
I/O Optimization

Stefan Andersson

stefan@cray.com

Ken Batcher

Factors which affect I/O : Know your system and code

• I/O is simply data migration.

� Memory Disk

• I/O is a very expensive operation.

� Interactions with data in memory and on disk.

� Must get the kernel involved

• How is I/O performed?

� I/O Pattern

� Number of processes and files.

� File access characteristics.

• Where is I/O performed?

� Characteristics of the computational system.

� Characteristics of the file system.

3

Agenda

• Lustre for Users

� Lustre, what is lustre and how can I use it

• Basic I/O strategies

� How can parallel I/O be done

• IO Interfaces (short)

� What is there

• Using MPI-IO

� Performance and a few short code examples

• A non trivial MPI-IO example

Basics about Lustre

Basic Lustre Overview

High Speed

Network

MDS

MDT OST 0

OSS0

OST 1

…

…

OST k-1

OSS m

OST k

…

I/O processes

running on service

nodes

I/O channels

RAID Devices
OST 2

OSS1

OST 3

…

Memory

P0

Application

processes running

on compute nodes

Memory

P1

Memory

P2

Memory

Pn-1…

Striping : Logical and Physical View of a File

• Logically, a file is a linear sequence of bytes :

• Physically, a file consists of data distributed across OSTs.

7

OST 2 OST 3OST 1OST 0

Lustre Striping

• The user can tell lustre how to stripe a file

• The number of bytes written to one OST before cycling to the next

on is called the „Stripe Size“

• The number of OSTs across which the file is striped is the „Stripe

Count“

� The stripe count is limited by the number of OSTs on the

filesystem you are using and has a current absulte maximum of

160

• The „Stripe Index“ is the starting OST of the file

• You control the striping by the „lfs“ command (see next slide)

• The application does not directly reference OSTs or physical I/O

blocks

Setting the stripe values

• „lfs setstripe“ is used to set the stripe information for a file or directory:

stefan@seal3:~> lfs setstripe

Create a new file with a specific striping pattern or set the default striping pattern

on an existing directory or delete the default striping pattern from an existing

directory

usage: setstripe <filename|dirname> <stripe_size> <stripe_index> <stripe_count>

or

setstripe <filename|dirname> [--size|-s stripe_size]

[--index|-i stripe_index]

[--count|-c stripe_count]

stripe_size: Number of bytes on each OST (0 filesystem default)

Can be specified with k, m or g (in KB, MB and GB respectively)

stripe_index: OST index of first stripe (-1 filesystem default)

stripe_count: Number of OSTs to stripe over (0 default, -1 all)

• The striping info for a file is set when the file is created. It cannot be changed

• You should not change the default stripe_index value

� This to prevent a single OST being ‚overused‘ and running out of space

Rules how the striping values are set

• When creating a directory, it get the default lustre settings

� You can change this anytime. A change will not effect existing files in the

directory

• A file/directory will inherit the lustre setting of the directory it is created in

• You can create an empty file with a different settings then the directory by

using „lfs setstripe <filename> <your setting>“ (think „touch“)

• You can create a file with specific striping values from your application using

MPI-IO (coming up later)

• If you want to change the lustre settings on an exisiting file you have to copy

it :

lfs setstripe newfile <your settings>

cp oldfile newfile

rm oldfile

Getting the stripe values

• „lfs getstripe“ will return the striping information for a file or

directory :

stefan@seal3:> touch delme

stefan@seal3:> lfs getstripe delme

OBDS:

0: ost0_UUID ACTIVE

1: ost1_UUID ACTIVE

2: ost2_UUID ACTIVE

3: ost3_UUID ACTIVE

4: ost4_UUID ACTIVE

5: ost5_UUID ACTIVE

6: ost6_UUID ACTIVE

7: ost7_UUID ACTIVE

delme

obdidx objid objid group

2 56309996 0x35b38ec 0

1 56662062 0x360982e 0

stefan@seal3:>

Available Lustre filesystems and their basic information

• To check for available lustre filesystems, you do lfs df –h.

stefan66@emil-login2:~> lfs df -h

UUID bytes Used Available Use% Mounted on

lustrefs-MDT0000_UUID 1.4T 655.5M 1.3T 0% /mnt/lustre_server[MDT:0]

lustrefs-OST0000_UUID 3.6T 658.7G 2.8T 17% /mnt/lustre_server[OST:0]

lustrefs-OST0001_UUID 3.6T 717.4G 2.7T 19% /mnt/lustre_server[OST:1]

lustrefs-OST0002_UUID 3.6T 712.0G 2.7T 19% /mnt/lustre_server[OST:2]

lustrefs-OST0003_UUID 3.6T 676.9G 2.7T 18% /mnt/lustre_server[OST:3]

filesystem summary: 14.3T 2.7T 10.9T 18% /mnt/lustre_server

UUID bytes Used Available Use% Mounted on

ferlin-MDT0000_UUID 244.0G 534.3M 229.5G 0% /cfs/scratch[MDT:0]

ferlin-OST0000_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch[OST:0]

ferlin-OST0001_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch[OST:1]

ferlin-OST0002_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch[OST:2]

ferlin-OST0003_UUID 8.7T 4.8T 3.5T 55% /cfs/scratch[OST:3]

ferlin-OST0004_UUID 8.7T 5.2T 3.1T 59% /cfs/scratch[OST:4]

filesystem summary: 43.6T 24.4T 17.1T 55% /cfs/scratch

stefan66@emil-login2:~>

And lfs can more. Check the build-in help

stefan@seal1:~> lfs

lfs > help

Available commands are:

setstripe

getstripe

find

check

catinfo

join

osts

df

quotachown

quotacheck

quotaon

quotaoff

setquota

quota

quotainv

help

exit

quit

For more help type: help command-name

lfs >

How can parallel I/O be done

Spokesperson, basically serial I/O

• One process performs I/O.

� Data Aggregation or Duplication

� Limited by single I/O process.

• Easy to program

• Pattern does not scale.

� Time increases linearly with

amount of data.

� Time increases with number of

processes.

• Care has to be taken when doing the

„all to one“-kind of communication at

scale

• Can be used for a dedicated IO Server

(not easy to program)

15

Disk

Single File per process

• All processes perform I/O to

individual files.

� Limited by file system.

• Easy to program

• Pattern does not scale at large

process counts.

� Number of files creates

bottleneck with

metadata operations.

� Number of simultaneous

disk accesses creates

contention for file system

resources.

16

filesystem

Shared File

• Each process performs I/O to a

single file which is shared.

• Performance

� Data layout within the

shared file is very

important.

� At large process counts

contention can build for file

system resources.

• Programming language does not

support it

� C/C++ can work with fseek

� No real Fortran standard

17

filesystem

A little bit of all, using a subset of processes

� Aggregation to a processor group which processes the data.

� Serializes I/O in group.

� I/O process may access independent files.

� Limits the number of files accessed.

� Group of processes perform parallel I/O to a shared file.

� Increases the number of shares to increase file system usage.

� Decreases number of processes which access a shared file to decrease

file system contention.

18

Special Case : Standard Output and Error

• Standard Output and Error streams are

effectively serial I/O.

• All STDIN, STDOUT, and STDERR I/O

serialize through aprun

• Disable debugging messages when

running in production mode.

� “Hello, I’m task 32000!”

� “Task 64000, made it through loop.”

� ...

19

Lustre

How do I program IO

CRAY IO Software stack

HDF5

Application

NETCDF
MPI-IO

POSIX I/O

Lustre File System

IO Interfaces : POSIX I/O

� Lowest level of I/O programming

� File is a sequence of bytes

� Fortran,C and C++ I/O calls are converted to POSIX I/O

� It is not parallel I/O, but it is possible to use in parallel

� You have to coordinate any parallel access, but it is complicated

(closing a file in parallel, when to write, what about buffers, flushing, ...)

� Low overhead and potentially fast

� Suported standard as part of the programmin languages

IO Interfaces : MPI-IO

• MPI-IO can be done in 2 basic ways :

• Independent MPI-IO

� For independent I/O each MPI task is handling the I/O

independently using non collective calls like MPI_File_write()

and MPI_File_read().
Think MPI_Send() and MPI_Recv() with a filesystem as partner

� Similar to POSIX I/O, but supports derived datatypes and thus

noncontiguous data and nonuniform strides and can take

advantaeges of MPI_Hints

• Collective MPI-IO

� When doing collective I/O all MPI tasks participating in I/O has to

call the same routines. Basic routines are MPI_File_write_all()

and MPI_File_read_all()

� This allows the MPI library to do IO optimization

IO Interfaces : HDF5 and NETCDF (not covered in this presentation)

• HDF5 is platform-independent I/O that simpliefies the modeling,

viewing and analysis of complex data objects. It provides a higher

level of data abstractions then MPI-IO

See http://www.hdfgroup.org

• NETCDF-4 is a platform-independent I/O interface that allows you to

create, access and share array-oriented data. NetCDF-4 provides a

higher level of data abstraction then MPI-IO.

See man netcdf(3) and

http://www.unidata.ucar.edu/software/netcdf/docs

‚outside‘ and ‚inside‘ your application

First step : Select best striping values

• Selecting the striping values will have an impact on the I/O

performance of your application

• Rule of thumb :

1. #files > #OSTs => Set stripe_count=1

You will reduce the lustre contension this way and gain

performance

2. #files==1 => Set stripe_count=#OSTs

Assuming you have more then 1 I/O client

3. #files<#OSTs => Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time,

then select stripe_count=2

Case Study 1 : Spokesman

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

� Unable to take advantage of file system parallelism

� Access to multiple disks adds overhead which hurts performance

� Note : XE6 numbers might be better

27

Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer

Write Performance

1 MB Stripe

32 MB Stripe

Case Study 2 : Parallel I/O into a single file

• A particular code both reads and writes a 377 GB file. Runs on 6000

cores.

� Total I/O volume (reads and writes) is 850 GB.

� Utilizes parallel HDF5

• Default Stripe settings:

count =4, size=1M, index =-1.

� 1800 s run time (~ 30 minutes)

• Stripe settings: count=-1, size=1M, index =-1.

� 625 s run time (~ 10 minutes)

• Results

� 66% decrease in run time.

28

Lustre

Case Study 3 : Single File Per Process

• 128 MB per file and a 32 MB Transfer size, each file has a stripe_count of 1

29

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process

Write Performance

1 MB Stripe

32 MB Stripe

I/O Performance : To keep in mind

• There is no “One Size Fits All” solution to the I/O problem.

• Many I/O patterns work well for some range of parameters.

• Bottlenecks in performance can occur in many locations.

(Application and/or File system)

• Going to extremes with an I/O pattern will typically lead to

problems.

• I/O is a shared resource. Expect timing variation

30

A simple MPI-IO program in C

MPI_File fh;

MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, ‘FILE’,

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

And now in Fortran using explicit offsets

use mpi ! or include 'mpif.h‘

integer status(MPI_STATUS_SIZE)

integer (kind=MPI_OFFSET_KIND) offset ! Note : might be integer*8

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘FILE’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER, status,

ierr)

call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)

print *, 'process ', rank, 'read ', count, 'integers‘

call MPI_FILE_CLOSE(fh, ierr)

• The *_AT routines are thread save (seek+IO operation in one call)

Write instead of Read

• Use MPI_File_write or MPI_File_write_at

• Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the flags to

MPI_File_open

• If the file doesn’t exist previously, the flag MPI_MODE_CREATE must

be passed to MPI_File_open

• We can pass multiple flags by using bitwise-or ‘|’ in C, or addition ‘+’

or IOR in Fortran

• If not writing to a file, using MPI_MODE_RDONLY might have a

performance benefit. Try it.

MPI_File_set_view

• MPI_File_set_view assigns regions of the file to separate processes

• Specified by a triplet (displacement, etype, and filetype) passed to

MPI_File_set_view

� displacement = number of bytes to be skipped from the start of the file

� etype = basic unit of data access (can be any basic or derived datatype)

� filetype = specifies which portion of the file is visible to the process

• Example :
MPI_File fh;

for (i=0; i<BUFSIZE; i++) buf[i] = myrank * BUFSIZE + i;

MPI_File_open(MPI_COMM_WORLD, "testfile",MPI_MODE_CREATE |

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, myrank * BUFSIZE * sizeof(int), MPI_INT,

MPI_INT, ‘native’, MPI_INFO_NULL);

MPI_File_write(fh, buf, BUFSIZE, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close(&fh);

MPI_File_set_view (Syntax)

• Describes that part of the file accessed by a single MPI process.

• Arguments to MPI_File_set_view:

� MPI_File file

� MPI_Offset disp

� MPI_Datatype etype

� MPI_Datatype filetype

� char *datarep

� MPI_Info info

Collective I/O with MPI-IO

• MPI_File_read_all, MPI_File_read_at_all, …

• _all indicates that all processes in the group specified by the

communicator passed to MPI_File_open will call this function

• Each process specifies only its own access information – the

argument list is the same as for the non-collective functions

• MPI-IO library is given a lot of information in this case:

� Collection of processes reading or writing data

� Structured description of the regions

• The library has some options for how to use this data

� Noncontiguous data access optimizations

� Collective I/O optimizations

2 Techniques : Sieving and Aggregation

• Data sieving is used to combine lots of small accesses into a single

larger one

� Reducing # of operations important (latency)

� A system buffer/cache is one example

• Aggregation refers to the concept of moving data through

intermediate nodes

� Different numbers of nodes performing I/O (transparent to the

user)

• Both techniques are used by MPI-IO and triggered with HINTS

Lustre problem : „OST Sharing“

• A file is written by several tasks :

• The file is stored like this (one stripe per OST) :

• => Performance Problem (like ‚False Sharing‘ in thread progamming)

39

OST 2 OST 3OST 1OST 0

Task 1 Task 2 Task 3 Task 4

MPI-IO Interaction with Lustre

• Included in the Cray MPT library.

• Environmental variable used to help MPI-IO optimize I/O

performance.

� MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

� MPICH_MPIIO_HINTS Environmental Variable

� Can set striping_factor and striping_unit for files created with

MPI-IO.

� If writes and/or reads utilize collective calls, collective buffering

can be utilized (romio_cb_read/write) to approximately stripe

align I/O within Lustre.

• HDF5 and NETCDF are both implemented on top of MPI-IO and thus

also uses the MPI-IO env. Variables.

40

MPICH_MPIIO_CB_ALIGN

• If set to 2, an algorithm is used to divide the I/O workload into

Lustre stripe-sized pieces and assigns them to collective buffering

nodes (aggregators), so that each aggregator always accesses the

same set of stripes and no other aggregator accesses those stripes.

If the overhead associated with dividing the I/O workload can in

some cases exceed the time otherwise saved by using this method.

• If set to 1, an algorithm is used that takes into account physical I/O

boundaries and the size of I/O requests in order to determine how

to divide the I/O workload when collective buffering is enabled.

However, unlike mode 2, there is no fixed association between file

stripe and aggregator from one call to the next.

• If set to zero or defined but not assigned a value, an algorithm is

used to divide the I/O workload equally amongst all aggregators

without regard to physical I/O boundaries or Lustre stripes.

MPI-IO Hints (part 1)

• MPICH_MPIIO_HINTS_DISPLAY – Rank 0 displays the name

and values of the MPI-IO hints

• MPICH_MPIO_HINTS – Sets the MPI-IO hints for files opened

with the MPI_File_Open routine

� Overrides any values set in the application by the MPI_Info_set

routine

� Following hints supported:

direct_io

romio_cb_read

romio_cb_write

cb_buffer_size

cb_nodes

cb_config_list

romio_no_indep_rw

romio_ds_read

romio_ds_write

ind_rd_buffer_size

Ind_wr_buffer_size

striping_factor

striping_unit

Env. Variable MPICH_MPIO_HINTS (part 2)

• If set, override the default value of one or more MPI I/O hints. This also overrides any

values that were set by using calls to MPI_Info_set in the application code. The new

values apply to the file the next time it is opened using a MPI_File_open() call.

• After the MPI_File_open() call, subsequent MPI_Info_set calls can be used to pass new

MPI I/O hints that take precedence over some of the environment variable values.

Other MPI I/O hints such as striping factor, striping_unit, cb_nodes, and cb_config_list

cannot be changed after the MPI_File_open() call, as these are evaluated and applied

only during the file open process.

• The syntax for this environment variable is a comma-separated list of specifications.

Each individual specification is a pathname_pattern followed by a colon-separated list

of one or more key=value pairs. In each key=value pair, the key is the MPI-IO hint

name, and the value is its value as it would be coded for an MPI_Info_set library call.

• Example:

MPICH_MPIIO_HINTS=file1:direct_io=true,file2:romio_ds_write=disable,/scratch/user

/me/dump.*:romio_cb_write=enable:cb_nodes=8

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 1M bytes and a strided access pattern. Tested on an XT5 with

32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

M
B

/S
e

c

IOR benchmark 10,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 10K bytes and a strided access pattern. Tested on an XT5 with

32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

M
B

/S
e

c

0

20

40

60

80

100

120

140

160

HYCOM MPI-2 I/O

On 5107 PEs, and by application design, a subset of the PEs(88), do the writes.

With collective buffering, this is further reduced to 22 aggregators (cb_nodes)

writing to 22 stripes. Tested on an XT5 with 5107 PEs, 8 cores/node

M
B

/S
e

c

0

500

1000

1500

2000

2500

3000

3500

4000

HDF5 format dump file from all PEs

Total file size 6.4 GiB. Mesh of 64M bytes 32M elements, with work divided amongst all
PEs. Original problem was very poor scaling. For example, without collective buffering,
8000 PEs take over 5 minutes to dump. Note that disabling data sieving was necessary.
Tested on an XT5, 8 stripes, 8 cb_nodes

S
e
c
o

n
d

s

PEs

1

10

100

1000

w/o CB

CB=0

CB=1

CB=2

MPI-IO Example

Storing a distributed Domain into a single File

Problem we want to solve

• We have 2 dim domain on a 2 dimensional processor grid

• Each local subdomain has a halo (ghost cells).

• The data (without halo) is going to be stored in a single file, which

can be re-read by any processor count

• Here an example with 2x3 procesor grid :

nx

px

ny

py

lnx

lny

Approach for writing the file

• First step is to create the MPI 2 dimensional processor grid

• Second step is to describe the local data layout using a MPI datatype

• Then we create a „global MPI datatype“ describing how the data

should be stored

• Finaly we do the I/O

Basic MPI setup

nx=512; ny=512 ! Global Domain Size

call MPI_Init(mpierr)

call MPI_Comm_size(MPI_COMM_WORLD, mysize, mpierr)

call MPI_Comm_rank(MPI_COMM_WORLD, myrank, mpierr)

dom_size(1)=2; dom_size(2)=mysize/dom_size(1)

lnx=nx/dom_size(1) ; lny=ny/dom_size(2) ! Local Domain size

periods=.false. ; reorder=.false.

call MPI_Cart_create(MPI_COMM_WORLD, dim, dom_size, periods, reorder,

comm_cart, mpierr)

call MPI_Cart_coords(comm_cart, myrank, dim, my_coords, mpierr)

halo=1

allocate (domain(0:lnx+halo, 0:lny+halo))

Creating the local data type

gsize(1)=lnx+2; gsize(2)=lny+2

lsize(1)=lnx; lsize(2)=lny

start(1)=1; start(2)=1

call MPI_Type_create_subarray(dim, gsize, lsize, start,

MPI_ORDER_FORTRAN, MPI_INTEGER, type_local, mpierr)

call MPI_Type_commit(type_local, mpierr)

lnx

lny

(1,1)

And now the global datatype

gsize(1)=nx; gsize=ny

lsize(1)=lnx; lsize(2)=lny

start(1)=lnx*my_coords(1); start(2)=lny*my_coords(2)

call MPI_Type_create_subarray(dim, gsize, lsize, start,

MPI_ORDER_FORTRAN, MPI_INTEGER, type_domain, mpierr)

call MPI_Type_commit(type_domain, mpierr)

nx

px

ny

py

Now we have all together

call MPI_Info_create(fileinfo, mpierr)

call MPI_File_delete('FILE', MPI_INFO_NULL, mpierr)

call MPI_File_open(MPI_COMM_WORLD, 'FILE',

IOR(MPI_MODE_RDWR,MPI_MODE_CREATE), fileinfo, fh, mpierr)

disp=0 ! Note : INTEGER(kind=MPI_OFFSET_KIND) :: disp

call MPI_File_set_view(fh, disp, MPI_INTEGER, type_domain, 'native',

fileinfo, mpierr)

call MPI_File_write_all(fh, domain, 1, type_local, status, mpierr)

call MPI_File_close(fh, mpierr)

Performance results for the 2D testcase

Performance in MB/sec for 16 MPI tasks

16 nodes

-lmppnppn=1

8 nodes

-lmppnppn=2

4 nodes

-lmppnppn=4

2 nodes

-lmppnppn=8

MPICH_MPIIO

CB_ALIGN=
2 OSTs /8 OSTs 2 OSTs /8 OSTs 2 OSTs /8 OSTs 2 OSTs /8 OSTs

Unset 1523/1236 903/801 390/477 380/242

0 1513/1257 924/871 400/488 382/244

1 1509/1262 909/832 402/492 377/250

2 808/2100 780/1868 778/1501 738/872

� Global Domainsize = 4096x4096

� 16 MPI tasks

� 8 OSTs lustre filesystem

� System was not dedicated

� Timing includes HINT/WRITE not OPEN/CLOSE

I/O Performance Summary

• Buy sufficient I/O hardware for the machine

� As your job grows, so does your need for I/O bandwidth

� You might have to change your I/O implementation when scaling

• Lustre

� Minimize contention for file system resources.

� A single process should not access more than 4 OSTs, less might be better

• Performance

� Performance is limited for single process I/O.

� Parallel I/O utilizing a file-per-process or a single shared file is limited at large

scales.

� Potential solution is to utilize multiple shared file or a subset of processes

which perform I/O.

� A dedicated I/O Server process (or more) might also help

� Did not really talk about the MDS

56

And there is more

• http://docs.cray.com

� Search for MPI-IO : „Getting started with MPI I/O“, „Optimizing

MPI-IO for Applications on CRAY XT Systems“

� Search for lustre (a lot for admins but not only)

� Message Passing Toolkit

• Man pages (man mpi, man <mpi_routine>, ...)

• mpich2 standard :

http://www.mcs.anl.gov/research/projects/mpich2/

Cray XT6 – XE6 Workshop 58October 2010

