
 1

Parallel I/O Performance Characterization of
Columbia and NEC SX-8 Superclusters

Subhash Saini,1 Dale Talcott 1 Rajeev Thakur,2
Panagiotis Adamidis,3 Rolf Rabenseifner 4

and Robert Ciotti 1

Abstract: Many scientific applications running on today’s
supercomputers deal with increasingly large data sets and
are correspondingly bottlenecked by the time it takes to
read or write the data from/to the file system. We therefore
undertook a study to characterize the parallel I/O
performance of two of today’s leading parallel
supercomputers: the Columbia system at NASA Ames
Research Center and the NEC SX-8 supercluster at the
University of Stuttgart, Germany. On both systems, we ran
a total of seven parallel I/O benchmarks, comprising five
low-level benchmarks: (i) IO_Bench, (ii) MPI Tile IO, (iii)
IOR (POSIX and MPI-IO), (iv) b_eff_io (five different
patterns), and (v) SPIOBENCH, and two scalable synthetic
compact application (SSCA) benchmarks: (a) HPCS (High
Productivity Computing Systems) SSCA #3 and (b) FLASH
IO (parallel HDF5). We present the results of these
experiments characterizing the parallel I/O performance of
these two systems.

1. Introduction
Scientific and engineering applications of national
interest are in general becoming more and more data
intensive. These applications include simulations of
scientific phenomena on large-scale parallel
computing systems in disciplines such as NASA’s
data assimilation, astrophysics, computational
biology, climate, combustion, fusion, high-energy
physics, nuclear physics, and nanotechnology.
Furthermore, experiments are being conducted on
scientific instruments, such as particle accelerators,
that generate terabytes of data [1]. For many such
applications, the challenge of dealing with data, both
in terms of speed of data access and management of
the data, already exceeds the challenge of raw
compute power. Therefore, it is critical for today’s
and next-generation supercomputers not only to be
balanced with respect to the compute processor,

1 NASA Advanced Supercomputing Division, NASA Ames Research
Center, Moffett Field, CA 94035-1000, USA, {ssaini, dtalcott,
ciotti}@mail.arc.nasa.gov
2 Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, USA, thakur@mcs.anl.gov
3 German Climate Computing Center, Hamburg, Germany,
adamidis@dkrz.de
4 High Performance Computing Center, University of Stuttgart,
Nobelstrasse 19, D-70569 Stuttgart, Germany, rabenseifner@hlrs.de

1-4244-0910-1/07/$20.00 ©2007 IEEE

memory, and interconnect, but I/O performance needs
to be significantly increased. It is not just the number
of teraflops/sec that matters, but how many
gigabytes/sec or terabytes/sec of data can applications
really move in and out of disks that will affect
whether these computing systems can be used
productively for new scientific discoveries [1-2].
To get a better understanding of how the I/O systems
of two of the leading supercomputers of today
perform, we undertook a study to benchmark the
parallel I/O performance of NASA's Columbia
supercomputer located at NASA Ames Research
Center and the NEC SX-8 supercluster located at
University of Stuttgart, Germany.
The rest of this paper is organized as follows. In
Section 2, we present the architectural details of the
two machines and their file systems. In Section 3, we
describe in detail the various parallel I/O benchmarks
used in this study. In Section 4, we present and
analyze the results of the benchmarking study. We
conclude in Section 5 with a discussion of future
work.

2. Architectural Details

We describe the processor details, cluster
configuration, memory subsystem, interconnect, and
file systems of Columbia and NEC SX-8 [3].
2.1 Columbia: The Columbia system at the NASA
Advanced Supercomputing (NAS) facility is a cluster
of twenty SGI Altix systems, each with 512
processors and 1 TB of shared-access memory. Four
of these systems are connected into a supercluster of
2048 processors. Of the 20 systems, twelve are model
3700s, and the other eight are BX2s, which are
essentially double-density versions of the 3700s in
terms of both the number of processors in a compute
brick and the interconnect bandwidth. The results
reported here are from runs on the BX2s.

The computational unit of the SGI Altix BX2 system
consists of eight Intel Itanium 2 processors, with a
memory capacity of 16 GB, and four application
specific integrated circuits (ASICs) called SHUBs
(Super Hubs). The processor is 64-bit, runs at 1.6
GHz, and has a peak performance of 6.4 Gflops/s.
I/O adapters in the BX2 reside in IX-bricks separate
from the C-bricks. As configured for Columbia, an
IX-brick holds up to five PCI-X adapters. The BX2
systems we tested have four IX-bricks each. Each IX-
brick connects through one or two 1200 MB/s links to
a SHUB in a C-brick. This connection allows any I/O
card to perform DMA to any part of the global shared
memory. Note that this DMA I/O shares NUMALink

 2

bandwidth with off-brick memory accesses by
processors in the brick.
2.2 NEC SX-8: The processor used in the NEC SX-8
is a proprietary vector processor with a peak vector
performance of 16 Gflops/s and an absolute peak of
22 Gflops/s if one includes the additional divide &
sqrt pipeline and the scalar units. It has 64 GB/s
memory bandwidth per processor and eight vector
processors per node [3]. HLRS in Stuttgart, Germany,
has recently installed a cluster of 72 NEC SX-8 nodes,
with a total of 576 processors. The front-end to this
cluster is a scalar system, called TX-7, with 16
Itanium 2 processors and a very large memory of 256
GB. The front-end and the back-end NEC SX-8
machines share fast file systems. A total of 16 1-TB
file systems are used for user home directories.
Another 16 1-TB file systems contain workspace,
which can be used by jobs at run time. Each file
system can sustain 400-600 MB/s throughputs for
large block I/O.
Each of the 72 NEC SX-8 vector nodes has 128 GB of
memory, about 124 GB of which is usable for
applications.

2.3 File Systems: In this section, we describe the file
systems on the Columbia and NEC SX-8 superclusters.

2.3.1 File System on Columbia: In the past, the 20
Altix machines of Columbia accessed a shared
Network File System (NFS) containing the users' home
directories. Due to the relatively poor performance of
NFS file systems, each of the machines also had a local
XFS-based scratch disk (/nobackupi, where i=1, 2, 3,
…, 20), and users used these scratch disks for their
performance-sensitive I/O. This configuration was not
conducive to efficient use of the Columbia system. For
example, if a user of host Columbia5 wanted to run an
application on Columbia9, he had to ensure that files
accessed by his application on /nobackup5 also existed
on /nobackup9. In addition, the design of the NFS file
system is to provide distributed access to files from
multiple hosts, and its consistency semantics and
caching behavior are accordingly designed for such
access. A typical scientific-computing workload does
not mesh well with the semantics of NFS, especially
for concurrent writes. Therefore, in February 2006, the
Columbia system was reconfigured to take advantage
of SGI’s Clustered XFS (CXFS) technology, which
overcomes the problems associated with NFS and
permits a more efficient shared file system.

With CXFS, metadata about files is still managed by
shared servers, but each host has direct access via
Fibre Channel to the file data disks. Currently, CXFS

with file sharing is available on all 20 hosts as shown
in Figure 1. In the systems under test (nodes C17-20),
each host communicates with the three sets of three
metadata servers via gigabit ethernet. The file-system
data blocks are accessed across four, 2 Gb/s, Fibre
Channel connections to dual RAID controllers, each
with 2.5 GB of cache, interfacing with 30 TB of disk
space striped across 8 LUNs of 8+1 RAID-3 [3].

2.3.2 File System on NEC SX-8 Cluster: The file
system on the NEC SX-8 cluster, called GStorageFS, is
also based on the XFS file system. It is a SAN-based
(Storage Area Network) file system that takes
advantage of a Fibre Channel infrastructure. The client
does data transfers after negotiation with a metadata
server. This metadata server is in fact an enhanced
NFS3 (Network File System) server, which transfers
lists of disk blocks to the client using a third-party-
transfer scheme.
Using the conventional NFS3 protocol does small I/O
and transactions such as creation of files. Using direct
client-to-disk I/O performs large data transfer. The file
system on the NEC SX-8 cluster is schematically
shown in Figure 2. The file system of the NEC SX-8
cluster consists of 72 S1230 RAID-3 disks. Each
RAID has 4 logical units (LUNS) consisting of 8 (+ 1
parity) disks. The NEC SX-8 nodes and the file server
are connected to the disks via four Fibre Channel
switches with a peak transfer rate of 2 Gb/s per port.
The tested 80 TB file system uses half of the disk
resources, namely, 36 S1230 units with 72 controllers.
The logical view of the file system on the SX-8 cluster
is shown in Figure 2. The disks are organized in 18
stripes, each consisting of 8 LUNs. The bandwidth of
one LUN is about 100-140 MB/s.
A file is created in one stripe, with the location
depending on the host creating the file. The bandwidth
to access a single file depends on the number of
stripes it spans, which is usually one. High aggregate
performance can be achieved when multiple nodes
access multiple files. Figure 3 shows the assignment
of the SX-8 nodes to the stripes. A consequence of
this mapping is that if several nodes access the same
stripe, they will not get the best performance. To
achieve best performance, it is important to use nodes
that are not mapped to the same stripe. Since the
striping size is 512 KB, the first block size that makes
optimal use of the 8-fold stripe is 4 MB. Larger block
sizes increase the efficiency of striping and of access
to individual LUNs.
2.4 Architectural Differences: NEC's GStorageFS
has a server-centric architecture. The server on behalf

 3

of the clients does all metadata updates. In contrast,
SGI's CXFS has a token-based delegation mechanism.
A client applies to the server for a token, which allows
the client to update the metadata itself. For the holder
of the token, CXFS is more or less a local file system.
The token might remain on the client until another
client asks for the token, and the server therefore
revokes the token. The differences between Columbia
and NEC SX-8 systems are summarized in Table 1.
The Fibre Channel limits are calculated with an
assumption of 200 MB/s payload on a 2 Gb/s port.

3. Parallel I/O Benchmarks: To characterize the
performance of Columbia and NEC SX-8
superclusters, we used a total of seven I/O
benchmarks, which are described below.
3.1 Low-level I/O Benchmarks: We used the
following five low-level parallel I/O benchmarks.

Figure 1: CXFS file-system configuration of the Columbia
system at NASA Ames Research Center, USA.

Figure 2: GStorage file-system configuration of the NEC
SX-8 cluster at the University of Stuttgart, Germany.
Figure 3: Logical view of the file system on the SX-8
cluster and location of a file created by SX-8 nodes (0–71).

3.1.1 IO_Bench Benchmark: The IO_Bench
benchmark is based on the High Performance
Computing Modernization Office (HPCMO)
Instrumental IO_Bench benchmark version 2 [4]. The
benchmark measures the rate at which a computing
system performs read/write to an arbitrary state of
disk. The tests are designed to mimic the I/O
requirements for a given shared-resource computer
center’s I/O workloads.
The benchmark runs a series of sequential, backward,
and random tests. In particular, it measures the
performance of sequential write, backward write,
sequential read, random read, backward read, and
random read/write. The inputs to the benchmarks are
the sizes of the file and the I/O buffer. The outputs are
real time, user time, and system time in seconds. The
bandwidth is calculated as Bandwidth (MB/s) = File
Size (MB) / Real Time (s) [4].
3.1.2 MPI Tile I/O Benchmark: This benchmark
tests the performance of underlying MPI-IO library
and file-system implementation under a non-
contiguous access workload [5-7]. The benchmark
logically divides a data file into a dense two-
dimensional set of tiles. One needs to specify the
number of tiles along rows and columns, along with
the number of elements in the rows and columns.

.

.

.

.

0 , 18 , 3 6 ,54
1 , 19 , 3 7 , 55

16 , 34 , 5 2 , 70

17,35,5 3 , 71

0

1
.
.
.
.

16

17

8 LUNS

8 LUNS

8 LUNS

8 LUNS

 4

3.1.3 b_eff_io Benchmark: The parallel b_eff_io
benchmark measures the performance of three access
methods and five pattern types [8]. The three access
methods are: (a) initial write, (b) rewrite, and (c) read.
Table 1: Summary of technical differences between
Columbia and NEC SX-8 systems.

Characteristic Columbia NEC SX-8

System size 20 nodes 72 nodes

Processors per node 512 8

Total number of processors 10,240 576

Processor vendor Intel NEC

Processor model Itanium 2 Proprietary

Processor type Scalar Vector

Clock speed (GHz) 1.6 2.0

Peak performance (Tflop/s) 65. 536 9.216

Node type Shared memory Shared memory

Memory per processor 2 GB 16 GB

CPUs used for I/O
benchmarks

512 processors 512 processors

Network NUMALink4 IXS

Network topology Fat-tree Multi-stage crossbar

Operating Ssystem Linux Super-UX

Node name tested for I/O Columbia 20 V04 – V67

System vendor SGI NEC

File system type CXFS GStorageFS

File directory name /nobackup3b /nfs/nas/scr

File system size 30 TB 80 TB

FC2 ports at node 8 ports per node 4 ports per node

FC2 ports at disks 8 72

I/O FC limit per node 1.6 GB/s 0.8 GB/s

I/O FC limit total 1.6 GB/s 14.4 GB/s

Location NASA - Ames,
USA

HLRS, Germany

The five types of I/O patterns measured are: (0)
strided collective access, scattering large chunks in
memory to/from disk; (1) strided collective access
with one read/write call per disk chunk; (2) non-
collective access to one file per MPI process, that is,
to separate files; (3) same as (2) except that the
individual files are assembled to one segmented file;

(4) same as (3) except that the access to the segmented
file is done collectively.
3.1.4 IOR Benchmark: Interleaved Or Random
(IOR) is a parallel file system benchmark developed
by the SIOP (Scalable I/O) project at Lawrence
Livermore National Laboratory (LLNL) [9]. The data
are written and read using independent parallel
transfers of equal-sized blocks of contiguous bytes
that cover the file with no gaps and that do not overlap
each other. The benchmark runs in three API modes
for I/O: POSIX, MPI-IO, and HDF5.
3.1.5 SPIOBENCH Benchmark: The Scalable
Parallel IO Benchmark (SPIOBENCH) tests the
scalability of parallel I/O [10]. It measures the ability
of the system to transfer data to/from the shared file
system. The aggregate I/O done is 128 GB. By NSF
rules, the benchmark must be run in its entirety [10].
All files associated with SPIOBENCH must be
located on a shared file system at run time, and the
benchmark itself must be executed from that shared
file system.
3.2 Compact Applications: We also used one
scalable synthetic compact application (SSCA) and
one realistic compact application, which are described
below.
3.2.1 HPCS SSCA #3 Benchmark: Scalable
Synthetic Compact Application (SSCA) #3
benchmark is one of the benchmarks accepted by
DARPA’s HPCS productivity team to benchmark the
next generation of petaflops-class computing systems
for U.S. government procurement [11]. The SSCA #3
benchmark stresses computation, communication, and
data I/O
3.2.2 Flash I/O Benchmark: This benchmark
mimics the I/O in a block-structured adaptive
mesh refinement (AMR) hydrodynamics code
that solves compressible, reactive hydrodynamics
equations and characterizes the physics and
mathematical algorithms used in studying nuclear
flashes on neutron stars and white dwarfs [12].
The benchmark uses the parallel HDF5 library. It
produces three output files: (a) a checkpoint file,
(b) a plot file for centered data, and (c) a plot file
for corner data.
4. Results and Analysis:
In this section, we present the results of running all
five low-level I/O benchmarks and the two SSCA
benchmarks on Columbia and NEC SX-8 systems.
4.1 Low-level I/O Benchmarks: We present the
results for the five low-level parallel I/O benchmarks.

 5

4.1.1 IO_Bench Benchmark: Figure 4 shows the
results for six I/O operations for block size of 16 MB:
(i) SW-sequential write, (ii) SR-sequential read, (iii)
RW-random write, (iv) RR-random read, (v) BW-
backward write, and (vi) BR-backward read. Such
high bandwidths for a single processor can be
attributed to caching and prefetching performed by the
file system. For all the six I/O operations, the
bandwidth of Columbia is about 40-60% better than
that of NEC SX-8. The differences in maximum
performance correlate with the number of Fibre
Channel ports used in this experiment: 8 on Columbia
but only 4 on SX-8. On both systems, reads are about
40-50% faster than writes. Also, on both systems,
backward I/O operation is slower than the normal
(forward) operation.
Figure 5 shows the results for a block size of 128 MB.
Although Columbia uses 8 Fibre Channel ports
compared to 4 on SX-8, the write bandwidth on SX-8
in two cases (sequential and backward) is better than

Bandwidth of IO-Bench Benchmar

0

200

400

600

800

1000

SW SR RW RR BW BR

Operation

SX-8

Columbia

Figure 4: IO_Bench benchmark bandwidth (in MB/s) for
six I/O operations on a single processor for a block size of
16 MB on Columbia and NEC SX-8.

Bandwidth of IO-Bench Benchma

0

200

400

600

800

1000

SW SR RW RR BW BR

Operation

NEC SX-8
Columbia

Figure 5: IO_Bench benchmark bandwidth (in MB/s) for
six I/O operations on a single processor for a block size of
128 MB on Columbia and NEC SX-8.

Bandwidth of IO-Bench Benchmark

0

200

400

600

800

1000

1200

4 16 64 25
6

10
24

40
96

16
38

4

Blocksize (KiB)

SW

SR

RW

RR

BW

BR

Figure 6: Bandwidth (in MB/s) for six I/O operations on a
single processor of Columbia for various block sizes.

on Columbia. On Columbia, the read (write)
performance is 54-60% (25-41%) of the peak Fibre
Channel bandwidth (1.6 GB/s) on one node, and on
the SX-8, the read (write) performance is 59-67% (36-
83%) of the peak bandwidth of 0.8 GB/s.
Figure 6 shows the results for the IO_Bench
benchmark on a single processor of Columbia for
block sizes ranging from 4 KB to 16 MB. It is clear
that the performance of all three read operations is
almost double that of the three write operations. The
performance of all six operations is good for block
sizes ranging from 256 KB to 4 MB. For RR and RW,
the performance drops for block sizes of 4 MB and
1 MB respectively. For all six operations, the
performance falls for block sizes of 8 MB and higher.
These drops can be attributed to caching and
prefetching not working well in these circumstances.
4.1.2 MPI Tile I/O Benchmark: Figure 7 shows the
read and write bandwidths with the MPI Tile I/O
benchmark on Columbia. In this case, the size of the
file was kept constant and the number of processors
was varied.

Bandwidth of Tile Benchmark

0

100

200

300

400

500

16 32 64 128 256

Number of Processes

Write 4 GiB
Read 4 GiB

Figure 7: Read and write bandwidth (in MB/s) using MPI
Tile I/O benchmark for a file of 4 GB on Columbia for a
range of processors from 16 to 256.

 6

To start with, at 16 processors, the read bandwidth is
about 450 MB/s, whereas the write bandwidth is about
180 MB/s. As the number of processors increase, both
read and write bandwidths decrease gradually until
both reach the same value of about 20 MB/s.

4.1.3 b_eff_io Benchmark: Table 2 shows the values
of b_eff_io bandwidth in MB/s on both Columbia and
NEC SX-8. This number summarizes the performance
of all five types of I/O patterns with different chunk
sizes. The flags used for running the b_eff_io
benchmark are:
mpirun -np 8 ./b_eff_io MB 1536
-MT 12288 -noshared -rewrite -N 8
-T 1800 -f outputile_for_8_PEs

where MT is the number of megabytes of memory in
the total system. This value is used to compute the
ratio of transferred bytes to the size of the total
memory. For example, when running on 8 processors,
it is 8 times the memory per processor (for SX-8, it is
8 x 1536 MB); on 16 processors, it is 16 times the
memory per processor, and so forth. The option “no
shared” is used to substitute the shared file pointer by
individual file pointers in pattern type 1. The option
“rewrite” does rewrites between write and read for all
patterns. The b_eff_io benchmark has a time limit of
1800 sec, which is the minimum time b_eff_io has to
be run. This time limit guarantees that real disk I/O is
measured instead of caching.

b_eff_io is an effective bandwidth of the system and is
calculated by giving a certain weight to a type of a
pattern. For example, on Columbia for 16 processors,
the weighted average bandwidth for write is

Table 2: Values of b_eff_io benchmark for various
numbers of processors on Columbia and NEC SX-8.

b_eff_io (MB/s)
CPUs

Columbia NEC SX-8

8 237.4 95.2

16 200.6 99.1

32 196.7 119.9

64 162.6 185.9

256 n/a 395.11

171.3 MB/s, the weighted average bandwidth for
rewrite is 166.6 MB/s, and the weighted average
bandwidth for read is 232.9 MB/s with pattern type 0
weighted two times. For 16 processors, the total
amount of data written/read with each access method

is 270104.9 MB, which is 1099.1 percent of the total
memory (24576 MB). On 16 processors, with memory
of 1536 MB per processor, b_eff_io is 200.6 MB/s.

The b_eff_io value, as an average over several block
sizes, is highly influenced by small I/O. Therefore, in
Figures 8-10, the bandwidth of three patterns with a
large block size is presented. Figure 8 shows the
results for pattern type 0 in which data is scattered
from the processes to one common file. Figure 9
shows the results for pattern type 2 in which each
process writes/reads to/from individual files. Figure
10 shows the results for pattern type 4 in which
processes access a common file collectively.

On the SX-8, accessing one common file can use only
4 Fibre Channel ports and, therefore, the bandwidth is
limited independently from the number of processors.
With pattern type 2 (accessing individual files), up to
72 ports can be used. Columbia is restricted to 8 ports
in all experiments. Figure 8 shows that less than 30%
of the peak bandwidth is achieved on both platforms.
In Figure 9, one can see the expected scaling on SX-8
for multiple files, and, as expected, the nearly constant
performance on Columbia. Figure 10 shows on both
platforms the expected independence from the number
of processors. While read and rewrite performance on
SX-8 is 65-90% of peak, the write performance on 64
processors is only 34% of peak. On Columbia, read
performance is 9-36% and write/rewrite performance
is 11-12% of the Fibre Channel bandwidth. The
maximum block size was chosen according b_eff_io
rules: 1/128 of available memory per processor (but at
least 2 MB).

Pattern Type 0: SX8 128 MB/Columb

0

50

100

150

200

250

16 32 48 64 256

Number of Process

SX8-
write

SX8-
rewrit

SX8-
read

Colum
bia-
write
Colum
bia-
rewrit
Colum
bia-
read

Figure 8: Bandwidth (in MB/s) for b_eff_io pattern type 0
on Columbia and SX-8 for various numbers of processors.

 7

Pattern Type 2: SX8 128 MB/Columbia 12 MB

0

1000

2000

3000

4000

5000

6000

7000

16 32 48 64 256

Number of processors

SX8-
write

SX8-
rewrite

SX8-
read

Colum
bia-
write
Colum
bia-
rewrite
Colum
bia-
read

Figure 9: Bandwidth (in MB/s) for b_eff_io pattern type 2
on Columbia and SX-8 for various numbers of processors.

type 4 SX8 128MB/Columbia 12

0

200

400

600

800

16 32 48 64 256

number of processo

SX8-
write

SX8-
rewrite

SX8-
read

Colum
bia-
write
Colum
bia-

Figure 10: Bandwidth (in MB/s) for b_eff_io pattern type 4
on Columbia and SX-8 for various numbers of processors.

4.1.4 IOR Benchmark: In the present study, we used
IOR version 2.8.10. Versions prior to release 2.8
provided data size and rates in powers of two. For
example, 1 MB/s referred to 1,048,576 bytes per
second. With the IOR release 2.8 and later versions,
MB is now defined as 1,000,000 bytes and MiB is
1,048,576 bytes. The IOR benchmark runs in three
API modes: MPI-IO, POSIX, and HDF5. The

Bandwidth of IOR Benchmark

0

20000

40000

60000

80000

100000

120000

256 476

Number of Processes

4K Write
16K Write
64K Write
256K Write
1M Write
2M Write
4M Write
8M Write
16M Write
4K Read
16K Read
64K Read
256K Read
1M Read
2M Read
4M Read
8M Read
16M Read

Figure 11: Read/write bandwidths (in MiB/s) with IOR
MPI-IO benchmark for 256 and 476 processors on
Columbia for various block sizes ranging from 4 KiB to 16
MiB.

benchmark has two programming languages, C and
Python. We used the C version.

In this section, we present results for MPI-IO and
POSIX modes on Columbia for a case where a single
file is opened for each process. Since the HDF5
version does not work in this mode, we ran the HDF5
version for a case in which a single file is accessed by
all processors. We found that the benchmark just
hung. Therefore, we do not present results with HDF5.
Each test was repeated eight times, and the average is
reported here. We present the results only for
Columbia.
Figure 11 shows the read and write bandwidths for the
MPI-IO mode for block sizes ranging from 4 KiB to
16 MiB for 256 and 476 processors of Columbia. We
notice that read bandwidths are very high because of
caching and read-ahead prefetching. For both 256 and
476 processors, the read performance is very high for
block size of 1 MiB and 2 MiB. However,
performance for write is very low on 256 and 476
processors.
In Figures 12 we present the results for the POSIX
version of the benchmark. The results are similar to
those for the MPI-IO version.
4.1.5 SPIO Benchmark: Figure 13 shows the
performance of SPIO on Columbia with up to 508
processors. In SPIO, each process accesses a separate
file, so the number of files read or written increases
with the number of processes. The figures report the
average of the bandwidth from all processes. The
experiments are in the following sequence: initial
write (Wrt0), read (Rd1), rewrite (reWr1), read (Rd2),
rewrite (reWr2), read (Rd3), and rewrite (reWr3). In
this benchmark, the total amount of I/O is constant,
and the amount of data accessed per file decreases as

Bandwidth of IOR Benchmark

0

20000

40000

60000

80000

100000

120000

140000

160000

1 256 476

Number of Processes

4K Write
16K Write
64K Write
256K Write
1M Write
2M Write
4M Write
8M Write
16M Write
4K Read
16K Read
64K Read
256K Read
1M Read
2M Read
4M Read
8M Read
16M Read

Figure 12: Read/write bandwidths (in MiB/s) with IOR
POSIX benchmark for 256 and 476 processors on Columbia
for various block sizes ranging from 4 KiB to 16 MiB.

 8

Figure 13: Bandwidth per process (in MB/s) as a function
of number of processors for read and write operations using
SPIOBENCH on Columbia.

the number of processors increases. As a result, we
see that the performance drops as the number of
processors increases. On up to 48 processors, the read
performance is quite good (500-850 MB/s) because
the read-ahead prefetching and caching done by the
file system work favorably. The rewrite performance,
however, is consistently lower than the read
performance, typically by about 30-50%. Between 16
and 64 processors, the initial write bandwidth is 10-
37% of the write bandwidth; with 128-512 processors
it decreases to about 4%. Both read and rewrite
bandwidths are substantially lower on 256 and 508
processors—well below 100 MB/s.

Figure 14 shows the results of SPIO on the NEC SX-8
cluster, on up to 512 processors, using 128 MB block
size. This block size implies that direct disk I/O is
performed. There is less than 4% difference between

Figure 14: Bandwidth per process (in MB/s) as a function
of number of processors for read and write operations using
SPIOBENCH on NEC SX-8.

Figure 15: Read and write bandwidths (in MB/s) for
various number processors on Columbia and NEC SX-8.
Aggregate data accessed is always 128 GB for any number
of processors.

initial write and rewrite.
Figure 15 shows a comparison of the performance of
Columbia and SX-8. On Columbia, the read
bandwidth begins very high (800 MB/s) on 16
processors and then drops sharply as we increase the
number of processors to 256. On the other hand, on
the SX-8, there is a much smaller variation, beginning
at 100 MB/s on 16 processors and ending at 20 MB/s
for 512 processors. The performance of initial writes
on the SX-8 begins at 98 MB/s, remains nearly
constant up to 64 processors, and then decreases to 21
MB/s on 512 processors. On Columbia, 16 processors
can write at 178 MB/s, but on 64 processors, the
bandwidth drops to 35 MB/s, and to 1 MB/s on 508
processors. The read/rewrite bandwidth on Columbia
is high because data is being read/written from/to the
file-system cache and not disk. On larger numbers of

Figure 16: Aggregate bandwidth (in GB/s) of SPIO
Benchmark for Columbia and NEC SX-8.

 9

processors, the reads/writes to the cache suffer
because they get serialized within the file system.

In Figure 16 the aggregate SPIO bandwidth is plotted
together with the theoretical Fibre Channel peak I/O
performance documented in Section 2.4. On the SX-8,
for up to 18 nodes, the bandwidth is the number of
nodes times 0.8 GB/s. For more than 18 nodes, it is
constant at 14.4 GB/s. On Columbia, it is constant at
1.6 GB/s. On the SX-8, with 16, 64, and 384
processors, the aggregate bandwidth is 86-96% of
peak; for 32, 48, 256, and 512 processors it is 67-84%
of peak; and for 128 processors, it is only 53-58% of
peak. On Columbia, most of the reported performance
(except for writing with more than 64 processors) is
because of the caching of small files by the file system
in memory. The measured aggregated bandwidth is up
to 32 times larger than the physical I/O speed of the 8
Fibre Channel ports.
4.2 Compact Parallel I/O Applications: We present
the results for the compact applications namely
SSCA #3 and Flash I/O.

4.2.1 HPCS SSCA #3 Benchmark: The SSCA #3
runs were made on a single processor of Columbia
and the NEC TX-7 front-end to the SX-8 cluster. The
benchmark did not run on the SX-8 system. As the
TX-7 front-end (see Figure 2) uses the same
GStorageFS file system as the SX-8 nodes, the
performance on the TX-7 should be comparable to the
SX-8. The results of the SSCA #3 benchmark for both
Columbia and NEC TX-7 are presented in Table 3.

Table 3: Bandwidth of HPCS SSCA #3 benchmark on
Columbia and TX7.

Bandwidth (MB/s) I/O
Component
of SSCA #3

Operation
Read/Write Columbia TX7

R 81.2 15.8 Sensor
processing W 173 691

R 208 44 Knowledge
formation W 33.6 38.4
Total R + W 113 31.4

This benchmark was run with a scale factor of 2 and a
dialed grid size of 2 x 2 x 2 = 8 images on a single
processor of Columbia and TX7, using the shared file
system on both. The size of the image formed is 512 x
762. The I/O components of the results fall into three
categories: (a) Sensor processing, where Kernel 1
retrieves the data (read operation) and Kernel 2 stores
the formed image back (write operation). Here, the
read bandwidth on Columbia is 5.1 times the read

bandwidth on the TX7, and the write bandwidth on
TX7 is 4 times that on Columbia. (b) Knowledge
formation, where Kernel 3 retrieves the image (read
operation) and Kernel 4 stores the image (write
operation). Here, the read bandwidth on Columbia is
4.7 times that on the TX7, and the write bandwidths
on the two systems are comparable. (c) The total I/O
bandwidth (K1+K2+K3+K4) on Columbia for both
sensor processing (K1+K2) and knowledge formation
(K3+K4) is about 3.6 times that on the TX7. In this
case, the bandwidths measured are using the POSIX
interface and as such they are much smaller compared
to the MPI-IO bandwidths in some of the benchmarks
above.
4.2.2 Flash I/O Benchmark: Figure 17 shows the
results of the Flash I/O benchmark for a standard grid
of 8 x 8 x 8. In this benchmark, the underlying MPI-
IO routines are used to create a single file and have all
processors write directly to the file. The MPI-IO
implementation may do the writing collectively. From
the graph, it is clear that Columbia’s write bandwidth
is much better than that of NEC SX-8 for all the three
files. The reason for poor performance of the SX-8 is
that the system’s I/O performance is best for a block
size of at least 16 MB, whereas in this benchmark the
block size is relatively small. The size of each record
from a single processor is (8 bytes / number) * (8
zones in x) * (8 zones in y) * (8 zones in z) * 100
blocks, or 400 KB, which is small for I/O. This is a

Bandwidth of Flash I/O Benchmark

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

8 16 32 64
12

8
256 384 50

8

Number of Processes

CK Col
P-CRN Col
P-CNT Col
CK SX-8
P-CRN SX-8
P-CNT SX-8

Figure 17: Bandwidth (in MB/s) of checkpointing file
(CK), plot file with corners (CRN), and plot file without
corners (CNT) as a function of number of processors for the
FLASH I/O benchmark using parallel HDF5 on Columbia
and SX-8.
major factor in the poor performance currently
achieved on both Columbia and SX-8. The guard-cell
overhead is a large fraction of the total memory on a
processor, thus limiting the size of the record being
written to disk to a small size. The checkpoint and plot
file routines are identical to those used in the FLASH
application [12]. Any techniques to improve the
performance of the FLASH I/O benchmark should

 10

also help the FLASH application achieve better I/O
performance.

5. Conclusions and Future Work

Based on the results of all these benchmarks, we can
draw the following conclusions about the I/O
performance of Columbia and NEC SX-8.

On Columbia, the read bandwidth is higher than the
write bandwidth, while on SX-8, the write bandwidth
is often similar and sometimes better than read
bandwidth. Both read and write performance depends
very strongly on the block size. For SX-8, the optimal
block size is 128 MB, whereas for Columbia it is
2 MB. Both read and write bandwidths can achieve a
significant fraction of the physical I/O Fibre Channel
speed on several benchmarks. Columbia can achieve
higher bandwidth than SX-8 when multiple processors
access a single file because it has twice the number of
Fibre Channel ports. On the SX-8, the highest
aggregated bandwidth could be achieved when
accessing individual files from at least 18 nodes. I/O
is not scalable with the number of processors on either
Columbia or SX-8 when all processors read/write a
common file. Constant bandwidth is seen on
Columbia for write and rewrite of segmented files,
and on SX-8, for read and rewrite.

The performance of POSIX I/O on both SX-8 and
Columbia is very comparable. On Columbia,
read/write bandwidth can be significantly high when
the benchmark is run on a smaller number of
processors. On large number of processors, contention
for the file system cache causes performance to drop.
With parallel MPI-IO, the performance depends
highly on the access pattern, and, in the best case (on
the SX-8), the performance was very close to the peak
performance.

In the future, we plan to run these benchmarks on
other leading supercomputers, such as Cray XT3, IBM
POWER 5 cluster, and IBM Blue Gene/L.

References:

1. The Office of Science Data-Management Challenge.
Report from DOE Office of Science Data-
Management Workshops March-May 2004.
http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf.

2. Henry Scott Newman, Tutorial S10: I/O
Performance Analysis and Tuning: From the
Application to the Storage Device, IEEE

Supercomputing 2005, Nov. 12-18, Seattle,
Washington.

3. Saini, S., Full Day Tutorial M04, Hot Chips and Hot
Interconnect for High End Computing Systems,
IEEE Supercomputing 2004, Nov. 8, 2004,
Pittsburgh.

4. The High Performance Computing Modernization
Program (HPCMP) Major Shared Resource Centers
(MSRCs), http://www.erdc.hpc.mil

5. P. H. Carns, W. B. Ligon, R. B. Ross, and R.
Thakur, PVFS: A Parallel File system for Linux
Clusters, In Proc. of the Extreme Linux Track: 4th
Annual Linux Showcase and Conference, 2000.

6. R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A
Case Study in Application I/O on Linux Clusters,
Proceedings of Supercomputing 2001. ACM/IEEE,
2001.

7. Robert Ross, Bill Gropp, Rusty Lusk, Rajeev
Thakur. M01: Advanced MPI: I/O and One-Sided
Communication, IEEE Supercomputing 2005, Nov
12-18 Seattle, Washington.

8. R. Rabenseifner and A.E. Koniges. The Effective
I/O Bandwidth Benchmark (b_eff_io), Proceedings
of the Message Passing Interface Developer's
Conference 2000. Ithaca, NY, 2000.

9. The IOR README File,
http://www.llnl.gov/asci/purple/benchmarks/limited/
ior/ior.mpiio.readme.html. Lawrence Livermore
National Laboratory, Livermore, CA, 2001.

10. SPIOBENCH Benchmarking Information
Referenced in NSF 05-625 “High Performance
Computing System Acquisition: Towards a
Petascale Computing Environment for Science and
Engineering”,
http://www.nsf.gov/pubs/2006/nsf0605/nsf0605.jsp

11. Meuse T., High Productivity Computer
Systems (HPCS) Scalable Synthetic Compact
Application (SSCA) Benchmark SSCA # 3, Sensor
Processing Knowledge Formation and Data I/O,
Version 1.0a Release, Principal Investigator and
Productivity Team Meeting, Marina del Rey,
California, January 10-11, 2006.

12. M. Zingale, Flash I/O Benchmark Routine,
http://flash.uchicago.edu/~zingale/flash_benchmark
_io/, University of Chicago, 2001.

