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Abstract: Many scientific applications running on today’s 
supercomputers deal with increasingly large data sets and 
are correspondingly bottlenecked by the time it takes to 
read or write the data from/to the file system. We therefore 
undertook a study to characterize the parallel I/O 
performance of two of today’s leading parallel 
supercomputers: the Columbia system at NASA Ames 
Research Center and the NEC SX-8 supercluster at the 
University of Stuttgart, Germany. On both systems, we ran 
a total of seven parallel I/O benchmarks, comprising five 
low-level benchmarks: (i) IO_Bench, (ii) MPI Tile IO, (iii) 
IOR (POSIX and MPI-IO), (iv) b_eff_io (five different 
patterns), and (v) SPIOBENCH, and two scalable synthetic 
compact application (SSCA) benchmarks: (a) HPCS (High 
Productivity Computing Systems) SSCA #3 and (b) FLASH 
IO (parallel HDF5). We present the results of these 
experiments characterizing the parallel I/O performance of 
these two systems.  

1. Introduction  
Scientific and engineering applications of national 
interest are in general becoming more and more data 
intensive. These applications include simulations of 
scientific phenomena on large-scale parallel 
computing systems in disciplines such as NASA’s 
data assimilation, astrophysics, computational 
biology, climate, combustion, fusion, high-energy 
physics, nuclear physics, and nanotechnology. 
Furthermore, experiments are being conducted on 
scientific instruments, such as particle accelerators, 
that generate terabytes of data [1]. For many such 
applications, the challenge of dealing with data, both 
in terms of speed of data access and management of 
the data, already exceeds the challenge of raw 
compute power. Therefore, it is critical for today’s 
and next-generation supercomputers not only to be 
balanced with respect to the compute processor, 
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memory, and interconnect, but I/O performance needs 
to be significantly increased. It is not just the number 
of teraflops/sec that matters, but how many 
gigabytes/sec or terabytes/sec of data can applications 
really move in and out of disks that will affect 
whether these computing systems can be used 
productively for new scientific discoveries [1-2].  
To get a better understanding of how the I/O systems 
of two of the leading supercomputers of today 
perform, we undertook a study to benchmark the 
parallel I/O performance of NASA's Columbia 
supercomputer located at NASA Ames Research 
Center and the NEC SX-8 supercluster located at 
University of Stuttgart, Germany.  
The rest of this paper is organized as follows. In 
Section 2, we present the architectural details of the 
two machines and their file systems. In Section 3, we 
describe in detail the various parallel I/O benchmarks 
used in this study. In Section 4, we present and 
analyze the results of the benchmarking study. We 
conclude in Section 5 with a discussion of future 
work. 

2. Architectural Details 

We describe the processor details, cluster 
configuration, memory subsystem, interconnect, and 
file systems of Columbia and NEC SX-8 [3]. 
2.1 Columbia: The Columbia system at the NASA 
Advanced Supercomputing (NAS) facility is a cluster 
of twenty SGI Altix systems, each with 512 
processors and 1 TB of shared-access memory.  Four 
of these systems are connected into a supercluster of 
2048 processors. Of the 20 systems, twelve are model 
3700s, and the other eight are BX2s, which are 
essentially double-density versions of the 3700s in 
terms of both the number of processors in a compute 
brick and the interconnect bandwidth. The results 
reported here are from runs on the BX2s.  

The computational unit of the SGI Altix BX2 system 
consists of eight Intel Itanium 2 processors, with a 
memory capacity of 16 GB, and four application 
specific integrated circuits (ASICs) called SHUBs 
(Super Hubs). The processor is 64-bit, runs at 1.6 
GHz, and has a peak performance of 6.4 Gflops/s.  
I/O adapters in the BX2 reside in IX-bricks separate 
from the C-bricks.  As configured for Columbia, an 
IX-brick holds up to five PCI-X adapters.  The BX2 
systems we tested have four IX-bricks each. Each IX-
brick connects through one or two 1200 MB/s links to 
a SHUB in a C-brick.  This connection allows any I/O 
card to perform DMA to any part of the global shared 
memory.  Note that this DMA I/O shares NUMALink 
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bandwidth with off-brick memory accesses by 
processors in the brick.  
2.2 NEC SX-8: The processor used in the NEC SX-8 
is a proprietary vector processor with a peak vector 
performance of 16 Gflops/s and an absolute peak of 
22 Gflops/s if one includes the additional divide & 
sqrt pipeline and the scalar units. It has 64 GB/s 
memory bandwidth per processor and eight vector 
processors per node [3]. HLRS in Stuttgart, Germany, 
has recently installed a cluster of 72 NEC SX-8 nodes, 
with a total of 576 processors. The front-end to this 
cluster is a scalar system, called TX-7, with 16 
Itanium 2 processors and a very large memory of 256 
GB. The front-end and the back-end NEC SX-8 
machines share fast file systems. A total of 16 1-TB 
file systems are used for user home directories. 
Another 16 1-TB file systems contain workspace, 
which can be used by jobs at run time. Each file 
system can sustain 400-600 MB/s throughputs for 
large block I/O. 
Each of the 72 NEC SX-8 vector nodes has 128 GB of 
memory, about 124 GB of which is usable for 
applications.  

2.3 File Systems: In this section, we describe the file 
systems on the Columbia and NEC SX-8 superclusters. 

2.3.1 File System on Columbia: In the past, the 20 
Altix machines of Columbia accessed a shared 
Network File System (NFS) containing the users' home 
directories. Due to the relatively poor performance of 
NFS file systems, each of the machines also had a local 
XFS-based scratch disk (/nobackupi, where i=1, 2, 3, 
…, 20), and users used these scratch disks for their 
performance-sensitive I/O. This configuration was not 
conducive to efficient use of the Columbia system. For 
example, if a user of host Columbia5 wanted to run an 
application on Columbia9, he had to ensure that files 
accessed by his application on /nobackup5 also existed 
on /nobackup9. In addition, the design of the NFS file 
system is to provide distributed access to files from 
multiple hosts, and its consistency semantics and 
caching behavior are accordingly designed for such 
access. A typical scientific-computing workload does 
not mesh well with the semantics of NFS, especially 
for concurrent writes. Therefore, in February 2006, the 
Columbia system was reconfigured to take advantage 
of SGI’s Clustered XFS (CXFS) technology, which 
overcomes the problems associated with NFS and 
permits a more efficient shared file system.  

With CXFS, metadata about files is still managed by 
shared servers, but each host has direct access via 
Fibre Channel to the file data disks. Currently, CXFS 

with file sharing is available on all 20 hosts as shown 
in Figure 1. In the systems under test (nodes C17-20), 
each host communicates with the three sets of three 
metadata servers via gigabit ethernet.  The file-system 
data blocks are accessed across four, 2 Gb/s, Fibre 
Channel connections to dual RAID controllers, each 
with 2.5 GB of cache, interfacing with 30 TB of disk 
space striped across 8 LUNs of 8+1 RAID-3 [3].  

2.3.2 File System on NEC SX-8 Cluster: The file 
system on the NEC SX-8 cluster, called GStorageFS, is 
also based on the XFS file system. It is a SAN-based 
(Storage Area Network) file system that takes 
advantage of a Fibre Channel infrastructure. The client 
does data transfers after negotiation with a metadata 
server. This metadata server is in fact an enhanced 
NFS3 (Network File System) server, which transfers 
lists of disk blocks to the client using a third-party-
transfer scheme. 
Using the conventional NFS3 protocol does small I/O 
and transactions such as creation of files. Using direct 
client-to-disk I/O performs large data transfer. The file 
system on the NEC SX-8 cluster is schematically 
shown in Figure 2. The file system of the NEC SX-8 
cluster consists of 72 S1230 RAID-3 disks. Each 
RAID has 4 logical units (LUNS) consisting of 8 (+ 1 
parity) disks. The NEC SX-8 nodes and the file server 
are connected to the disks via four Fibre Channel 
switches with a peak transfer rate of 2 Gb/s per port. 
The tested 80 TB file system uses half of the disk 
resources, namely, 36 S1230 units with 72 controllers. 
The logical view of the file system on the SX-8 cluster 
is shown in Figure 2. The disks are organized in 18 
stripes, each consisting of 8 LUNs. The bandwidth of 
one LUN is about 100-140 MB/s.  
A file is created in one stripe, with the location 
depending on the host creating the file. The bandwidth 
to access a single file depends on the number of 
stripes it spans, which is usually one. High aggregate 
performance can be achieved when multiple nodes 
access multiple files. Figure 3 shows the assignment 
of the SX-8 nodes to the stripes. A consequence of 
this mapping is that if several nodes access the same 
stripe, they will not get the best performance. To 
achieve best performance, it is important to use nodes 
that are not mapped to the same stripe. Since the 
striping size is 512 KB, the first block size that makes 
optimal use of the 8-fold stripe is 4 MB. Larger block 
sizes increase the efficiency of striping and of access 
to individual LUNs. 
2.4 Architectural Differences: NEC's GStorageFS 
has a server-centric architecture. The server on behalf 
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of the clients does all metadata updates. In contrast, 
SGI's CXFS has a token-based delegation mechanism. 
A client applies to the server for a token, which allows 
the client to update the metadata itself. For the holder 
of the token, CXFS is more or less a local file system. 
The token might remain on the client until another 
client asks for the token, and the server therefore 
revokes the token. The differences between Columbia 
and NEC SX-8 systems are summarized in Table 1. 
The Fibre Channel limits are calculated with an 
assumption of 200 MB/s payload on a 2 Gb/s port. 

3. Parallel I/O Benchmarks: To characterize the 
performance of Columbia and NEC SX-8 
superclusters, we used a total of seven I/O 
benchmarks, which are described below.  
3.1 Low-level I/O Benchmarks: We used the 
following five low-level parallel I/O benchmarks.  

 
Figure 1: CXFS file-system configuration of the Columbia 
system at NASA Ames Research Center, USA. 

Figure 2: GStorage file-system configuration of the NEC 
SX-8 cluster at the University of Stuttgart, Germany. 
Figure 3: Logical view of the file system on the SX-8 
cluster and location of a file created by SX-8 nodes (0–71).  

3.1.1 IO_Bench Benchmark: The IO_Bench 
benchmark is based on the High Performance 
Computing Modernization Office (HPCMO) 
Instrumental IO_Bench benchmark version 2 [4]. The 
benchmark measures the rate at which a computing 
system performs read/write to an arbitrary state of 
disk. The tests are designed to mimic the I/O 
requirements for a given shared-resource computer 
center’s I/O workloads. 
The benchmark runs a series of sequential, backward, 
and random tests. In particular, it measures the 
performance of sequential write, backward write, 
sequential read, random read, backward read, and 
random read/write. The inputs to the benchmarks are 
the sizes of the file and the I/O buffer. The outputs are 
real time, user time, and system time in seconds. The 
bandwidth is calculated as Bandwidth (MB/s) = File 
Size (MB) / Real Time (s) [4].  
3.1.2 MPI Tile I/O Benchmark: This benchmark 
tests the performance of underlying MPI-IO library 
and file-system implementation under a non-
contiguous access workload [5-7]. The benchmark 
logically divides a data file into a dense two-
dimensional set of tiles. One needs to specify the 
number of tiles along rows and columns, along with 
the number of elements in the rows and columns.  
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3.1.3 b_eff_io Benchmark: The parallel b_eff_io 
benchmark measures the performance of three access 
methods and five pattern types [8]. The three access 
methods are: (a) initial write, (b) rewrite, and (c) read. 
Table 1: Summary of technical differences between 
Columbia and NEC SX-8 systems. 

Characteristic Columbia NEC SX-8 

System size 20 nodes  72 nodes  

# Processors per node 512  8 

Total number of processors 10,240 576 

Processor vendor Intel NEC 

Processor model Itanium 2 Proprietary 

Processor type Scalar Vector 

Clock speed  (GHz) 1.6 2.0  

Peak performance (Tflop/s) 65. 536 9.216  

Node type Shared memory Shared memory 

Memory per processor 2 GB 16 GB 

CPUs used for  I/O 
benchmarks 

512 processors 512 processors  

Network NUMALink4 IXS 

Network topology Fat-tree Multi-stage crossbar 

Operating Ssystem Linux Super-UX 

Node name tested for I/O Columbia 20 V04 – V67 

System vendor SGI NEC 

File system type CXFS GStorageFS 

File directory name /nobackup3b /nfs/nas/scr 

File system size 30 TB 80 TB 

FC2 ports at node 8 ports per node 4 ports per node 

FC2 ports at disks 8 72 

I/O FC limit per node 1.6 GB/s 0.8 GB/s 

I/O FC limit total 1.6 GB/s 14.4 GB/s 

Location NASA - Ames, 
USA  

HLRS, Germany 

The five types of I/O patterns measured are: (0) 
strided collective access, scattering large chunks in 
memory to/from disk; (1) strided collective access 
with one read/write call per disk chunk; (2) non-
collective access to one file per MPI process, that is, 
to separate files; (3) same as (2) except that the 
individual files are assembled to one segmented file; 

(4) same as (3) except that the access to the segmented 
file is done collectively.  
3.1.4 IOR Benchmark: Interleaved Or Random 
(IOR) is a parallel file system benchmark developed 
by the SIOP (Scalable I/O) project at Lawrence 
Livermore National Laboratory (LLNL) [9]. The data 
are written and read using independent parallel 
transfers of equal-sized blocks of contiguous bytes 
that cover the file with no gaps and that do not overlap 
each other. The benchmark runs in three API modes 
for I/O: POSIX, MPI-IO, and HDF5.  
3.1.5 SPIOBENCH Benchmark: The Scalable 
Parallel IO Benchmark (SPIOBENCH) tests the 
scalability of parallel I/O [10]. It measures the ability 
of the system to transfer data to/from the shared file 
system. The aggregate I/O done is 128 GB. By NSF 
rules, the benchmark must be run in its entirety [10]. 
All files associated with SPIOBENCH must be 
located on a shared file system at run time, and the 
benchmark itself must be executed from that shared 
file system.  
3.2 Compact Applications: We also used one 
scalable synthetic compact application (SSCA) and 
one realistic compact application, which are described 
below.  
3.2.1 HPCS SSCA #3 Benchmark: Scalable 
Synthetic Compact Application (SSCA) #3 
benchmark is one of the benchmarks accepted by 
DARPA’s HPCS productivity team to benchmark the 
next generation of petaflops-class computing systems 
for U.S. government procurement [11]. The SSCA #3 
benchmark stresses computation, communication, and 
data I/O  
3.2.2 Flash I/O Benchmark: This benchmark 
mimics the I/O in a block-structured adaptive 
mesh refinement (AMR) hydrodynamics code 
that solves compressible, reactive hydrodynamics 
equations and characterizes the physics and 
mathematical algorithms used in studying nuclear 
flashes on neutron stars and white dwarfs [12]. 
The benchmark uses the parallel HDF5 library. It 
produces three output files: (a) a checkpoint file, 
(b) a plot file for centered data, and (c) a plot file 
for corner data.  
4. Results and Analysis:  
In this section, we present the results of running all 
five low-level I/O benchmarks and the two SSCA 
benchmarks on Columbia and NEC SX-8 systems. 
4.1 Low-level I/O Benchmarks: We present the 
results for the five low-level parallel I/O benchmarks. 
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4.1.1 IO_Bench Benchmark: Figure 4 shows the 
results for six I/O operations for block size of 16 MB: 
(i) SW-sequential write, (ii) SR-sequential read, (iii) 
RW-random write, (iv) RR-random read, (v) BW-
backward write, and (vi) BR-backward read. Such 
high bandwidths for a single processor can be 
attributed to caching and prefetching performed by the 
file system. For all the six I/O operations, the 
bandwidth of Columbia is about 40-60% better than 
that of NEC SX-8. The differences in maximum 
performance correlate with the number of Fibre 
Channel ports used in this experiment: 8 on Columbia 
but only 4 on SX-8. On both systems, reads are about 
40-50% faster than writes. Also, on both systems, 
backward I/O operation is slower than the normal 
(forward) operation. 
Figure 5 shows the results for a block size of 128 MB.  
Although Columbia uses 8 Fibre Channel ports 
compared to 4 on SX-8, the write bandwidth on SX-8 
in two cases (sequential and backward) is better than 
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Figure 4: IO_Bench benchmark bandwidth (in MB/s) for 
six I/O operations on a single processor for a block size of 
16 MB on Columbia and NEC SX-8. 
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Figure 5: IO_Bench benchmark bandwidth (in MB/s) for 
six I/O operations on a single processor for a block size of 
128 MB on Columbia and NEC SX-8. 
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Figure 6: Bandwidth (in MB/s) for six I/O operations on a 
single processor of Columbia for various block sizes.  

on Columbia. On Columbia, the read (write) 
performance is 54-60% (25-41%) of the peak Fibre 
Channel bandwidth (1.6 GB/s) on one node, and on 
the SX-8, the read (write) performance is 59-67% (36-
83%) of the peak bandwidth of 0.8 GB/s. 
Figure 6 shows the results for the IO_Bench 
benchmark on a single processor of Columbia for 
block sizes ranging from 4 KB to 16 MB. It is clear 
that the performance of all three read operations is 
almost double that of the three write operations. The 
performance of all six operations is good for block 
sizes ranging from 256 KB to 4 MB. For RR and RW, 
the performance drops for block sizes of 4 MB and  
1 MB respectively. For all six operations, the 
performance falls for block sizes of 8 MB and higher. 
These drops can be attributed to caching and 
prefetching not working well in these circumstances.  
4.1.2 MPI Tile I/O Benchmark: Figure 7 shows the 
read and write bandwidths with the MPI Tile I/O 
benchmark on Columbia. In this case, the size of the 
file was kept constant and the number of processors 
was varied. 

Bandwidth of Tile Benchmark

0

100

200

300

400

500

16 32 64 128 256

Number of Processes

Write 4 GiB
Read 4 GiB

 
Figure 7: Read and write bandwidth (in MB/s) using MPI 
Tile I/O benchmark for a file of 4 GB on Columbia for a 
range of processors from 16 to 256.  
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To start with, at 16 processors, the read bandwidth is 
about 450 MB/s, whereas the write bandwidth is about 
180 MB/s. As the number of processors increase, both 
read and write bandwidths decrease gradually until 
both reach the same value of about 20 MB/s.  

4.1.3 b_eff_io Benchmark: Table 2 shows the values 
of b_eff_io bandwidth in MB/s on both Columbia and 
NEC SX-8. This number summarizes the performance 
of all five types of I/O patterns with different chunk 
sizes. The flags used for running the b_eff_io 
benchmark are: 
mpirun -np 8 ./b_eff_io MB 1536  
-MT 12288 -noshared -rewrite -N 8  
-T 1800 -f outputile_for_8_PEs 

where MT is the number of megabytes of memory in 
the total system. This value is used to compute the 
ratio of transferred bytes to the size of the total 
memory. For example, when running on 8 processors, 
it is 8 times the memory per processor (for SX-8, it is 
8 x 1536 MB); on 16 processors, it is 16 times the 
memory per processor, and so forth. The option “no 
shared” is used to substitute the shared file pointer by 
individual file pointers in pattern type 1. The option 
“rewrite” does rewrites between write and read for all 
patterns. The b_eff_io benchmark has a time limit of 
1800 sec, which is the minimum time b_eff_io has to 
be run. This time limit guarantees that real disk I/O is 
measured instead of caching.  
 
b_eff_io is an effective bandwidth of the system and is 
calculated by giving a certain weight to a type of a 
pattern. For example, on Columbia for 16 processors, 
the weighted average bandwidth for write is  
 
Table 2: Values of b_eff_io benchmark for various 
numbers of processors on Columbia and NEC SX-8. 

b_eff_io (MB/s) 
CPUs 

Columbia NEC SX-8 

8 237.4 95.2 

16 200.6 99.1 

32 196.7 119.9 

64 162.6 185.9 

256 n/a 395.11 
 
171.3 MB/s, the weighted average bandwidth for 
rewrite is 166.6 MB/s, and the weighted average 
bandwidth for read is 232.9 MB/s with pattern type 0 
weighted two times.  For 16 processors, the total 
amount of data written/read with each access method 

is 270104.9 MB, which is 1099.1 percent of the total 
memory (24576 MB). On 16 processors, with memory 
of 1536 MB per processor, b_eff_io is 200.6 MB/s.  
 
The b_eff_io value, as an average over several block 
sizes, is highly influenced by small I/O. Therefore, in 
Figures 8-10, the bandwidth of three patterns with a 
large block size is presented. Figure 8 shows the 
results for pattern type 0 in which data is scattered 
from the processes to one common file. Figure 9 
shows the results for pattern type 2 in which each 
process writes/reads to/from individual files. Figure 
10 shows the results for pattern type 4 in which 
processes access a common file collectively. 
 
On the SX-8, accessing one common file can use only 
4 Fibre Channel ports and, therefore, the bandwidth is 
limited independently from the number of processors. 
With pattern type 2 (accessing individual files), up to 
72 ports can be used. Columbia is restricted to 8 ports 
in all experiments. Figure 8 shows that less than 30% 
of the peak bandwidth is achieved on both platforms. 
In Figure 9, one can see the expected scaling on SX-8 
for multiple files, and, as expected, the nearly constant 
performance on Columbia. Figure 10 shows on both 
platforms the expected independence from the number 
of processors. While read and rewrite performance on 
SX-8 is 65-90% of peak, the write performance on 64 
processors is only 34% of peak. On Columbia, read 
performance is 9-36% and write/rewrite performance 
is 11-12% of the Fibre Channel bandwidth. The 
maximum block size was chosen according b_eff_io 
rules: 1/128 of available memory per processor (but at 
least 2 MB). 
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Figure 8: Bandwidth (in MB/s) for b_eff_io pattern type 0 
on Columbia and SX-8 for various numbers of processors.  
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Pattern Type 2:  SX8 128 MB/Columbia 12 MB
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Figure 9: Bandwidth (in MB/s) for b_eff_io pattern type 2 
on Columbia and SX-8 for various numbers of processors. 
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Figure 10: Bandwidth (in MB/s) for b_eff_io pattern type 4 
on Columbia and SX-8 for various numbers of processors.  
 
4.1.4 IOR Benchmark: In the present study, we used 
IOR version 2.8.10. Versions prior to release 2.8 
provided data size and rates in powers of two. For 
example, 1 MB/s referred to 1,048,576 bytes per 
second.  With the IOR release 2.8 and later versions, 
MB is now defined as 1,000,000 bytes and MiB is 
1,048,576 bytes. The IOR benchmark runs in three 
API modes: MPI-IO, POSIX, and HDF5. The 
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Figure 11: Read/write bandwidths (in MiB/s) with IOR 
MPI-IO benchmark for 256 and 476 processors on 
Columbia for various block sizes ranging from 4 KiB to 16 
MiB. 
 

benchmark has two programming languages, C and 
Python. We used the C version. 
 
In this section, we present results for MPI-IO and 
POSIX modes on Columbia for a case where a single 
file is opened for each process.  Since the HDF5 
version does not work in this mode, we ran the HDF5 
version for a case in which a single file is accessed by 
all processors. We found that the benchmark just 
hung. Therefore, we do not present results with HDF5. 
Each test was repeated eight times, and the average is 
reported here. We present the results only for 
Columbia.  
Figure 11 shows the read and write bandwidths for the 
MPI-IO mode for block sizes ranging from 4 KiB to 
16 MiB for 256 and 476 processors of Columbia. We 
notice that read bandwidths are very high because of 
caching and read-ahead prefetching. For both 256 and 
476 processors, the read performance is very high for 
block size of 1 MiB and 2 MiB. However, 
performance for write is very low on 256 and 476 
processors.  
In Figures 12 we present the results for the POSIX 
version of the benchmark. The results are similar to 
those for the MPI-IO version. 
4.1.5 SPIO Benchmark: Figure 13 shows the 
performance of SPIO on Columbia with up to 508 
processors. In SPIO, each process accesses a separate 
file, so the number of files read or written increases 
with the number of processes. The figures report the 
average of the bandwidth from all processes. The 
experiments are in the following sequence: initial 
write (Wrt0), read (Rd1), rewrite (reWr1), read (Rd2), 
rewrite (reWr2), read (Rd3), and rewrite (reWr3). In 
this benchmark, the total amount of I/O is constant, 
and the amount of data accessed per file decreases as  
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Figure 12: Read/write bandwidths (in MiB/s) with IOR 
POSIX benchmark for 256 and 476 processors on Columbia 
for various block sizes ranging from 4 KiB to 16 MiB. 
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Figure 13: Bandwidth per process (in MB/s) as a function 
of number of processors for read and write operations using 
SPIOBENCH on Columbia.  
 
the number of processors increases. As a result, we 
see that the performance drops as the number of 
processors increases. On up to 48 processors, the read 
performance is quite good (500-850 MB/s) because 
the read-ahead prefetching and caching done by the 
file system work favorably. The rewrite performance, 
however, is consistently lower than the read 
performance, typically by about 30-50%. Between 16 
and 64 processors, the initial write bandwidth is 10-
37% of the write bandwidth; with 128-512 processors 
it decreases to about 4%. Both read and rewrite 
bandwidths are substantially lower on 256 and 508 
processors—well below 100 MB/s.  
 
Figure 14 shows the results of SPIO on the NEC SX-8 
cluster, on up to 512 processors, using 128 MB block 
size. This block size implies that direct disk I/O is 
performed. There is less than 4% difference between 

Figure 14: Bandwidth per process (in MB/s) as a function 
of number of processors for read and write operations using 
SPIOBENCH on NEC SX-8. 
 

 
Figure 15: Read and write bandwidths (in MB/s) for 
various number processors on Columbia and NEC SX-8. 
Aggregate data accessed is always 128 GB for any number 
of processors. 

initial write and rewrite. 
Figure 15 shows a comparison of the performance of 
Columbia and SX-8. On Columbia, the read 
bandwidth begins very high (800 MB/s) on 16 
processors and then drops sharply as we increase the 
number of processors to 256. On the other hand, on 
the SX-8, there is a much smaller variation, beginning 
at 100 MB/s on 16 processors and ending at 20 MB/s 
for 512 processors. The performance of initial writes 
on the SX-8 begins at 98 MB/s, remains nearly 
constant up to 64 processors, and then decreases to 21 
MB/s on 512 processors. On Columbia, 16 processors 
can write at 178 MB/s, but on 64 processors, the 
bandwidth drops to 35 MB/s, and to 1 MB/s on 508 
processors. The read/rewrite bandwidth on Columbia 
is high because data is being read/written from/to the 
file-system cache and not disk. On larger numbers of  

Figure 16: Aggregate bandwidth (in GB/s) of SPIO 
Benchmark for Columbia and NEC SX-8. 
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processors, the reads/writes to the cache suffer 
because they get serialized within the file system. 

In Figure 16 the aggregate SPIO bandwidth is plotted 
together with the theoretical Fibre Channel peak I/O 
performance documented in Section 2.4. On the SX-8, 
for up to 18 nodes, the bandwidth is the number of 
nodes times 0.8 GB/s. For more than 18 nodes, it is 
constant at 14.4 GB/s. On Columbia, it is constant at 
1.6 GB/s. On the SX-8, with 16, 64, and 384 
processors, the aggregate bandwidth is 86-96% of 
peak; for 32, 48, 256, and 512 processors it is 67-84% 
of peak; and for 128 processors, it is only 53-58% of 
peak. On Columbia, most of the reported performance 
(except for writing with more than 64 processors) is 
because of the caching of small files by the file system 
in memory. The measured aggregated bandwidth is up 
to 32 times larger than the physical I/O speed of the 8 
Fibre Channel ports. 
4.2 Compact Parallel I/O Applications: We present 
the results for the compact applications namely  
SSCA #3 and Flash I/O. 

4.2.1 HPCS SSCA #3 Benchmark: The SSCA #3 
runs were made on a single processor of Columbia 
and the NEC TX-7 front-end to the SX-8 cluster. The 
benchmark did not run on the SX-8 system. As the 
TX-7 front-end (see Figure 2) uses the same 
GStorageFS file system as the SX-8 nodes, the 
performance on the TX-7 should be comparable to the 
SX-8. The results of the SSCA #3 benchmark for both 
Columbia and NEC TX-7 are presented in Table 3. 

Table 3: Bandwidth of HPCS SSCA #3 benchmark on 
Columbia and TX7. 

Bandwidth (MB/s) I/O 
Component 
of SSCA #3  

Operation 
Read/Write Columbia TX7 

R 81.2 15.8 Sensor 
processing  W 173 691 

R 208 44 Knowledge 
formation W 33.6 38.4 
Total  R + W 113 31.4 

This benchmark was run with a scale factor of 2 and a 
dialed grid size of 2 x 2 x 2 = 8 images on a single 
processor of Columbia and TX7, using the shared file 
system on both. The size of the image formed is 512 x 
762. The I/O components of the results fall into three 
categories: (a) Sensor processing, where Kernel 1 
retrieves the data (read operation) and Kernel 2 stores 
the formed image back (write operation). Here, the 
read bandwidth on Columbia is 5.1 times the read 

bandwidth on the TX7, and the write bandwidth on 
TX7 is 4 times that on Columbia. (b) Knowledge 
formation, where Kernel 3 retrieves the image (read 
operation) and Kernel 4 stores the image (write 
operation). Here, the read bandwidth on Columbia is 
4.7 times that on the TX7, and the write bandwidths 
on the two systems are comparable. (c) The total I/O 
bandwidth (K1+K2+K3+K4) on Columbia for both 
sensor processing (K1+K2) and knowledge formation 
(K3+K4) is about 3.6 times that on the TX7. In this 
case, the bandwidths measured are using the POSIX 
interface and as such they are much smaller compared 
to the MPI-IO bandwidths in some of the benchmarks 
above.  
4.2.2 Flash I/O Benchmark: Figure 17 shows the 
results of the Flash I/O benchmark for a standard grid 
of 8 x 8 x 8. In this benchmark, the underlying MPI-
IO routines are used to create a single file and have all 
processors write directly to the file. The MPI-IO 
implementation may do the writing collectively. From 
the graph, it is clear that Columbia’s write bandwidth 
is much better than that of NEC SX-8 for all the three 
files. The reason for poor performance of the SX-8 is 
that the system’s I/O performance is best for a block 
size of at least 16 MB, whereas in this benchmark the 
block size is relatively small. The size of each record 
from a single processor is (8 bytes / number) * (8 
zones in x) * (8 zones in y) * (8 zones in z) * 100 
blocks, or 400 KB, which is small for I/O. This is a  

Bandwidth of Flash I/O Benchmark
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Figure 17: Bandwidth (in MB/s) of checkpointing file 
(CK), plot file with corners (CRN), and plot file without 
corners (CNT) as a function of number of processors for the 
FLASH I/O benchmark using parallel HDF5 on Columbia 
and SX-8.  
major factor in the poor performance currently 
achieved on both Columbia and SX-8. The guard-cell 
overhead is a large fraction of the total memory on a 
processor, thus limiting the size of the record being 
written to disk to a small size. The checkpoint and plot 
file routines are identical to those used in the FLASH 
application [12]. Any techniques to improve the 
performance of the FLASH I/O benchmark should 
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also help the FLASH application achieve better I/O 
performance. 

5. Conclusions and Future Work 

Based on the results of all these benchmarks, we can 
draw the following conclusions about the I/O 
performance of Columbia and NEC SX-8.  

On Columbia, the read bandwidth is higher than the 
write bandwidth, while on SX-8, the write bandwidth 
is often similar and sometimes better than read 
bandwidth.  Both read and write performance depends 
very strongly on the block size. For SX-8, the optimal 
block size is 128 MB, whereas for Columbia it is  
2 MB. Both read and write bandwidths can achieve a 
significant fraction of the physical I/O Fibre Channel 
speed on several benchmarks.  Columbia can achieve 
higher bandwidth than SX-8 when multiple processors 
access a single file because it has twice the number of 
Fibre Channel ports. On the SX-8, the highest 
aggregated bandwidth could be achieved when 
accessing individual files from at least 18 nodes. I/O 
is not scalable with the number of processors on either 
Columbia or SX-8 when all processors read/write a 
common file. Constant bandwidth is seen on 
Columbia for write and rewrite of segmented files, 
and on SX-8, for read and rewrite.  

The performance of POSIX I/O on both SX-8 and 
Columbia is very comparable. On Columbia, 
read/write bandwidth can be significantly high when 
the benchmark is run on a smaller number of 
processors. On large number of processors, contention 
for the file system cache causes performance to drop.  
With parallel MPI-IO, the performance depends 
highly on the access pattern, and, in the best case (on 
the SX-8), the performance was very close to the peak 
performance. 

In the future, we plan to run these benchmarks on 
other leading supercomputers, such as Cray XT3, IBM 
POWER 5 cluster, and IBM Blue Gene/L.  
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