
Basic CPU

optimization overview

Stefan Andersson

stefan@cray.com

Slide 1

Vectorization on

AMD

And Intel as well

Slide 2

Vectorization through SSE : What is it ?
• Streaming SIMD Extensions (SSE) is a SIMD instruction set

extension to the x86 architecture

• SSE originally added eight new 128-bit registers known as

XMM0 through XMM7. The AMD64 extensions from AMD

(originally called x86-64 and later duplicated by Intel) add a

further eight registers XMM8 through XMM15. There is also a

new 32-bit control/status register, MXCSR. The registers XMM8

through XMM15 are accessible only in 64-bit operating mode.

• Each register packs together:

� four 32-bit single-precision floating point numbers or

� two 64-bit double-precision floating point numbers or

� two 64-bit integers or

� four 32-bit integers or

� eight 16-bit short integers or

� sixteen 8-bit bytes or characters

Slide 3

SSE : Example

• Example :
The following simple example demonstrates the advantage of using SSE.

Consider an operation like vector addition, which is used very often in

computer graphics applications. To add two single precision, 4-component

vectors together using x86 requires four floating point addition instructions

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

This would correspond to four x86 FADD instructions in the object code. On

the other hand, as the following pseudo-code shows, a single 128 bit

'packed-add' instruction can replace the four scalar addition instructions.

movaps xmm0,address-of-v1 ;xmm0=v1.w | v1.z | v1.y | v1.x

addps xmm0,address-of-v2 ;xmm0=v1.w+v2.w | v1.z+v2.z | v1.y+v2.y |

v1.x+v2.x movaps address-of-vec_res,xmm0

Slide 4

SSE

• The AMD Opteron is capable of generating 4

flops/clock in 64 bit mode and 8 flops/clock for 32 bit

mode

� Assembler must contain SSE instructions

� Compilers only generate SSE instructions when it can

vectorize the DO loops

� Libraries must be Quad core (or higher) enabled

• Operands must be aligned on 128 bit boundaries

� Operand alignment can be performed; however, it distracts

from the performance.

Slide 5

When does the compiler vectorize

• What can be vectorized

� Only loops

� Stride 1 arrays, indirect addressing is bad

� No recursion

• Check the compiler output listing and/or assambler listing

� Look for packed SSE instructions

• Note of caution : Don‘t get to excited about vectorization

The main limitation is often memory bandwidth

Slide 6

Next Generation : AVX (Advanced Vector Extensions)

� Max Vector length doubled to 256 bit (Register)

� Much cleaner instruction set

� Result register is unique from the source registers

� Old SSE instruction set always destroyed a source register

� Floating point multiple-accumulate (FMA)

� A(1:4) = B(1:4)*C(1:4) + D(1:4) ! Now one instruction

� Next processor generation of both AMD and Intel

will have AVX

� Vectors are becoming more important, not less

Basic loops

optimizations techniques

Loop interchange

• loop interchange is the process of exchanging the order of two

iteration variables.

• For example, in the code fragment:

for i from 0 to 10

for j from 0 to 20

a[i,j] = i + j;

loop interchange would result in:

for j from 0 to 20

for i from 0 to 10

a[i,j] = i + j

Slide 9

Loop unrolling

� Loop unrolling is the replication of loop body while at the same time

incrementing the loop counter by the number of copies of that loop body

do i = 1,n

a(i) = a(i) + b(i)

enddo

Unrolled loop:

do i = 1,n,4

a(i) = a(i) + b(i)

a(i+1) = a(i+1) + b(i+1)

a(i+2) = a(i+2) + b(i+2)

a(i+3) = a(i+3) + b(i+3)

enddo

Plus some clean up work

Why do loop unrolling?

� Enable register reuse

� Reduce the loop control overhead

� Improve scheduling

� Allow for more efficient software prefetching

� All excellent reasons to unroll a loop when
optimizing for a microprocessor…

Circa 1990 - 2005

Loop unrolling today

� Compilers are very good at unrolling to

� Enable register reuse

� Improve cache reuse

� Reduce loop control overhead

� Improve scheduling

� Allow for more efficient software prefetching

� Modern CPU has less need for unrolling, as they have

� A very fast L1 cache

� Extremely out-of-order

� Very fast loop flow control

� Good hardware prefetching and it is getting better all the time

Loop unrolling: when you should do it

First look to see if the compiler is already unrolling the
loop for you. If it is not, consider the following cases

� Small loop body with indirect addressing or if tests

� An outer loop where unrolling would allow for a
rapid reuse of a variable

� You are trying to get a very high percentage of
peak and have already done everything else

� This optimization is being used less and less
frequently

Strip mining

• Strip mining involves splitting a single loop into a nested loop. The resulting

inner loop iterates over a section or strip of the original loop, and the new

outer loop runs the inner loop enough times to cover all the strips,

achieving the necessary total number of iterations. The number of

iterations of the inner loop is known as the loop's strip length.

• Consider the Fortran code below:

DO I = 1, 10000

A(I) = A(I) * B(I)

ENDDO

mining this loop using a strip length of 1000 yields the following loop nest

DO IOUTER = 1, 10000, 1000

DO STRIP = IOUTER, IOUTER+999

A(STRIP) = A(STRIP) * B(STRIP)

ENDDO

ENDDO

Slide
14

When should I optimize matmul?

� Never

� Use a vendor provided DGEMM library

� Write simple triple nested loop or array syntax and let the

compiler pattern match it

� Other BLAS level 1 and 2 libraries are also provided
and should be considered for use unless those array
operations are part of a larger loop nest and using
BLAS routine will inhibit compiler analysis and
optimization

Cache Optimization

Based on John Leveques presentation

Slide
16

Consider the following example

Real * 8 A(64,64),B(64,64),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

17

Memory and Cache Layout Visualization

1

2

A(1,1) A(9,1) ooo A(57,64)

B(1,1) B(9,1) ooo B(57,64)

C(1,1) C(9,1) ooo C(57,64)

18

Level 1 Cache

Level 1 Cache

65536 B

1024 Lines

8192 8B Ws

16384 4B Ws

2 way Assoc

Associativity Class

32768 B

512 Lines

4096 8B Ws

8192 4B Ws

Width = 32768 Bytes

MEMORY

8 elements in one cache line

64*64*8 = 32768 B

Step 1 : Get the first element A(1,1)

Real * 8 A(64,64),B(64,64),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

Fetch A(1,1) Fetch from M Uses 1 Associativity Class

19

A(1-8,1) is loaded into the cache

1 A(1-8,1)

2

A(1,1) A(9,1) ooo A(57,64)

B(1,1) B(9,1) ooo B(57,64)

C(1,1) C(9,1) ooo C(57,64)

20

Level 1 Cache

Level 1 Cache

65536 B

1024 Lines

8192 8B Ws

16384 4B Ws

2 way Assoc

Associativity Class

32768 B

512 Lines

4096 8B Ws

8192 4B Ws

Width = 32768 Bytes

MEMORY

64*64*8 = 32768 B

Step 2 : Load B(1,1)

Real * 8 A(64,64),B(64,64),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

Fetch A(1,1) Fetch from M Uses 1 Associativity Class

Fetch B(1,1) Fetch from M Uses 2 Associativity Class

21

B(1-8,1) is loaded into the cache

1 A(1-8,1)

2 B(1-8,1)

A(1,1) A(9,1) ooo A(57,64)

B(1,1) B(9,1) ooo B(57,64)

C(1,1) C(9,1) ooo C(57,64)

22

Level 1 Cache

Level 1 Cache

65536 B

1024 Lines

8192 8B Ws

16384 4B Ws

2 way Assoc

Associativity Class

32768 B

512 Lines

4096 8B Ws

8192 4B Ws

Width = 32768 Bytes

MEMORY

64*64*8 = 32768 B

S t e p 3 : L o a d C (1 , 1) , n e e d e d e v e n i f i t ‘ s n o t r e a d

Real * 8 A(64,64),B(64,64),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

Fetch A(1,1) Fetch from M Uses 1 Associativity Class

Fetch B(1,1) Fetch from M Uses 2 Associativity Class

Add A(1,1) + B(1,1)

Store C(1,1) Fetch from M Overwrites either 1 or 2 Associativity Class

23

C(1-8,1) is loaded, B(1-8,1) is removed

1 A(1-8,1)

2 C(1-8,1)

A(1,1) A(9,1) ooo A(57,64)

B(1,1) B(9,1) ooo B(57,64)

C(1,1) C(9,1) ooo C(57,64)

24

Level 1 Cache

Level 1 Cache

65536 B

1024 Lines

8192 8B Ws

16384 4B Ws

2 way Assoc

Associativity Class

32768 B

512 Lines

4096 8B Ws

8192 4B Ws

Width = 32768 Bytes

MEMORY

64*64*8 = 32768 B

What happens

Real * 8 A(64,64),B(64,64),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

Fetch A(1,1) Fetch from M Uses 1 Associativity Class

Fetch B(1,1) Fetch from M Uses 2 Associativity Class

Add A(1,1) + B(1,1)

Store C(1,1) Fetch from M Overwrites either 1 or 2 Associativity Class

Fetch A(2,1) Fetch from L2Overwrites either 1 or 2 Associativity Class

Fetch B(2,1) Fetch from L2Overwrites either 1 or 2 Associativity Class

Add A(2,1) + B(2,1)

Store C(2,1) Fetch from L2Overwrites either 1 or 2 Associativity Class

25

Must be a better Way :

Padding to change the memory layout

Real * 8 A(64,64),pad1(16),B(64,64),pad2(16),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

26

Cache and memory layout with padding

1 A(1-8,1)

2 B(1-8,1) C(1-8,1)

A(1,1) A(9,1) ooo A(57,64)

Pad1(1-8) Pad1(9-16) B(1,1) B(9,1) ooo B(41,64)

B(49,64) B(57,64) Pad2(1-8) Pad2(9-16) C(1-8,1) C(9,1) C(25,64)

C(33,64) C(41,64) C(49,64) C(57,64)

27

Level 1 Cache

Level 1 Cache

65536 B

1024 Lines

8192 8B Ws

16384 4B Ws

2 way Assoc

Associativity Class

32768 B

512 Lines

4096 8B Ws

8192 4B Ws

Width = 32768 Bytes

MEMORY

64*64*8 = 32768 B

More reuse of cache

Real * 8 A(64,64),pad1(16),B(64,64),pad2(16),C(64,64)

DO I = 1,N

 C(I,1) = A(I,1) +B(I,1)

ENDDO

Fetch A(1) Uses 1 Associativity Class

Fetch B(1) Uses 2 Associativity Class

Add A(1) + B(1)

Store C(1) Uses 1 Associativity Class

Fetch A(2) Gets from L1 Cache

Fetch B(2) Gets from L1 Cache

Add A(2) + B(2)

Store C(2) Gets from L1 Cache

28

Performance difference

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

M
F

L
O

P
S

Loop Length

Cache Alignment Example

G…

29

Bad Cache Alignment

30

Time% 0.2%

Time 0.000003

Calls 1

PAPI_L1_DCA 455.433M/sec 1367 ops

DC_L2_REFILL_MOESI 49.641M/sec 149 ops

DC_SYS_REFILL_MOESI 0.666M/sec 2 ops

BU_L2_REQ_DC 74.628M/sec 224 req

User time 0.000 secs 7804 cycles

Utilization rate 97.9%

L1 Data cache misses 50.308M/sec 151 misses

LD & ST per D1 miss 9.05 ops/miss

D1 cache hit ratio 89.0%

LD & ST per D2 miss 683.50 ops/miss

D2 cache hit ratio 99.1%

L2 cache hit ratio 98.7%

Memory to D1 refill 0.666M/sec 2 lines

Memory to D1 bandwidth 40.669MB/sec 128 bytes

L2 to Dcache bandwidth 3029.859MB/sec 9536 bytes

Good Cache Alignment

31

Time% 0.1%

Time 0.000002

Calls 1

PAPI_L1_DCA 689.986M/sec 1333 ops

DC_L2_REFILL_MOESI 33.645M/sec 65 ops

DC_SYS_REFILL_MOESI 0 ops

BU_L2_REQ_DC 34.163M/sec 66 req

User time 0.000 secs 5023 cycles

Utilization rate 95.1%

L1 Data cache misses 33.645M/sec 65 misses

LD & ST per D1 miss 20.51 ops/miss

D1 cache hit ratio 95.1%

LD & ST per D2 miss 1333.00 ops/miss

D2 cache hit ratio 100.0%

L2 cache hit ratio 100.0%

Memory to D1 refill 0 lines

Memory to D1 bandwidth 0 bytes

L2 to Dcache bandwidth 2053.542MB/sec 4160 bytes

Performance = F(Cache Utilization)

32

Stream Triad (MFLOPS)

Performance = F(Cache Utilization)

33

Stream Triad (MFLOPS)

Cache Blocking

from Start to Finish

HLRS Workshop

3. Feb. 2011

34

Stefan Andersson (Based on Steve Whalen's work)

stefan@cray.com

Overview

• Cache blocking is a combination of strip mining and loop

interchange, designed to increase data reuse.

� Takes advantage of temporal reuse: re-reference array

elements already referenced

� Good blocking will take advantage of spatial reuse: work

with the cache lines!

• Many ways to block any given loop nest

� Which loops get blocked?

� What block size(s) to use?

• Analysis can reveal which ways are beneficial

• But trial-and-error is probably faster

Cache Use in Stencil Computations

� 2D Laplacian

do j = 1, 8

do i = 1, 16

a = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

� Cache structure for this example:

� Each line holds 4 array elements

� Cache can hold 12 lines of u data

� No cache reuse between outer loop

iterations34679101213151830120

i=1

i=16

j
=
1

j
=
8

Blocking to Increase Reuse

� Unblocked loop: 120 cache misses

� Block the inner loop

do IBLOCK = 1, 16, 4

do j = 1, 8

do i = IBLOCK, IBLOCK + 3

a(i,j) = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

� Now we have reuse of the “j+1” data

3467891011122080

i=1

i=13

j
=
1

j
=
8

i=5

i=9

Blocking to Increase Reuse

� One-dimensional blocking reduced

misses from 120 to 80

� Iterate over 4×4 blocks

do JBLOCK = 1, 8, 4

do IBLOCK = 1, 16, 4

do j = JBLOCK, JBLOCK + 3

do i = IBLOCK, IBLOCK + 3

a(i,j) = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

end do

� Better use of spatial locality (cache

lines)

34678910111213151617183060

i=1

i=13

j
=
1

j
=
5

i=5

i=9

What Could Go Wrong?

• You’re doing it wrong

� Your block size is too small (too much loop overhead)

� Your block size is too big (data is falling out of cache)

� You’re targeting the wrong cache level (?)

� You haven’t selected the correct subset of loops to block

• The compiler is already blocking that loop

• Prefetching is acting to minimize cache misses

• Computational intensity within the loop nest is very large, making

blocking less important.

“I tried cache-blocking my code, but it didn’t help”

A Real-Life Example: NPB MG

� Multigrid PDE solver

� Class D, 64 MPI ranks

� Global grid is 1024 × 1024 ×
1024

� Local grid is 258 × 258 × 258

� Two similar loop nests account for

>50% of run time

� 27-point 3D stencil

� There is good data reuse

along leading dimension, even

without blocking

do i3 = 2, 257

do i2 = 2, 257

do i1 = 2, 257

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

i1 i1+1i1-1

i2-1

i2

i2+1

i3-1

i3

i3+1

cache lines

I’m Doing It Wrong

� Block the inner two loops

� Creates blocks extending along i3 direction

do I2BLOCK = 2, 257, BS2

do I1BLOCK = 2, 257, BS1

do i3 = 2, 257

do i2 = I2BLOCK, &

min(I2BLOCK+BS2-1, 257)

do i1 = I1BLOCK, &

min(I1BLOCK+BS1-1, 257)

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

end do

end do

Block size Mop/s/process

unblocked 531.50

16 × 16 279.89

22 × 22 321.26

28 × 28 358.96

34 × 34 385.33

40 × 40 408.53

46 × 46 443.94

52 × 52 468.58

58 × 58 470.32

64 × 64 512.03

70 × 70 506.92

That’s Better

� Block the outer two loops

� Preserves spatial locality along i1 direction

do I3BLOCK = 2, 257, BS3

do I2BLOCK = 2, 257, BS2

do i3 = I3BLOCK, &

min(I3BLOCK+BS3-1, 257)

do i2 = I2BLOCK, &

min(I2BLOCK+BS2-1, 257)

do i1 = 2, 257

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

end do

end do

Block size Mop/s/process

unblocked 531.50

16 × 16 674.76

22 × 22 680.16

28 × 28 688.64

34 × 34 683.84

40 × 40 698.47

46 × 46 689.14

52 × 52 706.62

58 × 58 692.57

64 × 64 703.40

70 × 70 693.87

E x a m p l e : U s i n g C r a y D i r e c t i v e s

CCE blocks well, but it sometimes blocks better with help

• Use the –r a option to get a loopmark listing

• Identifies which loops were blocked

• Gives the block size the compiler used

Exercise 1 original loop Exercise 1 loop with help

do k = 6, nz-5

do j = 6, ny-5

do i = 6, nx-5

! stencil

end do

end do

end do

!dir$ blockable(j,k)

!dir$ blockingsize(16)

do k = 6, nz-5

do j = 6, ny-5

do i = 6, nx-5

! stencil

end do

end do

end do

T h a n k Y o uThank You
Questions ?Questions ?

