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Abstract. The technology advances made in supercomputers and high
performance computing clusters over the past few years have been tremen-
dous. Clusters are the most common solution for high performance com-
puting at the present time. In this kind of systems, an important subject
is the parallel I/O subsystem design. Parallel file systems (GPFS, PVFS,
Lustre, etc) have been the solution used to obtain high performance 1/0.
Parallel file systems increase performance by distributing data file across
several I/0 nodes. However, cluster’s size is increasing continuously, spe-
cially for compute nodes, becoming the I/O nodes in a possible bottleneck
of the system.

In this paper, we propose a new architecture that solves the problem
pointed out before: new hierarchical I/O architecture based on parallel
I/0 proxies. Those I/O proxies execute on the compute nodes offering an
intermediate parallel file system between the applications and the storage
system of the cluster. That architecture reduces the load on the I/0O
nodes increasing the global performance. This paper shows the design
of the proposed solution and a preliminary evaluation, using a cluster
located in the Stuttgart HLRS center.
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1 Introduction

The technology advances made in supercomputers and high performance com-
puting clusters over the past few years have been tremendous. Total performance
of all systems on the Top500 has increased by a factor of 10 every four years [1].
The number of solutions based on clusters is growing, because they are relatively
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inexpensive and can use commodity parts readily available from many suppliers.
One of the most important design issues for clusters is I/O performance. There is
an enormous interest on the development of high performance storage systems
because the number of applications with high I/O requirements is increasing
continuously.

A typical architecture for a high-performance computing cluster (HPCC)
consists of compute nodes, network, and storage systems. The number of com-
ponents is increasing continuously, and for large scale clusters there is a huge
unbalance between the number of computing nodes and I/O nodes used by the
storage system. For example, NEC Cacau cluster of HLRS center has 200 com-
pute nodes and only 2 I/O nodes. Another example, MareNostrum of Barcelona
Supercomputing Center has 2406 dual processors as compute nodes and only 20
I/O nodes. The IBM ASCI Purple has at least 1400 8-way processors as compute
nodes and 128 I/O nodes. That can convert the I/O subsystem in a bottleneck,
as shown in Figure 1. That Figure shows the performance (time in seconds)
obtained testing Flash-IO benchmark [2] (described in the evaluation section),
for different numbers of compute nodes and using the storage system of NEC
Cacau cluster. As we can see, the I/O system does not scale with the number of
compute nodes.
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Fig. 1. Flash I/O results obtained with NEC cacau cluster using the cluster file system

This paper proposes a new I/O architecture for HPCC, based on hierarchical
parallel I/0 prozies that execute on computing nodes. Those parallel 1/O proxies
define an intermediate parallel file system between the applications and the
storage system of the cluster. Our solution has two major goals: to increase data
locality for applications, and reduce the number of I/O operations on the cluster
storage system, in order to alleviate the possible bottleneck.

The paper is organized as follows: Section 2 describes the related work. Sec-
tion 3 presents the new I/O architecture design. Section 4 describes the im-
plementation of the system on NEC Cacau cluster. Performance evaluation is
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presented in Section 5. Finally, Section 6 presents our conclusions and future
works.

2 Related work

The use of parallelism in the file systems is based on the fact that a distributed
and parallel system consists of several nodes with storage devices. The perfor-
mance and bandwidth can be increased if data accesses are exploited in parallel
[3]. Parallelism in file systems is obtained by using several independent server
nodes supporting one or more secondary storage devices. Data are striped among
those nodes and devices to allow parallel access to different files, and parallel ac-
cess to the same file. Initially, this idea was proposed in [4] to increase the overall
data throughput, striping data across several storage devices. This distribution
technique is the basis for RAID systems [5].

Three different parallel I/O software architectures can be distinguished [6]:
application libraries, parallel file systems, and intelligent I/O systems.

— Application libraries basically consist of a set of highly specialized I/O func-
tions. Those functions provide a powerful development environment for ex-
perts with specific knowledge of the problem to model using this solution.
Representative examples are MPI-IO [7], an I/O extension of the standard-
ized message passing interface MPI.

— Parallel file systems operate independently from the applications, thus al-
lowing more flexibility and generality. Examples of parallel file system are
PVFS [8], Expand [9], GPFS [10].

— An intelligent I/0 system hides the physical disk access to the application
developer by providing a transparent logical I/O environment. The user de-
scribes what he wants and the system tries to optimize the I/O requests
applying optimization techniques. This approach is used for example in Ar-
mada [11].

All these solutions are not enough for large scale clusters where the number
of computing nodes is huge compared with the I/O nodes used by the storage
system. For this kind of cluster, the current file systems for clusters can became
the cluster I/O subsystem in a bottleneck.

There are other environments where the performance is improved with sim-
ilar solutions as the one proposed here. BAD-FS [12] for GRID environment or
Scalable Lightweight Archival Storage Hierarchy (SLASH) [13], and High Per-
formance Storage System (HPSS) [14] for Mass Storage Systems propose the use
of several disks as an intermediary cache system between the applications and
the main storage systems. The main problem of those solutions is the difficulty
to translate them to cluster environments.

3 Parallel I/O Proxies Architecture

Figure 2 shows the architecture of the proposed solution. The idea is to use the
compute nodes for executing both applications and I/O proxies. An I/O proxy is
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a file server that executes on a compute node and uses the local disk for storage.
This solution is appropriated for clusters, because most clusters have compute
nodes with several processors and local disks. We can define a virtual partition
(VP) for each application by grouping several I/O proxies. As Figure 2 shows,
a VP can be composed by nodes that could match or not the application ones,
depending on the criteria used to form the VP.
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Fig. 2. Overview of the new proposed architecture

Let C ={cy,ca,...,cn} the set of compute nodes. Let A = {a1,a2,...,am}
the set of applications to run in C. Let S = {s1,52,...,5p} the set of cluster
storage I/O nodes. We define P = {p1, p2, . .., pq} as the set of I/O proxies where
p; executes on ¢;.

Formally, we define a virtual partition as a subset of proxy nodes, VP C
P, strategically chosen to increase the data access parallelising degree for each
application. The idea is to choose an optimal VP size, so that ||S|| < ||[VP| <
| P|| and ||S|| < ||V P|| < ||4]|, in order to increase data locality for applications,
and reduce the number of I/O operations on the cluster storage system.

When using the cluster file system, each file F' of the application A is stored
over S, and can be defined as F' = {f1, fo,..., fq}, where f; is the subfile stored
in s;. A subfile is the subset of the file data store at a particular I/O node. The
system defines a function f : F' = S to map data to storage nodes. Our solution
creates a VP for A (let’s say V P,), and stores F' in another file F’ into V P,,
using a new function g : F' = VP, where F' = {f{, f3,..., f,}, and f] is the
subfile stored at the p; I/O proxy. As we have to store F in S, another function
h: VP, = S is defined, so that goh : F = S.

One important design aspect is to choose the VP size. Currently, we use
an approach based on three parameters: the number of compute nodes (N)
used by A, the size of each file F' (F;), and the size of local storage available
(defined as %, where D the local disk size and k a constant defined by the system
administrator or computed). The minimum number of I/O proxies used in VP
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would be nio = £ = @ The maximum would be N. We are still working

on strategies to rr]faximize the performance of g o h.

We introduce a restriction for the assignment of files to VPs. Two virtual
partitions can not store the same file. So, the files can not be duplicated in
different virtual partitions, avoiding possible coherence problems. It could be
formulated as VP(f') NV P'(f") = 0.

The virtual partition contributes in providing file service to applications.
Applications access the files using the virtual partition as intermediate storage,
combining different local disk for storage.

For example, MareNostrum has 20 I/O nodes with 140 TB and 2400 compute
nodes with 40 GB of local disk. If we use a k = 4 of local disk for each I/O proxy,
we could build a virtual partition with 20 TB of total storage.

Our solution has the following major features: transparent use of the I/0O
proxies, unique image of a file across the system, persistent storage on I/0
proxies, independence of cluster file system, and adaptive virtual partition to
application level like stripe size, data allocation, number of I/O proxies, etc.
Figure 3 shows a case where the stripe size in the virtual partition is independent
of the block size of the Cluster File System (CFS). Furthermore, the number of
I/0O proxies is larger than the number of I/O nodes of the CFS.
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Fig. 3. Parallel files in I/O proxies are independent of the files stored in the CFS
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3.1 I/0 proxies

I/O proxies are responsible for managing and storing file data between the ap-
plications and the storage system of a cluster. We combine several I/O proxies
for building a virtual partition where files are distributed. Main duties of an 1/O
proxy are: to serve data requests from compute nodes, to store data in their
compute nodes until those data are stored in the CFS, and to provide to the
compute nodes a fast access to the data.
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I/0 proxies use the local file system to store the data files, taking advantage
of local cache, read ahead, and other optimizations of the local file system. That
reduces the complexity of the I/O proxy and increases the performance. There
are three major issues in I/O proxies: naming, metadata management, and I/0
policies.

Our architecture assigns an internal id for the file F’, by composing F', and
the local partition used to store data. I metadata is included as a small header
at the beginning of each subfile, to provide fault tolerance. Metadata include the
following information: file id, stripe size, local partition, number of 1/O proxies, id
of I/O proxies, and base node. The base node identifies the I/O proxy where the
first block of the file resides and the file distribution pattern used. At the moment,
we only use files with cyclic layout. We also have a unique master node, that can
be different from the base node, to be used as primary node for metadata. This
approach is similar to the mechanism used in the Vesta Parallel File System [15]
and Expand [9]. To simplify the allocation and naming process, and to reduce
potential bottlenecks, a virtual partition does not use any metadata manager,
as in PVFS [8].

To obtain the master node of a file, the file name is hashed into the number
of node: hash(namefile) = I/Oproxy;

The hash function used in the current prototype is:

i=strlen(namefile)
( Z namefile[i] Ymod numProxies
i=1
The use of this simple approach offers a good distribution of masters. Table

1 shows the distribution (standard deviation) of masters between several I/0
nodes. This results have been obtained using a real file system with 145,300
files. The results shown in this table demonstrate that this simple scheme allows
to distribute the master nodes and the blocks between all NF'S servers, balancing
the use of all NFS servers and, hence, the I/0 load.

Table 1. Distribution (standard deviation) of masters in different distributed partitions

Number of I/0 nodes| 4 | 8 |16 | 32 | 64 |128
Std. Dev. 0.43(0.56{0.39|0.23(0.15|0.11

I/0 proxies ensures that data of a file are stored eventually in S. However,
there are several 1/O policies that can be applied to transfer data from VP to
S. The system must decide when data are transferred from the I/O proxies to
the storage system in case of write operations (or vice versa in case of read oper-
ations. The behaviour of the I/O proxy is different depending on the requested
operation:
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— Reading: if the file is not stored in the virtual partition, the data is transferred
from the storage system to the virtual partition using one of the next policies:
on demand (taking the data by demand), on application start (all the data
is transferred from the storage system to the virtual partition) or when the
file is open.

— Writing: the write operations use the data stored in a virtual partition to
write them to the storage system. Data are transferred to the storage system
using one of the next policies: write on close, write through, delayed write
or flush on demand.

The storage of the I/O proxies is limited. When space is required for storing
new files in VP, we use a LRU replacement algorithm.

4 Implementation

This section gives an overview of the implementation of the I/O proxy compo-
nents and their deployment using the Expand Parallel File System over NEC
Cacau cluster. The new architecture is implemented as a user-level component
in Expand software architecture [16]. Expand is transparently linked with the
user application and provides parallel I/O. As shown in Figure 4, a new abstract
device interface has been implemented below Expand to communicate with the
I/0O proxies using TCP/IP or another communication protocol when available.

Expand communicates with the I/O proxies by using the g mapping function
defined before. I/O proxies are user level processes located on the compute nodes.
They use local file system to store data on the local disk and cluster file system
primitives to communicate with the CFS.

The configuration of a virtual partition is defined on the file configuration of
Expand. In this file configuration declares the following parameters: the number
of I/O proxies, the logical name of each 1/O proxy, the stripe size, etc.
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Fig. 4. Implementation of the I/O Proxy
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In the current implementation, the transfer policies implemented are delayed
write for write operations and read at-begin for read operations, without taking
into account any hint of the I/O behaviour of the applications such as access
pattern .

5 Evaluation

The existing prototype of this architecture was evaluated and compared with
the I/O system of NEC Cacau cluster at the HLRS center by using FLASH-
IO benchmark [2].This cluster has the following characteristics: 400 Intel Xeon
EM64T CPU’s, 160 nodes with 1 GigaByte of RAM memory and 40 nodes with
2 GigaByte of RAM memory, two frontend server to load balance, an Infiniband
network interconnecting the compute nodes, a Gigabit Ethernet network for
the communications between the compute nodes and the frontend server, and a
Fiberchannel network to intercomunicate the frontend and the end-storage disks,
NFS 2 protocol to access the disks of the end-storage and use a RAID 5 in the
storage system.

FLASH-IO benchmark simulates I/O of FLASH Code. FLASH code is an
adaptive mesh, parallel hydrodynamics code developed to simulate astrophysi-
cal thermonuclear flashes in two or three dimensioned space. FLASH-IO code
produces a checkpoint file, a plotfile for centered data, and a plotfile for corner
data. Those files are very different, because the first one is large and dense, as
the last two ones are smaller and sparse.

The parameters used in the tests were the following: the number of I/0
proxies is between 1 to 32 and the stripe size is between 1 KB to 2 MB.

Figure 5 shows time results for Flash-IO Benchmark using 32 processes. Each
column shows the time spent to write the results of FLASH-IO to the CFS. The
first column represents the time obtained using the CFS. The other columns
represent the time obtained with our architecture and different configurations
(tuning the different parameters of the Expand parallel file system cited in the
before section, like I/O proxies (IOP), stripe size, etc). Time is obtained adding
the time spent in the I/O proxies and the time consumed to flush data to CFS.

The results show that this new architecture obtained better performance than
the current I/O system of the cluster. Notice that, for check pointing we get a
speedup of at least 6 for all the configurations. For both plotfiles, we increase
the performance by a factor of 20.

6 Conclusions

In this paper we have argued that the design of I/O systems for HPCC may
create a bottleneck, because the storage and the compute nodes are unbalanced.
We have described a new I/0 architecture that increases the performance of the
storage system of a HPCC, without hardware and system modifications. Using
I/O proxies as intermediary between the application and the storage system of
a HPCC and an abstraction named virtual partition composed of several I/O
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Fig. 5. Flash I/O Benchmark

proxies, most applications can obtain a better performance than if they use
directly the storage system.

The evaluation performed in NEC Cacau cluster at the HLRS center, shows
an important speedup (ranging 20 in some cases) for FLASH-IO benchmark. As
this test is very demanding for I/O, we can expect even better results for more
regular applications.

Some work is going on to test the system proposed in other HPCC and using
more benchmarks. Moreover, we are working on virtual partition creation poli-
cies, I/O transfer policies, replacement policies, etc, to provide more flexibility
and performance to the system.
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