesian application with 5 x 16 = 80 sub-domains

•! On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Horizontal ranks

Round robin align.

A

A

A

A

A

A A

A

B

B

B

B

B

B B

B

C

C

C

C C

C C

C

D

D

D

D D

D D

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

G G

G G

G

G

G

H

H H

H H

H

H

H

I

I I

I

I

I

I

I

J

J J

J

J

J

J

J

32 x inter-node connections per node

 0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

A A

A A

A A

A A

J J

J J

J J

J J

Never tru
st the default !!!

pure MPI
one MPI process

on each core

09/09/08, Author:
Rolf Rabenseifner

52 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Application example on 80 cores:

•! Cartesian application with 5 x 16 = 80 sub-domains

•! On system with 10 x dual socket x quad-core

Level 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Horizontal ranks

Two levels of
domain decomposition

10 x inter-node connections per node

Bad affinity of cores to thread ranks

 4 x inter-socket connection per node

pure MPI
one MPI process

on each core

09/09/08, Author:
Rolf Rabenseifner

53 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Application example on 80 cores:

•! Cartesian application with 5 x 16 = 80 sub-domains

•! On system with 10 x dual socket x quad-core

Level 2a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Horizontal ranks

Two levels of
domain decomposition

10 x inter-node connections per node

 2 x inter-socket connection per node

Good affinity of cores to thread ranks

pure MPI
one MPI process

on each core

09/09/08, Author:
Rolf Rabenseifner

54 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Problem

–! Does application topology inside of SMP
parallelization fit on inner hardware topology of
each SMP node?

Solutions:

–! Domain decomposition inside of each thread-
parallel MPI process, and

–! first touch strategy with OpenMP

Successful examples:

–! Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing

on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA

data traffic through

domain decomposition
inside of each

MPI process

08/28/08, Author:
Rolf Rabenseifner

55 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Topology Problem with

Application example:

•! Same Cartesian application aspect ratio: 5 x 16

•! On system with 10 x dual socket x quad-core

•! 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

 3 x inter-node connections per node, but ~ 4 x more traffic

 2 x inter-socket connection per node

Affinity of cores to thread ranks !!!

09/09/08, Author:
Rolf Rabenseifner

56 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

09/09/08, Author:
Rolf Rabenseifner

57 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Mapping Problem with mixed model

Several multi-threaded
MPI process per SMP
node:

Problem

–! Where are your
processes and threads
really located?

Solutions:

–! Depends on your
platform,

–! e.g., lbrun numactl
option on Sun

hybrid MPI+OpenMP

pure MPI

&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI

pro-

cess

0

MPI

pro-

cess

1

08/28/08, Author:
Rolf Rabenseifner

As seen in case-study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

58 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Unnecessary intra-node
communication

Problem:

–! If several MPI process on each SMP node
! unnecessary intra-node communication

Solution:

–! Only one MPI process per SMP node

Remarks:

–! MPI library must use appropriate
fabrics / protocol for intra-node communication

–! Intra-node bandwidth higher than
 inter-node bandwidth
 ! problem may be small

–! MPI implementation may cause
 unnecessary data copying
 ! waste of memory bandwidth

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

08/28/08, Author:
Rolf Rabenseifner

59 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Sleeping threads and network saturation
 with

Problem 1:

–! Can the master thread
saturate the network?

Solution:
–! If not, use mixed model
–! i.e., several MPI

processes per SMP node

Problem 2:

–! Sleeping threads are
wasting CPU time

Solution:
–! Overlapping of

computation and
communication

Problem 1&2 together:

–! Producing more idle time
through lousy bandwidth
of master thread

for (iteration ….)

{

 #pragma omp parallel
 numerical code

 /*end omp parallel */

 /* on master thread only */
 MPI_Send (original data

 to halo areas

 in other SMP nodes)

 MPI_Recv (halo data

 from the neighbors)
} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

08/28/08, Author:
Rolf Rabenseifner

60 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

OpenMP: Additional Overhead & Pitfalls

•! Using OpenMP

! may prohibit compiler optimization

! may cause significant loss of computational performance

•! Thread fork / join

•! On ccNUMA SMP nodes:

–! E.g. in the masteronly scheme:

"! One thread produces data

"! Master thread sends the data with MPI

! data may be internally communicated from one

memory to the other one

•! Amdahl’s law for each level of parallelism

•! Using MPI-parallel application libraries?

! Are they prepared for hybrid?

2004-2006, Author:
Rolf Rabenseifner

61 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Overlapping communication and computation

Three problems:

•! the application problem:

–! one must separate application into:

"! code that can run before the halo data is received

"! code that needs halo data

#! very hard to do !!!

•! the thread-rank problem:

–! comm. / comp. via
thread-rank

–! cannot use
work-sharing directives

#! loss of major
OpenMP support
(see next slide)

•! the load balancing problem

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

2004-2006, Author:
Rolf Rabenseifner

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

 ….

}

}

62 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Overlapping communication and computation

Subteams

•! Important proposal

for OpenMP 3.x

or OpenMP 4.x

#pragma omp parallel

{

#pragma omp single onthreads(0)

 {

 MPI_Send/Recv….

 }

#pragma omp for onthreads(1 : omp_get_numthreads()-1)

 for (……..)

 { /* work without halo information */

 } /* barrier at the end is only inside of the subteam */

 …

#pragma omp barrier

#pragma omp for

 for (……..)

 { /* work based on halo information */

 }

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

09/06/2006, Author:
Rolf Rabenseifner

Barbara Chapman et al.:

Toward Enhancing
OpenMP’s Work-Sharing
Directives.

In proceedings, W.E.
Nagel et al. (Eds.): Euro-
Par 2006, LNCS 4128, pp.
645-654, 2006.

63 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Jacobi Solver
Basic implementation (2 arrays; no blocking etc…)

do k = 1 , Nk

 do j = 1 , Nj

 do i = 1 , Ni

 y(i,j,k) = a*x(i,j,k) + b*

 (x(i-1,j,k)+ x(i+1,j,k) + x(i,j-1,k)
 +x(i,j+1,k)+ x(i,j,k-1) + x(i,j,k

+1))

 enddo

 enddo

enddo

Parallelization through

•! Domain Decomposition

•! Halo cells

•! Data Exchange through cyclic SendReceive operation

Performance Measure:
Million Lattice Site Updates per second: MLUPs

Equivalent MFLOPs:
8 FLOP/LUP * MLUPs

64 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Parallelization – 3-D Jacobi

i

j

k

1,1,0

0,0,1

1,0,0

0,0,0

1,1,1

•! Cubic 3-D computational domain with PBC in all directions

•! Use single node IB/GE cluster with one dualcore chip per node

•! Homogeneous distribution of workload, e.g. on 8 procs
4 nodes;
pure MPI:

000 001

010 011

100 101

110 111

4 nodes;
hybrid:

000

100

110

010

65 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

IB

GE

Hybrid on GE:
Thread 0: Communication + Boundary cell updates
Thread 1: Inner cell updates

Performance model

T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = DaVo / BW

P0 = 150 MLUP/s
BW(GE) = 100 MBit/s

Strong scaling:
N3 = 4803

Performance estimate (GE) for no nodes:
 P(no) = N3 / ((TCOMP/no) + TCOMM(no))

Data volume of
halo exchange

66 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming Models on Clusters of SMP nodes

•! Practical “How-To” on hybrid programming & Case Studies

•! Mismatch Problems & Pitfalls

•! Application Categories that Can Benefit from Hybrid
Parallelization/Case Studies

•! Summary on hybrid parallelization

08/4/06, Author:
Rolf Rabenseifner

08/29/08, Author:
Georg Hager

67 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Multi-Level Parallelism in Applications

•! Extract additional Parallelism in case of Limited coarse grain

Parallelism

z1 z2

z3 z4

P1 P2 P3 P4

Coarse Grain Parallelism:
Subdomains z1, z2, z3, z4 are
mapped onto MPI Processes P1,

P2, P3, and P4

T0 T1 T2 T0 T1 T2

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing

OpenMP on loop-level

T0 T1 T2 T0 T1 T2

68 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Coarse Grain Load-Balancing

•! Improve Load-Balance

–! Restrict #MPI Processes

–! Exploit loop level parallelism instead

4 MPI Processes:
Load-Imbalance because of
difference in subdomain size

2 MPI Processes:
Balanced load by assigning z1, z3
to P1 and z2, z4 to P2.

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing

OpenMP on loop-level

z1 z2

z3 z4

P1

T1 T0 T2 T0 T1 T2 T3 T4 T5 T3 T4 T5

P2

69 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

 Fine Grain Load-Balancing

•! Improve Load-Balance on Fine Grain

–! Assign more threads to MPI Process with high workload

Coarse Grain Parallelism:
Load-Imbalance because of
difference in subdomain size

Fine Grain Parallelism:
Assign 4 threads to P1, P2
Assign 2 threads to P3, P4

z1 z2

z3 z4

P1

T1 T0 T0 T0 T1 T2 T3 T1

P2 P3 P4

70 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMP
data copy+

sync.
exchange

boundaries

sequential sequential Time step

OpenMP OpenMP intra-zones

OpenMP
MLP

Processes
inter-zones

Nested
OpenMP

MLP

•! Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

•! Two hybrid sample implementations

•! Load balance heuristics part of sample codes

•! www.nas.nasa.gov/Resources/Software/software.html

71 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! Aggregate sizes:
–! Class C: 480 x 320 x 28 grid points

–! Class D: 1632 x 1216 x 34 grid points

–! Class E: 4224 x 3456 x 92 grid points

•! BT-MZ: (Block-tridiagonal Solver)

–! #Zones: 256 (C), 1024 (D), 4096 (E)

–! Size of the zones varies widely:
•! large/small about 20
•! requires multi-level parallelism to achieve a good load-balance

•! LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver)

–! #Zones: 16 (C, D, and E)

–! Size of the zones identical:
•! no load-balancing required
•! limited parallelism on outer level

•! SP-MZ: (Scalar-Pentadiagonal Solver)

–! #Zones: 256 (C), 1024 (D), 4096 (E)

–! Size of zones identical

•! no load-balancing required

Benchmark Characteristics

a13&b53$3"#'&(1"(:;=(

$'A'$S(;%0'(:;=(6.1%$&(

+'0,10*(5'6<(

;%0'(:;=S(a13&b

53$3"#!"2(+015$'*67(

T11&(#3"&!&3<'(,10(

:;=c9+'":;(

a!*!<'&(:;=(

;303$$'$!6*S(

!(:;=c9+'":;(

!"#0'36'6(

;303$$'$!6*(

Expectations:

LU not used
in this study
because of

small number
of cores on
the systems

72 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ based on MPI/OpenMP

call omp_set_numthreads (weight)

do step = 1, itmax

 call exch_qbc(u, qbc, nx,…)

 do zone = 1, num_zones

 if (iam .eq.pzone_id(zone))
then

 call comp_rhs(u,rsd,…)

 call x_solve (u, rhs,…)

 call y_solve (u, rhs,…)

 call z_solve (u, rhs,…)

 call add (u, rhs,….)

 end if

 end do

end do

 ...

call mpi_send/recv

Coarse-grain MPI Parallelism
subroutine x_solve (u, rhs,

!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(i,j,k,isize...)

isize = nx-1

!$OMP DO

 do k = 2, nz-1

 do j = 2, ny-1

 …..

 call lhsinit (lhs, isize)

 do i = 2, nx-1

 lhs(m,i,j,k)= ..

 end do

 call matvec ()

 call matmul ()…..

 end do

 end do

end do

!$OMP END DO nowait

!$OMP END PARALLEL

Fine-grain OpenMP Parallelism

73 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! Located at HLRS, Stuttgart, Germany

•! 72 SX8 vector nodes with 8 CPUs each

•! 12 TFlops peak performance

•! Node-node interconnect IXS 16 GB/s per node

•! Compilation:

sxmpif90 –C hopt –P openmp

•! Execute:

export MPIMULTITASK=ON

export OMP_NUM_THREADS=<#num threads pr MPI proc>

mpirun –nn <#nodes> –nnp <#MPI procs per node> a.out

•! Vectorization is required to achieve good performance

•! A maximum of 64 nodes (512 CPUs) were used for the study

NEC SX8:MPI/OpenMP/Vectorization

09/26/07, Author:
Gabriele Jost

74 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! SSE

–! Vector length:

"! 2 (double prec)

"! 4 (single prec)
–! Vector memory load alignment

must be 128 bit

–! Difficult for compiler to vectorize
non-unit stride, SSE registers
must be filled in piece-meal
fashion

–! Increasingly important for new
AMD and Intel chips with 128-bit-
wide floating point pipeline

•! SX8 Vector Processor

–! Vector length is 256

–! No special alignment requirement

–! Compiler to will vectorize non-unit
stride, HW allows any stride on

memory ops

–! Full vectorization is necessary to
achieve good performance

–!Caution:

–! Data dependences can prevent
vectorization

–! OpenMP parallelization might
interfere with vectorization!

x86/x86-64 SSE vs SX8 Vectorization

09/26/07, Author:
Gabriele Jost

75 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! NPB 3.2 optimized for cache based architectures with limited memory
bandwidth

–! Use 1D temporary arrays to store intermediate values of 3d arrays

–! Decreases memory use but introduces data dependences

do zone = myzone_first, myzone_last

 (MPI communication)
$OMP PARALLEL DO
do k
 do j
 do i
 …
 rhs_1d(i) = c * rhs_1d(i-1) + …..!

non-vectorizable inner loop

BT-MZ Cache Optimized Version

09/26/07, Author:
Gabriele Jost

76 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! SX8 requires vectorization:

–! Re-introduce 3D arrays

–! Loop interchange to remove data dependence from inner loop

–! manual procedure in-lining to allow vectorization

–! Note: OpenMP directives within routines prevented automatic
inlining

do zone = myzone_first, myzone_last
 (MPI communication)

$OMP PARALLEL DO
do k
 do j
 do i
 ….
 rhs_3d(i,j,k) = c * rhs_3d(i-1,j,k) + …..

Loop interchange yields vectorizable inner loop

BT-MZ Vectorizable

09/26/07, Author:
Gabriele Jost

77 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NPB-MZ Class D Scalability on SX8

•! Three dimensions of variation: Nodes, Processes per Node, Threads per Process

•! Hybrid: Reported is the best performance for a given number of CPUs on a combination
of Nodes x MPI x OMP

•! SP-MZ performs best for pure MPI

•! BT-MZ benefits from hybrid

09/26/07, Author:
Gabriele Jost

Meets expectations!

0

200

400

600

800

1000

1200

1400

1600

16 32 64 128 256 512

G
o

p
/s

#cores

NPB-MZ Scalability on SX8

SP-MZ MPI

SP-MZ MPI+OpenMP

BT-MZ MPI

BT-MZ MPI+OpenMP

78 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•!Metrics for MPI Procs Max/Min

•! 8x8x1: 75 GFlops

–! Total time: 8 sec

–! Workload size:59976 /2992

–! Vector length 75/12

–! Communication:

"!Time (sec): 6.4 /0.6

"!Count: 1608/ 1608

"!Size: 53 MB /38.6 MB

•! 8x1x8: 117 GFlops

–! Total time: 5.2 sec

–! Workload size: 17035/16704

–! Vector length: 53/35

–! Communication:

"!Time (sec): 1.1 /0.4

"!Count: 13668 /8040

"!Size: 230 MB/120 MB

BT-MZ Class B on 64 CPUs NEC SX8

0

20

40

60

80

100

120

140

8x8x1 8x4x2 8x2x4 8x1x8 16x4x1 16x2x2 16x1x4

NodexMPIxOMP

G
fl

o
p

s

BT-MZ on SX-8: Combining MPI and OpenMP

09/26/07, Author:
Gabriele Jost

pure MPI

hybrid MPI+OpenMP

best

Does not use all
available cores:
Bad!

79 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ on SX-8: Combining MPI and OpenMP

•!The charts show

communication time and size of

communicated data per MPI

process

•!The time spent in

communication is reciprocal to

the size of data that is

communicated

•!The communication time is

caused by load-imbalance

BT-MZ Class B 8x1x8 on SX8

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

MPI Proc ID

Comm Time ins secs

Size in GB

09/26/07, Author:
Gabriele Jost

BT-MZ Class B 8x8x1

0

1

2

3

4

5

6

7

8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

MPI Proc ID

Comm Time in secs.

Size in 10MB

80 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Sun Constellation Cluster Ranger (1)

d! a1#3<'&(3<(<.'(V'e36([&A3"#'&(P1*+%f"2(P'"<'0(CV[PPFE(X"!A'06!<4(1,(
V'e36(3<([%6f"(C.g+Shh@@@-<3##-%<'e36-'&%F(

d! ijik(]%"(l$3&'6E(m([:\(n%3&b#10'(km5!<(o-iTYK(+01#'66106(+'0("1&'(
C5$3&'FE(kojpk(#10'6(<1<3$((

d! qoiVl(3220'203<'(*'*104(

d! ;'3J(;'0,10*3"#'(rpj(Vs1+6(

d! ="t"!l3"&(]@!<#.(!"<'0#1""'#<(

d!]%"(l$3&'(ekmoR(P1*+%<'(W1&'S(

u! m(]1#J'<6(+'0("1&'(

u! m(#10'6(+'0(61#J'<(

u! Y4+'0V03"6+10<(]46<'*(l%6(

u! ioTl(*'*104(

81 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! Compilation:

–! PGI pgf90 7.1

–! mpif90 -tp barcelona-64 -r8

•! Cache optimized benchmarks Execution:

–! MPI MVAPICH

–! setenv OMP_NUM_THREAD NTHREAD

–! ibrun numactl.sh bt-mz.exe

•! numactl controls

–! Socket affinity: select sockets to run

–! Core affinity: select cores within socket

–! Memory policy: where to allocate memory

Sun Constellation Cluster Ranger (2)

Default script for process
placement available on
Ranger

82 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! Scalability in Mflops with increasing number of cores

•! MPI/OpenMP: Best Result over all MPI/OpenMP combinations for a
fixed number of cores

•! Use of numactl essential to achieve scalability

NPB-MZ Class E Scalability on Ranger

0

1000000

2000000

3000000

4000000

5000000

6000000

1024 2048 4096 8192

M
F
lo

p
/

s

#core

NPB-MZ Class E Scalability on Sun Constellation

SP-MZ (MPI)

SP-MZ MPI+OpenMP

BT-MZ (MPI)

BT-MZ MPI+OpenMP

lVb:v(

]!2"!t#3"<(!*+01A'b

*'"<(CoirwFS(

a13&b53$3"#!"2(!66%'6(

61$A'&(@!<.(:;=

c9+'":;(

];b:v(

;%0'(:;=(!6(3$0'3&4(

$13&b53$3"#'&-(

l%<(.450!&(

+01203**!"2((

j-kw(,36<'0(

Unexpected!

83 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Sun Constellation Cluster

•! Highly hierarchical

•! Shared Memory:

–! Cache-coherent, Non-
uniform memory access
(ccNUMA) Blade

•! Distributed memory:

–! Network of ccNUMA
blades

"! Core-to-Core

"! Socket-to-Socket

"! Blade-to-Blade

"! Chassis-to-Chassis

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

n
e
tw

o
rk

84 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Ranger Network Bandwidth

“Exploiting Multi-Level Parallelism
on the Sun Constellation System”.,
L. Koesterke, et. al., TACC,

TeraGrid08 Paper

MPI ping-pong micro
benchmark results

85 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NUMA Control: Process Placement

•! Affinity and Policy can be changed externally through numactl

at the socket and core level.

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

]1#J'<(Z','0'"#'6(

R(q(

i(o(

REqEoEi(mErEkEp(

qoEqiEqmEqr(xEjEqREqq(

P10'(Z','0'"#'6(

86 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NUMA Operations: Memory Placement

•! Memory allocation:

•! MPI – local allocation is best

•! OpenMP

– Interleave best for large, completely
shared arrays that are randomly

accessed by different threads

– local best for private arrays

•! Once allocated, a memory

structure’s is fixed

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

:'*104S(]1#J'<(Z','0'"#'6(

R(

i(o(

q(

87 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

NUMA Operations (cont. 3)

cmd option arguments description

Socket Affinity numactl -N {0,1,2,3}

Only execute
process on cores
of this (these)
socket(s).

Memory Policy numactl -l {no argument}
Allocate on
current socket.

Memory Policy numactl -i {0,1,2,3}
Allocate round
robin (interleave)
on these sockets.

Memory Policy numactl --preferred=
{0,1,2,3}
select only one

Allocate on this
socket; fallback
to any other if
full .

Memory Policy numactl -m {0,1,2,3}
Only allocate on
this (these)
socket(s).

Core Affinity numactl -C

{0,1,2,3,
 4,5,6,7,
 8,9,10,11,
 12,13,14,15}

Only execute
process on this
(these) Core(s).

88 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Batch Script 4 tasks, 4 threads/task

 job script (Bourne shell) job script (C shell)

... ...

#! -pe 4way 32 #! -pe 4way 32

... ...

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4

ibrun numa.sh ibrun numa.csh

 numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0
 #TasksPerNode
TPN=`echo $PE | sed 's/way//'`
[! $TPN] && echo TPN NOT defined!
[! $TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

 numa.csh
 #!/bin/tcsh
 setenv MV2_USE_AFFINITY 0
 setenv MV2_ENABLE_AFFINITY 0
 setenv VIADEV_USE_AFFINITY 0
 #TasksPerNode
 set TPN = `echo $PE | sed 's/way//'`
 if(! ${%TPN}) echo TPN NOT defined!
 if(! ${%TPN}) exit 0

 @ socket = $PMI_RANK % $TPN

 numactl -N $socket -m $socket ./a.out

fo
r

m
v
a

p
ic

h
2

4 MPI per
node

89 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Modes of Hybrid Operation

:;=(V36J(1"(P10'(

qk(:;=(V36J6(

:36<'0(V.0'3&(1,(:;=(V36J(

q(:;=(V36J6(

qk(V.0'3&6hV36J(

m(:;=(V36J6(

mV.0'3&6hV36J(

]$3A'((((V.0'3&(1,(:;=(V36J(
:36<'0(V.0'3&(1,(:;=(V36J(

;%0'(:;=(
q(:;=(V36J(

V.0'3&(1"('3#.(P10'(

90 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Numactl: Using Threads across
Sockets

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

n
e
tw

o
rk

-pe 2way 8192!

export OMP_NUM_THREADS=8!

my_rank=$PMI_RANK!

local_rank=$(($my_rank % $myway))!

numnode=$(($local_rank + 1))!

Original:
--------!
numactl -N $numnode -m $numnode $*!

Bad performance!
•!Each process runs 8 threads on 4 cores
•!Memory allocated on one socket

Rank 0

Rank 1
bt-mz.1024x8 yields
best load-balance

91 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Numactl: Using Threads across Sockets

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

P10'(P10'(

R(

i(o(

q(

n
e
tw

o
rk

export OMP_NUM_THREADS=8!

my_rank=$PMI_RANK!
local_rank=$(($my_rank % $myway))!

numnode=$(($local_rank + 1))!

Original:
--------!
numactl -N $numnode -m $numnode $*!

Modified:
--------!
if [$local_rank -eq 0]; then!

 numactl -N 0,3 -m 0,3 $*!

else!

 numactl -N 1,2 -m 1,2 $*!
fi!

Rank 0 Rank 1

bt-mz.1024x8

Achieves Scalability!
•!Process uses cores and memory across 2
sockets
•! Suitable for 8 threads

92 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

•! SP-MZ hybrid outperforms SP-MZ pure MPI
for

•! Class D

•! Does not meet expectations!

NPB-MZ Class D Scalability on Ranger

RjhokhRpE([%<.10S(

T350!'$'(y16<(

NPB-MZ Class D Scalability on Sun

Constellation

0

200000

400000

600000

800000

1000000

1200000

1400000

256 512 1024 2048

#core

M
F
lo

p
/

s

SP-MZ (MPI)

SP-MZ MPI+OpenMP

BT-MZ (MPI)

BT-MZ MPI+OpenMP

93 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

BT-MZ: Combining MPI and OpenMP

•! Performance Metrics Class D

•! 128x4 :

–! 4 MPI Processes per node

–! 1 MPI Process per socket

–! 595 Gflops

–! Total time: 86.5 sec

–! Workload: 536962/523124 points

•! 512x1:

–! 16 MPI Processes per node

–! 4 MPI Processes per socket

–! 334 Gflops

–! Total time: 154 sec

–! Workload: 243236/14450 points

0

20

40

60

80

100

120

rhs xsolve ysolve zsolve exch_qbc

128x4

512x1

Subroutine Timings Class D

M
a

x
/P

ro
c
 T

im
e

 i
n

 S
e

c
o

n
d

s

Computation
Communication:
mpi_waitall

94 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Execution Timelines for BT-MZ 128 MPI Processes

•! Paraver Performance

Analysis System

http:www.cepba.upc.es/

paraver/

•! 10 time steps Class

D

•! 128 MPI Processes

•! Most of the time

spent doing useful

work

•! Small amount of time
in communication

•! Well load-balanced

Time --!

P
ro

c
e
s
s
 I
D

--
->

Useful Work

Outside MPI
mpi_isend/
mpi_waitall

Process State View

MPI Call View

95 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Execution Timelines for BT-MZ 512 MPI Processes

•! 10 time steps Class D

•! 512 MPI Processes

•! A lot of time spent in

Waiting and

Synchronization

•! Large amount of time
spent in mpi_waitall

•! Unbalanced Workload

on MPI Level

Time --!

P
ro

c
e
s
s
 I
D

--
->

Waiting/Synchronizing

mpi_waitall

Process State View

MPI Call View

96 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Communication Timings BT-MZ Class D 512 Processes

Large differences in time
spent in mpi_waitall

97 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Compressed View of MPI Calls BT-MZ 512 Processes

P
ro

c
e
s
s
 I
D

Time MPI_WAITALL:
Gradient Color
Dark blue is high value

Light green is low value

98 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

SP-MZ based on MPI/OpenMP

call omp_set_numthreads (weight)

do step = 1, itmax

 call exch_qbc(u, qbc, nx,…)

 do zone = 1, num_zones

 if (iam .eq.pzone_id(zone))

then

 call txinvr(u,rsd,…)

 call comp_rhs(u,rsd,…)

 call x_solve (u, rhs,…)

 call y_solve (u, rhs,…)

 call z_solve (u, rhs,…)

 call add (u, rhs,….)

 end if

 end do

end do

 ...

call mpi_send/recv

Coarse-grain MPI Parallelism

subroutine x_solve (u, rsd

!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(i,j,k,isize...)

!$OMP DO

 do k = 2, nz-1

 do j = 2, ny-1

 ….

 do i = 2, nx-1

 lhs(m,i,j,k)= ..

 rhs(m,I,j,k) =

 end do

 end do

 end do

end do

!$OMP END DO nowait

!$OMP END PARALLEL

call ninvr (rhs,…)

Fine-grain OpenMP Parallelism

99 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

SP-MZ: Combining MPI and OpenMP

•! Performance Metrics Class D

•! 64x4 :153 Gflops

–! Total time:169

–! Communication:

•! Count: 4531 isend /MPI Proc

•! Size: 802 MB / MPI Proc

•! Total Size:~51328MB

•! 256x1: 148 GFlops

–! Total time:174

–! Communication:

•! Count: 2004 isend/MPI Proc

•! Size:436 MB/MPI Proc

•! Total Size:~110000MB
0

10

20

30

40

50

60

70

80

90

rhs xsolve ysolve zsolve exch_qbc

64x4

256x1

Subroutine Timings Class D

M
a

x
/P

ro
c
 T

im
e

 i
n

 S
e

c
o

n
d

s

All solver routines benefit from
multithreading, ysolve most
significantly

Time spent in mpi_wait/barrier
of communication reduced for
fewer processes

100 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

SP-MZ Execution on 256 Processes

•!Timeline view of MPI calls for 10 iterations on 256 MPI Processes

•!Little time spent in MPI calls

•!No workload imbalance

•!Light unbalance develops during the course of the execution:

Time spent in MPI_Wait/Barrier increases over multiple iterations.

Light blue: Time
outside MPI

P
ro

c
e
s
s
 I
D

Time

MPI Wait/
Barrier

101 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Analysis of SP-MZ Execution

Iteration 1 Iteration 10

Increased
amount of time
in MPI_waitall
in later
iterations!

102 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

IPM Performance Monitor

•! IPM:
–! Integrated Performance Monitoring

–! http://ipm-hpc.sourceforge.net/home.html

•! Summary at end of program

•! Detailed Information:
–! Example: BT-MZ 1024x1

–! Hostlist

–! Executable

103 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

IPM Summary Information

SP-MZ 256x1 SP-MZ 64x4
Replicated Data
MPI Message Buffer

104 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

SP-MZ:Hybrid vs Pure MPI

RjhokhRpE([%<.10S(

T350!'$'(y16<(

d!;'0,10*3"#'(*'<0!#6(,10(P$366(\S(

d!kmemS(

u!z10J$13&S(Yz(O;(9;]SjqT(e(m(+'0(
:;=(;01#'66(

u!P1**%"!#3f1"S(

d!V!*'(C6'#FS(i-m6'#(*3e(

d!P1%"<S(mriq(!6'"&(+'0(:;=(
;01#'66(

d!]!K'S(xRo:l(+'0(:;=(;01#'66(

d!V1<3$(6!K'S({rqiox:l(

d!orkeqS((

u!z10J$13&S(Yz(O;(9;]S(jqT(+'0(
:;=(;01#'66(

u!P1**%"!#3f1"S(

d!V!*'(C6'#FSqp(6'#(:3e((

d!P1%"<S(oRRm(!6'"&(+'0(:;=(
;01#'66(

d!]!K'S(mik(:l(:3eE(oik:l(
:!"(

d!V1<3$(]!K'S({qqRRRR:l-(

*+!>@3!<3$$(

=*53$3"#'(

d!;'0,10*3"#'(!66%'6(,10(+%0'(:;=S(

d!a302'(3*1%"<(1,(&3<3(#1**%"!#3<'&(Co(e(.450!&F(

d!=*53$3"#'(!"(*'6632'(6!K'(3#0166(+01#'66'6(

105 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming – Outline

•! Introduction / Motivation

•! Programming Models on Clusters of SMP nodes

•! Practical “How-To” on hybrid programming & Case Studies

•! Mismatch Problems & Pitfalls

•! Application Categories that Can Benefit from Hybrid Parallelization/

Case Studies

•! Summary on Hybrid Parallelization

08/4/06, Author:
Rolf Rabenseifner

08/29/08, Author:
Georg Hager

106 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Elements of Successful Hybrid Programming

•! System Requirements:

–! Some level of shared memory parallelism, such as within a multi-core node

–! Runtime libraries and environment to support both models
"! Thread-safe MPI library

"! Compiler support for OpenMP directives, OpenMP runtime libraries

–! Mechanisms to map MPI processes onto cores and nodes

•! Application Requirements:

–! Expose multiple levels of parallelism
"! Coarse-grained and fine-grained

"! Enough fine-grained parallelism to allow OpenMP scaling to the number of cores per node

•! Performance:

–! Highly dependent on optimal process and thread placement

–! No standard API to achieve optimal placement

–! Optimal placement may not be be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution

–! Memory traffic yields resource contention on multi-core nodes

–! Cache optimization more critical than on single core nodes

107 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Recipe for Successful Hybrid Programming

•! Familiarize yourself with the layout of your system:
–! Blades, nodes, sockets, cores?

–! Interconnects?
–! Level of Shared Memory Parallelism?

•! Check system software
–! Compiler options, MPI library, thread support in MPI

–! Process placement

•! Analyze your application:

–! Does MPI scale? If not, why?
"! Load-imbalance => OpenMP might help

"! Too much time in communication? Load-imbalance? Workload too small?

–! Does OpenMP scale?

•! Performance Optimization

–! Optimal process and thread placement is important

–! Find out how to achieve it on your system

–! Cache optimization critical to mitigate resource contention

108 ParCFD09 Tutorial © Jost, Koniges, Wellein, Hager, Rabenseifner, Lusk & Others

Hybrid Programming: Does it Help?

•! Hybrid Codes provide these opportunities:

–! Lower communication overhead
"! Few multi-threaded MPI processes vs Many single-threaded processes

"! Fewer number of calls and smaller amount of data communicated

–! Lower memory requirements
"! Reduced amount of replicated data

"! Reduced size of MPI internal buffer space

"! May become more important for systems of 100’s or 1000’s cores per node

–! Provide for flexible load-balancing on coarse and fine grain
"! Smaller #of MPI processes leave room to assign workload more even

"! MPI processes with higher workload could employ more threads

–! Increase parallelism
"! Domain decomposition as well as loop level parallelism can be exploited

YES, IT CAN!

