The MPI 3.0 Standard -
The Final Stage

Presented by

Rolf Rabenseifner
at the

PRACE Winter School: “Hybrid Programming on Massively Parallel Architectures”
Feb. 6-10, 2011, CINECA, Bologna, Italy

Based on SC11 slides, presented by
Richard Graham

Chairman of the MPI Forum
Oak Ridge National Laboratory

Goal

To produce new versions of the MPI
standard that better serves the
needs of the parallel computing

user community

MPI 3.0 - Scope

Additions to the standard that are needed for better platform and
application support. These are to be consistent with MPI being
a library providing process group management and data
exchange. This includes, but is not limited to, issues
associated with scalability (performance and robustness),
multi-core support, cluster support, and application support.

Backwards compatibility may be
maintained - Routines may be
deprecated or deleted

 Target release date:
— Considering final MPI-3.0 in Sep. 2012

— with incremental draft standard releases (1 to date)
« Posted at http://lists.mpi-forum.org/

* Final version of the standard will be different

Current Standard: MPI 2.2

2012 Meeting Schedule

Dates locatin | MP30 |wpinex

Jan 9-11
March 5-7

May 28-30

July 16-19

Sept 19-21
Dec 3-6

San Jose, CA
Chicago, IL

Tsukuba, Japan

Chicago, IL

Vienna, Austria
Bay Area, CA

Latest formal reading of tickets,
1st or 2"d vote on tickets that are ready

Latest 1t vote (by institutions) on tickets, Starting with
Controlling that all finally voted tickets are MPI-next
correctly included into Latex source

Latest 2"d vote (by institutions) on tickets

Chapter votes and finalizing MPI-3.0

Tracking Forum Activities and
Commenting on them

Mailing list: mpi-comments@mpi-
forum.org

Subscribe at: http://lists.mpi-forum.org/

One MUST subscribe to the list to post
messages to it

All tickets:
https://svn.mpi-forum.org/trac/mpi-forum-web/query

6

Goal and MPI-3 rule

To produce new versions of the MPI
standard that better serves the needs
of the parallel computing user
community

Additions to the standard that are needed for
better platform and application support. These
are to be consistent with MPI being a library
providing process group management and data
exchange. This includes, but is not limited to,
iIssues associated with scalability (performance
and robustness), multi-core support, cluster
support, and application support.

Backwards compatibility may

be maintained - Routines may

be deprecated or deleted

Scores: Features

---: Nonblocking
Collectives

14: RMA

8: FT stabilization

7: MPIT
7: Neighborhood
collectives

Other scores:

6: Non-blocking
collective 10

4: Hybrid

4: Fortran 08
bindings

2: Persistence

2: MPI_Count

0: Const

N

J

Y
*9sB8|a.J S,0°€-|dIN 10} MO0[0

And of course, all needed corrections
to detected bugs / ambiguities / inconsistencies

8y} 18s sainjes) asay |

h e m Ticket numbers:
Current Forum Activities Red: Unclear
: Orange: Reading is scheduled
Expected state at begin of Blue: Reading is passed
‘ March 2012 meeting in Chicago . 1{stvote passed
“I” = Some work to be done Dark Green: Passed (i.e., 29 vote)
- Nonblocking collectives arey: Not part of MPI-3.0
— Communication, MPI_Ibarrier, MPI_Ibcast, ... htor #109
=0 Correction to #109: Remove C++ interfaces MPI::lbarrier, ... jsquyres #272
— MPI_lcomm_dup htor #168
— /O MPI_File_iread/iwrite_all / _at_all/ _ordered chaarawi+koziol | #273
 And deprecating MPI_File_iread/write_all_/ _at_all_/ _ordered_begin/end
— MPI_File_iopen / iclose / isync / iset_view/sizefinfo / ipreallocate chaarawi #285
- Quincey - Moved to future MPI-next

» Scalable sparse collectives on process topologies
->Slide

o1 | — MPI_(I)Neighbor_allgather(v) / alltoall(v/w): htor #258
\ MPI_Aint displs in (I)Neighbor_alltoallw (instead of int) htor

» Scalable irregular collectives: htor | #264

- MPI_(I\GATHERDV, MPI_(I)SCATTERDV, MPI_()ALLGATHERDV, MPI_()ALLTOALLDV,
22 MPI_(I)ALLTOALLDW, MP|_(I)REDUCE_SCATTERDV |

; 7

Current Forum Activities
- Cont’d

Ticket numbers:

Red:
Orange:
Blue:

Dark Green:

Unclear

Reading is scheduled
Reading is passed
1st vote passed
Passed (i.e., 2" vote)

* Improvements to one-sided communication support

— Main ticket — Routines: MPI_Rget / Rput / Raccumulate / Get_accumulate / gropp ~ #270
23-28 Rget_accumulate / Fetch_and_op / Compare_and_swap

flush / flush_all / flush_local / flush_local_all / sync
» New operation MPI_NO_OP

» New attribute MPI_WIN_MODEL = MPI_WIN_SEPARATE / UNIFIED

— Corrections to Ticket #270 / RMA:

MPI_Win_allocate / create_dynamic / attach / detach / lock_all / unlock_all /

* New attribute MPI_WIN_CREATE_FLAVOR = MPI_WIN_FLAVOR_CREATE / ALLOCATE / DYNAMIC

 "Complex" deleted from allowed types for Compare and Swap htor | #275
 MPI window attribute types htor | #283
« Adding clarification to MPI_WIN_LOCK_ALL htor #298
« Fix issues with definition of nonblocking in One Sided Chapter htor 1 #300
« Remove sentence on offset in datatypes htor #308
« Clarify usage of status for request-based RMA operations htor #309

ﬁ — Shared memory RMA window htor (see also slide on “hybrid”

- » Routine: MPI_Win_allocate_shared, MPI_Win_shared_query

*'Flavor attribute: MPI_WIN_FLAVOR_SHARED

)

Ticket numbers:

Current Forum Activities Red: Unclear
5 Orange: Reading is scheduled
- COIlt d Blue: Reading is passed
. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

» Support for MPI library failure recovery (FT)

Run-Through Stabilization Process Fault Tolerance Proposal jjhursey | #276

* MPI_Comm/Win/File_group_failed, MPI_Comm_remote_group_failed,
MPI_Failhandler_set/get_mode, MPI_Comm/Win/File_set/get_failhandler,
MPI_Comm_reenable_any_source, MPI_Comm_any_source_enabled,
MPI_(I)Comm_drain/validate/validate_multiple, MPI_(l)Win/File_validate

— MPI_Errhandler_compare jjhursey I #291 - Josh / Chicago

10 s

Ticket numbers:

Current Forum Activities Red: Unclear
5 Orange: Reading is scheduled
- COIlt d Blue: Reading is passed
. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

* New Tool Interface

Slides

30-35 MPI_T_init_thread / finalize / enum_get_info/item, schulzm #266
MPI_T_cvar_: get_num/info / handle_alloc/free / read / write, MPI_T_pvar_: get_num/info /
session_create/free / handle_alloc/free / start / stop / read / write / reset / readreset,
MPI_T_category_: get_num/info/cvars/pvars/categories / changed

— MPI_Get_library_version schulzm #204

— MPI_Comm_dup/set/get_info, MPI_Win_set/get_info moody | #271
* Also must duplicate info object in MPI_COMM_DUP.

— MPIR (independent document) jsquyres+schulzm #228

* MPIR Specification - An Official Companion Document for the MP| Standard
“The MPIR Process Acquisition Interface”

11 *

Ticket numbers:

Current Forum Activities Red: Unclear
7 Orange: Reading is scheduled
- COI\t d Blue: Reading is passed

. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

 Support for clusters of SMP nodes (hybrid support)

->Slide
Slides

— Thread-safe probe - new probe routine and message object

« MPI_(I)Mprobe, MPI_(I)Mrecv htor #38
« MPI_Message_f2c / c2f brbarret #274

— Topology aware communicator creation

— Shared memory RMA window htor (see also slide on “one-sided”| g |) #2384

* MPI_Comm_split_type with split_type=MPI_COMM_TYPE_SHARED balaii #287
->Slide

* Routine: MPI_Win_allocate_shared, MPI_Win_shared_query
 Flavor attribute: MPI_WIN_FLAVOR_SHARED

% — Support for multiple “MPI processes” within single “operating system process”

Slides
36+4(

« Clarification on “processes” and new split_type=MPI_COMM_TYPE_ADDRESS_SPACE ! #310
- New example for MPI+OpenMP - Partial reading of this example snir

« MPI_Thread_attach to modify/set MPI rank of a thread 1 #311
- New example for MPI+OpenMP - Partial reading of this example snir

— Support for helper threads: MPI_Team_create / free / join / leave / sync / break dougmill ! #217

12

Current Forum Activities
- Cont’d

Slides

48-30

 Further Scalability features

Ticket numbers:

Red: Unclear
Orange: Reading is scheduled
Blue: Reading is passed

. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

New Fortran bindings RolfRabenseifner+jsquyres+rasmussen

— Non-collective communicator formation: MPI_Comm_create_group jdinan ! #286

» Tags are in a special tag-space.

« This tag-space is also used in existing MPI_INTERCOMM_CREATE. jdinan 1 #305

* New Datatype Creation Routine: MPI_Type_create_hindexed_block chaarawi #280

« _Large counts: type MPI_Count / INTEGER(KIND=MPI_COUNT_KIND), datatype MPI_COUNT ftillier #265
MPI_Type_: size_x/ get_extent_x/ get_true_extent_x, MPI_Get_elements_x, MPI_Status_set_elements_x

 Reference counted MPLINIT / INIT_THREAD / FINALIZE (no new routines) jsquyres ! #302

13

Current Forum Activities Red: Unclear

- Cont’d

» Removal of deprecated / optional C++

ake C++ bindings optional ftillier #279

« The C++ language bindings have been deprecated. A compliant MPI implementation
providing C++ lanquage bindings must provide the entire set defined in this document.

Ticket numbers:

Orange: Reading is scheduled
Blue: Reading is passed

. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

Text w/o old references| |Opt. C++

— Removing deprecated functions from the examples dries I #12 (to do in 278)
— MPIL_TYPE_GET_EXTENT is defined via deprecated features bosilca ! #102 (done in 278)

= Remove deprecated functions (basically all functions deprecated in 2.0) | #278

- This ticket keeps Chapter 15 Deprecated Functions, but removes most links to it~ ftillier
« Has to check #12 proposals, update LB/UB, etc.
« Recommendation, use #278.1 as marker for re-reading

_. * Partial Re-reading is needed, especially for pages 97, 112-115, 119-122, 492-494

>siidel- Remove C++ Bindings (basically moving it to a Removed Chapter) dougmill ! #281

 All should be removed, except some remarks in the Removed-Chapter - Re-reading

— Move MPI-1 deprecated functions to new "Removed Interfaces” chapter 1 #303

< - Removes: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET, ftillier
MPI_TYPE_EXTENT / HINDEXED / HVECTOR / STRUCT /LB / UB

5

2

=

(<))
oz
$

. Fab consideg R
to withdraw
14 this ticket

easons:
Fortran applications need changes in the data declarations (= 64bit INTEGER) and
mpif.h and application-subroutines may still not use argument checking = high risks

» Fortran rule for “deprecated” means that features should not be used in new

applications, but they are still available for existing applications the next ~20 years
Example: Redundant features in F77, removed in F95: ASSIGN, H, PAUSE, ...

Ticket numbers:

Current Forum Activities Red: Unclear
5 Orange: Reading is scheduled
- COI\t d Blue: Reading is passed
. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

» Clarifications (probable #0.5 level?)

 #158 Clarification that MP1_Cart_map and MPI_Graph_map are local calls traff Trivial text
changes - Rolf, Chicago (reading based on existing ticket, no pdf)

 #187 For reductions: Multi-language types hubertritzdorf Correction to standard
— New wording “Multi-language types” for datatypes MPI_AINT, MPI_OFFSET, MPI_COUNT in reductions

— All predefined named and unnamed datatypes as listed in Section 5.9.2 on page 164 can
be used in all predefined operations independent of the programming language which
the MPI routine is called from. = Rolf, Chicago (reading based on existing ticket, no pdf)

o 1 #227 + #313 Clarify ambiguous sentence for MPI_FINALIZE jjhursey Text (only) changes
— MPI-2.2, Chap. 8.7, MPI_Finalize, page 291, lines 36-37 reads
» Each process must call MPI_FINALIZE before it exits.

but should read 1 Unclear meaning of “it”]
» Before each process exits, the process must call MPI_FINALIZE. > Marc Snir, Chicago

 #256 MPI_PROC_NULL behavior for MPI_PROBE and MPI_IPROBE not defined rlgraham

Enhancements to standard (Only clarification, already indirectly defined via MPI_Recv and MProbe)
- Rolf Rabenseifner + Jeff Squyres, Chicago

 #259 Text updates for MPI_DIST_GRAPH moody20 Text (only) changes

— Significantly better re-wording (longer ticket) = Adam Moody, Chicago
(Written or reviewed by Adam Moody, Torsten Hoefler, Rolf Rabenseifner)

15

Ticket numbers:

Current Forum Activities Red: Unclear

5 Orange: Reading is scheduled
- cont d Blue: Reading is passed
Light green: 1stvote passed
Dark Green: Passed (i.e., 29 vote)

* Further tickets - All for Chicago

— 1 #159 Fortran extra_state parameter in attribute callback functions Correction = Jeff Sqyres
— 1 #163 MPI_IN_PLACE in Gather Enhancements to standard = Torsten Hoefler

— #194 Ensure MPI_Dimwite is really suitable for MPI_Cart_create gropp - | ask Bill
— 1#195 Topology awareness in MPI_Dims_create balaji New routines = Pavan Balaji

— 1 #222 Requiring same level of thread support on all MPI processes gropp Correct.—> Pavan B.
— 1#293 K&R style on 6.7.6 jhammond Text (only) changes = Fab Tillier

— 1 #304 Fix the attribute disaster ftillier Text (only) changes = Fab Tillier

— #221 Undeprecate the C++ Bindings in MPI 3.x tony - Withdrawn

* Add MPI_Timer requests ftillier New routines = future MPI-next | #277
— MPI_Timer_create, MPI_Timer_reset (convenience fuction for cancel+create)
 Glossary Terry Jones (trj) Text (only) changes > future MPl-next | #78

— Text is only for illustration purpose, i.e., does not change / add to the standard
— Same rules as for examples, helpful for new readers of the MPI standard
— Text should be taken mainly from the standard - wording can/should not be wrong
6« —.Iherefore only level 0.5? SA T

Ticket numbers:

Current Forum Activities Red: Unclear
5 Orange: Reading is scheduled
- cont d Blue: Reading is passed
. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

* Other Corrections (also #0.5 level?)
» #140 Add const Keyword to the C bindings ftillier Enhancements to standard

« 1#294 MPI_UNWEIGHTED should not be NULL goodell Correction to standard
-> was read Oct. 2011 - 1st vote in Chicago - text changed - Reading in Chicago

» #162 MPI 2.1 Clarification - MPI_Cart_map with num_dims=0 smithbr Text (only) changes
— Was overseen in MPI-2.2 when correcting all zero-dimensional Cartesian cases - Rolf
» #182 sllegal/something_better/g gropp Text (only): All prepared by Bill Gropp (= Bronis)
o #219 MPI_MAX_OBJECT_NAME and MPI_Type/win_get_name dries Text (only) changes
— Currently undefined, i.e., needs to be defined! > Rolf Rabenseifner

« 1 #125 Use of [] in output arrays gropp Trivial text changes: Needs work by some chapter authors
- Fab Tillier

1 #126 Consistent use of [] for input arrays gropp Enhance.: Needs work by some chapter authors
- Fab Tillier

 1#218 "same arguments" to MPI_Reduce goodell Text (only) changes > Dave Goodell
— Correction to an overseen inconsistency when MPI_IN_PLACE was added to MPI|_Reduce

17

Ticket numbers:

Current Forum Activities Red: Unclear
5 Orange: Reading is scheduled
- COIlt d Blue: Reading is passed
. 1stvote passed
Dark Green: Passed (i.e., 29 vote)

 Small corrections which should/must not be overseen
— Trivial (level #0 changes)

e (#0) Trivial changes read+voted in one step (mainly proposed by chapter authors)
 #185 Mention C++ typedef deprecations RolfRabenseifner Text (only) changes
o #207 Minor Text Correction / MPI_GET_PROCESSOR_NAME schulzm Trivial text changes
 #215 MPI-2.2 typo - missing parenthesis on page 272, line 25 bosilca Trivial text changes
 #254 Typo in the description of MPI_GROUP_INCL rigraham Trivial text changes
o #255 Missing headline for MPI_GET_PROCESSOR_NAME hosilca Trivial text changes
 #262 Minor typos in pt2pt chapter rigraham Trivial text changes
 #263 wrong formula for the upper bound bosilca Text (only) changes
» #267 Typo in One-Sided chapter 11.4.4 jjhursey Trivial text changes
 #268 Formatting issue in One-Sided chapter 11.4.4 jjhursey Trivial text changes
 #312 Typo-Correction in ALLTOALLV RolfRabenseifner Trivial text changes

18 ’7

Details about most & important topics

 Slides 20-23:
e Slides 23-28:

* Slide 29:

* Slides 30-35:
» Slides 36-42:
o Slides 43-47:
» Slides 48-50:

» Slide
* Slide
» Slide

51:
52:
53:

Nonblocking, sparse and scalable irregular collectives
One-sided communication — enhancements
Fault-tolerance

New tools interface

Hybrid Programming

Nonblocking collective 1/0

Fortran interface

Group-Collective Communicator Creation

Large Counts

Removing C++ bindings from the Standard

Slides — courtesy of the ticket owners / committees

19

Nonblocking Collective Operations

* |dea
— Collective initiation and completion separated
— Offers opportunity to overlap computation and communication

— Each blocking collective operation has a corresponding nonblocking
operation

— May have multiple outstanding collective communications on the same
communicator

— Ordered initialization

* Voted into the draft standard
— Reference Implementation (LibNBC) stable
— Several implementations pending

20

Sparse Collective Operations on Process
Topologies

 MPI process topologies (Cartesian and (distributed) graph)
usable for communication

— MPI_Sparse_gather(v)
— MPI_Sparse_alltoall(v,w)
— Also nonblocking variants

* Allow for optimized communication scheduling and scalable
resource binding

 New feature to enhance scalability and performance of MPI
— Accepted for MPI-3 in Sept. 2011
— Reference implementation exists

21

Scalable Irregular Collectives

* Distribute argument lists of vector collectives
— Simple interface extension
— Lower overhead at scale
— Reduce memory overhead from O(P) to O(1)

* Proposal forthcoming
— “distributed vector collectives”
« Scatterdv(), Gatherdv() ... including Alltoalldv()
— Reference implementation on the way

22

MPI One-Sided Communication Interface

Background of MPI-2 One-Sided Communication

24

MPI-2’s one-sided communication provides a programming model for
put/get/update programming that can be implemented on a wide variety of
systems

The “public/private” memory model is suitable for systems without local memory
coherence (e.g., special memory in the network; separate, non-coherent caches
between actors working together to implement MPI One-Sided)

The MPI-2 interface, however, does not support some other common one-sided
programming models well, which needs to be fixed

Good features of the MPI-2 one-sided interface should be preserved, such as

— Nonblocking RMA operations to allow for overlap of communication with
other operations

— Support for non-cache-coherent and heterogeneous environments
— Transfers of noncontiguous data, including strided (vector) and scatter/gather

— Scalable completion (a single call for a group of processes)

Goals for the MPI-3 One-Sided Interface

* Address the limitations of MPI-2 RMA by supporting the
following features:

— In order to support RMA to arbitrary locations, no
constraints on memory, such as symmetric allocation or
collective window creation, should be required

— RMA operations that are imprecise (such as access to
overlapping storage) must be permitted, even if the
behavior is undefined

— The required level of consistency, atomicity, and
completeness should be flexible

— Read-modify-write and compare-and-swap operations are
needed for efficient algorithms

25

26

Major New Features

* New types of windows

— MPI_Win_allocate — returns memory allocated by MPI; permits symmetric
allocation

— MPI_Win_create_dynamic — allows any memory to be attached to the
window dynamically as needed

— MPI_Win_allocate_shared — creates a window of shared memory that enables
direct load/store accesses with RMA semantics to other processes in the same
shared memory domain (e.g., the same node)

 New atomic read-modify-write operations

— MPI_Get_accumulate, MPI_Fetch_and_op, MPI_Compare_and_swap

* New synchronization and completion calls, including:

* Wait and test on request-based one-sided operations

* Completion of pending RMA operations within passive target access epochs
(MPI_Win_flush and variants) '

27

Major New Features — cont’d

 Query for new attribute to allow applications to tune for cache-
coherent architectures

— Attribute MPI_WIN_MODEL with values MPI_WIN_SEPARATE and
MPI_WIN_UNIFIED

» Relaxed rules for certain access patterns

— Results undefined rather than erroneous; matches other shared-memory and
RDMA approaches

* Ordering of Accumulate operations
» Change: ordering provided by default
» Can be turned off for performance, using a new info key

Status

* Passed first vote at the July meeting

 Example implementation on top of Portals-4
available

— thanks to Brian Barrett of Sandia National Labs
* Other implementations in progress

* Second (and final) vote planned for the next Forum
meeting in January

28

Fault Tolerance Working Group

Define a set of semantics and interfaces to enable fault tolerant

applications and libraries to be portably constructed on top of MPI.

» Application involved fault tolerance (not transparent FT)
— Natural & Algorithm Based Fault Tolerance (ABFT)

» Fail-stop process failure:

— MPI process permanently stops communicating with other processes.
* Two Complementary Proposals:

— Run-Through Stabilization: (Target: MPI-3.0)
« Continue running and using MPI even if one or more MPI processes fail
— Process Recovery: (Target: MPI-3.1)

* Replace MPI processes in existing communicators, windows, file handles

. Prototype in Open MPI available to interested appllcatlons
, (MPICH2 in progres .

um Fat§t)ToIerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

Tool Interfaces for MPI-3

» Goals of the tools working group
» Extend tool support in MPI-3 beyond the PMPI interface
» Document state of the art for de-facto standard APIs

The MPI Performance Interface
(MPL_T)

 Goal: provide tools with access to MPI internal information

— Access to configuration/control and performance variables

— MPI implementation agnostic: tools query available information
* Information provided as a set of variables

— Performance variables (design similar to PAPI counters)
Query internal state of the MPI library at runtime

— Configuration/control variables
List, query, and (if available) set configuration settings

Examples of Performance Vars. Examples for Control Vars.

» Number of packets sent » Parameters like Eager Limit
» Time spent blocking » Startup control
» Memory allocated » Buffer sizes and management

« Complimentary to the existing PMPI Interface

31

Granularity of PMPI Information

MPI_Recv gQ %ﬁo

MPI Function

+ Information is the same for all MPIl implementations
— MPI implementation is a black box

32

Granularity of MPL_T Information

Example: MVAPICH2

MPI_Recv
A
MPI Function
Polling Counter, ADI-S Layer
Queue Length & é’
Time, ... CH3 Layer DCMFD
MRAIL PSM NEMESIS Memory
% Consumption

v

Time in
Layer PSM
Counter

33

34

Some of MPIL_T’s Concepts

 Query API for all MPL_T variables / 2 phase approach
— Setup: Query all variables and select from them
— Measurement: allocate handles and read variables

Return ar.

Variables Info/rmation
""""" — Other features anc
* Ability to access variables before MPI_Init and after MPI_Finalize
- Optional scoping of variables to individual MPI objects, e.g., communicator
- Optional categorization of variables

Status and Next Steps for the Tools
WG

o Status of the MPI Tool Information Interface
— Complete proposal published (MPI ticket #266)
— Passed first vote in October 2011
— Two prototypes (MVAPICH2 and MPICH2)
— Next step: integration into tools (in progress)

* Possible next topics for the MPI-3 Tools WG

— Low-level tracing options in MPL_T

— Extended version of MPI_Pcontrol

— Piggybacking (in collaboration with the FT group)

— Companion document to describe the message queue interface
— Standardization of a more scalable process acquisition API

 Other suggestions/contributions welcome!

— Documents, Minutes, Discussion on WG Wiki:
http://svn.mpi-forum.org/ = MPI 3.0, Tools Workgroup

35

MPI-3 Hybrid Programming: In a
Nutshell

* Three broad proposals in the works:
— MPI Shared memory interoperability

 Functions to create and manipulate shared memory between a few MPI processes
(e.g., those that reside on the same node or same NUMA domain)

— MPI Endpoints

* Ability to have many “MPI processes” (implemented as threads) within one “OS
process”

« Some of these MPI processes form a “clique” and can communicate with each
other using thread communication semantics or using MPI

— MPI Helper threads

* Allow applications to lend threads to MPI for parallelizing internal MPI processing

* Thread-safe probe: MPI_Mprobe / MPI_Improbe & MPI_Mrecv / MPI_Imrecv

37

Shared Memory Extensions to MPI

* Step 1: Topology-aware communicator creation

— Allows you to create a communicator whose processes can create a
shared memory region

— More generally: it splits a communicator into subcommunicators of a
certain type

» “shared memory capability” is one type

 Other implementation specific types are possible: rack, switch, etc.

— MPI_Comm_split_type(comm, comm_type, key, info, new_comm)

38

Shared Memory Extensions to MPI -
Cont’d

* Step 2: Creation and manipulation of shared memory
(based on MPI RMA semantics)

* MPI_WIN_ALLOCATE_SHARED(size, info, comm, baseptr, win)

— Collective call that allocates memory of least size bytes that is shared
among all processes in comm

— Returns locally allocated region pointed to by baseptr that can be used for
load/store access on the calling process

— Consistent view of shared memory can be created in the RMA unified
memory model by using window synchronization functions or by calling
MPI_WIN_FLUSH()

MPI Endpoints: Assumptions

* Idea is to have multiple “MPI processes” within one “OS
process”

— Number of threads per node will increase dramatically

— Nodes will have multiple NICs

— Intranode communication will use shared memory (MPI+X)
 May not be coherent and will be very NUMA

* Multiple MPI processes within one address space gives more
flexibility
— Improve message rate (avoid long queues and conflicts) and deal with
NUMA or non-coherent memory

— Facilitate resource sharing (TLBs, cores, NICs)
— Provide proper MPI interface to OpenMP, TBB, PGAS, etc.

* Note: MPI never required that MPI processes run in distinct
address spaces

— MPI1 explicitly mentions possibility of multiple MPI processes within
one address space — we are just reviving the same concept

39

39

MPI Endpoints: Proposal

 Make sure that MPI is properly defined when MPI processes can
share memory

— No MPI issue found, so far

 Applications which were assuming MPI process == OS process
might need some corrections if they want to use threads

— It is unlikely MPI implementations will drop support for the
“older MPI process == OS process model” anytime soon

* Allow for “migration” of a thread from one MPI process to
another, whenever possible

MPI_THREAD_ATTACH(rank,comm)

— Thread detaches from its current MPI process and attaches to
the MPI process identified by <rank,comm>

* This design enables MPI to work with OpenMP, TBB or PGAS

40

40

MPIl_Team - a.k.a. Helper Threads

« Multi-threading has become a necessity in order to fully utilize hardware.
« Over-subscribing hardware threads negatively impacts performance in HPC.

« Therefore, there is a need to increase cooperation and coordination between user
threads and an MPI implementation which may need threads.

The Proposal:
. Allows a user thread to lend itself to MPI when it is otherwise idle.

- Similar to how OpenMP work sharing constructs allow assigning tasks to
threads.

« MPI_Team_join begins an MPI parallel region.

« Analogous to “#pragma omp xxx {”

« MPI_Team_leave ends an MPI parallel region and synchronizes threads.
« Analogous to matching “}” of pragma.

« MPI calls between join and leave may divide work between team threads.

MPI|_Team Example

Typical single-threaded (non-blocking) send/recv

MPI_lrecv MPI_lsend MPI_Waitall ‘ send ‘ send ‘ send ‘ send ‘ ‘ recv ‘ ‘ recv ‘ ‘ recv ‘ recv ‘

Multi-threaded send/recv using MPI_Team

MPI_Team_join | MP]_lrecv MPI_lsend MPI_Waitall mﬂ Hﬂ H MPI_Team_leave

n | MPI_Team_leave ‘ send ‘ ‘ recv ‘

MPI_Team_jo

MPI_Team_jo!

n | MPI_Team_leave send

MPI_Team_join | MPI_Team_leave ‘ send ‘ ‘ recv ‘

n | MPI_Team_leave send

MPI_Team_jo

MPI-1/O

Nonblocking Collective 1/0 Routines

* Current routines are in the form of split collectives:
— MPI_FILE_XXX_ALL_BEGIN
— MPI_FILE_XXX_ALL_END

* Main restriction:

— Each file handle may have at most one active split collective
operation at any time.

44

Nonblocking Collective 1/0 Routines

* In MPI-3.0 we propose to:
— Add immediate versions of the split collective operations
— Deprecate the split collective routines

* The following routines will be added:

45

MPI_File_iread_all (MPI_File file, void *buf, int count, MPI_Datatype type, MPI_Request *req);
MPI_File_iwrite_all (MPI_File file, void *buf, int count, MPI_Datatype type, MPl_Request *req);

MPI_File_iread_at_all (MPI_File file, MPI_Offset offset, void *buf, int count, MPI_Datatype type,
MPI_Request *req);

MPI_File_iwrite_at_all (MPI_File file, MPI_Offset offset, void *buf, int count, MPI_Datatype type,
MPI_Request *req);

MPI_File_iread_ordered (MPI_File file, void *buf, int count, MPI_Datatype type, MPI_Request *req);
MPI_File_iwrite_ordered (MPI_File file, void *buf, int count, MPI_Datatype type, MPI_Request *req);

Asynchronous File Manipulation Routines

* In MPI-3.x we propose to add asynchronous file manipulation
routines to the standard.

« All file manipulation routines would have an asynchronous
version.

 The intent is to hide the I/0 step and to achieve maximum overlap
of computation/communication and I/0.

 The semantics of those operations are still being worked out.

* This is a proposal in the works, and the MPI Forum has not
approved it yet.

46

Asynchronous File Manipulation Routines

* A preliminary set of routines are listed:
— MPI_FILE_IOPEN
— MPL_FILE_ISET_VIEW
— MPI_File_ISYNC
— MPI_FILE_ISET_SIZE
— MPI_FILE_IPREALLOCATE
— MPI_FILE_ISET_INFO
— MPL_FILE_ICLOSE

 The current consistency semantics and nonblocking behavior in
MPI do not apply to those routines.

— the name will probably change

— the request handle might not be applicable here since MPI would be recording
dependencies between the function calls internally (i.e. queuing).

47

MPI 3.0 Fortran Bindings:

a high-level summary for non-Fortran
programmers

A very brief overview of the
requirements for new MPI 3.0 Fortran
bindings
* Requirements

— comply with Fortran standard (for the first time)

— enhance type safety
— suppress argument checklng for choice buffers

— guarantee of correct asynchronous operations gb
— for user convenience
 provide users with convenient migration path
- allow some optional arguments (e.g., ierror)
* support sub-arrays
— for vendor convenience
- allow vendors to take advantage of the C interoperability standard

19 * E
.. 49

Status: MPI 3.0 Fortran binding
specification is complete and a
reference implementation exists

« Status of specification

— been through several “final” revisions and is ready for a first
reading

— document available for outside review

» Status of reference implementation

— an initial implementation of the MPI 3.0 Fortran bindings are
available in Open MPI

— a full implementation will not be available until compilers
implement new Fortran syntax added specifically to support
MPI

« need ASYNCHRONOUS attribute for nonblocking routines

* need TYPE(*), DIMENSION(..) syntax to support subarrays
—e.g. MPI_Irecv(Array(3:13:2), ...)

50

B0

51

Group-Collective Communicator
Creation

 MPI-2: Comm. creation is collective

« MPI-3: New group-collective creation

— Collective only on members of new comm. =

1.Avoid unnecessary synchronization
— Enable asynchronous multi-level parallelism

2.Reduce overhead
— Lower overhead when creating small communicators

3.Recover from failures
— Failed processes in parent communicator can’t participate

4.Enable compatibility with Global Arrays

— In the past: GA collectives implemented on top of MPI
Send/Recv

Large Counts

* MPI-2.2
— All counts are int / INTEGER

— Producing longer messages through derived datatypes may
cause problems

* MPI-3.0

— Additional routines to handle

 “long” derived datatypes

— MPI_Type_size_x, MPI_Type_get_extent_x, MPI_Type_get_true_extent_x
 “long” count information within a status

— MPI_Get_elements_x, MPI_Status_set_elements_x

— MPI_Count / INTEGER (KIND=MPICOUNT_KIND)

* New type to store long counts
— Communication routines are not changed !!!

52

Removing C++ bindings from the
Standard

e Current state
— Deprecated in MPI 2.2

— Technical aspects
 Supports MPI namespace
 Support for exception handling
* Not what most C++ programmers expect

* Proposal
— Remove the C++ support from the standard

— Use the C bindings — what most C++ developers do today

— Perhaps provide the current bindings as a standalone library
sitting on top of MPI

53

Further information

e« Wwww.mpi-forum.org

e https://svn.mpi-forum.orq/

> View tickets (see headiine boxes) => Custom query (right below headline boxes)

> https://svn.mpi-forum.org/trac/mpi-forum-web/query
-> Filter - Version = MPI-3.0

* http://meetings.mpi-forum.orq/
» Ataglance > All meeting information
> http://meetings.mpi-forum.org/Meeting_details.php

» MPI-3.0 Wiki
> http://meetings.mpi-forum.org/MPI_3.0_main_page.php

» Chapter Working groups:
http://meetings.mpi-forum.org/mpi3.0 chapter waqs.php

Thank you for your interest o

54

