
The Cray

Programming

Environment_2

Charles Henriet

• Programming considerations

• Running an application

• Cray Scientific Libraries

Agenda

2

Programming

Considerations

Memory allocation

• Linux provides some environment variables to control how malloc

behaves (Equivalent to using the mallopt system call)

• Returning memory to the OS is very costly

• MALLOC_MMAP_MAX_

� 64 mmap regions to allow a program to return unused memory back to the system

� no need of these regions on the XE6

� Suggested value: export MALLOC_MMAP_MAX_=0

4

Memory allocation

• MALLOC_TRIM_THRESHOLD_

� Before malloc returns memory to the OS we need free space (at the top of

the heap after a free)

� Default setting is very small : 128 Kbytes <<< 2/4 GBytes of memory

available for the application

� Suggested value:

export MALLOC_TRIM_THRESHOLD_=536870912

5

Huge pages - description

• virtual memory pages which are bigger than the default base page size of 4KB

• can improve memory performance for common access patterns on large data set

• increase the maximum size of data and text in a program accessible by the high speed

network.

• Access to huge pages is provided through a virtual file system called ‘hugetlbfs’

� Link with the correct library: -lhugetlbfs

� Activate the library at run time: export HUGETLB_MORECORE=yes

• Useful man pages:

� man aprun

� man intro_hugepages

6

Huge pages - howto

• This example requests 4000 MB of huge pages per PE

� HUGETLB_MORECORE=yes aprun -n 8 -m4000h ./xthi

• The following example requests 4000 MB of hugepages per PE, and also specifies

that a hugepage size of 16 MB is to be used

� HUGETLB_DEFAULT_PAGE_SIZE=16m aprun -n 8 -m4000h ./xthi

• The following example terminates because the required 4000 MB of huge pages

per PE are not available (hs is used)

� aprun -n 8 -m4000hs ./xthi

• Requires 1400 MBytes of huge page memory on each node

• aprun -m700hs -N2 -n8 ./xthi

7

More about environment on XE6(1)
MPICH_SMP_SINGLE_COPY_ON=1

All on-node messages, regardless of size, are not buffered

MPICH_GNI_RDMA_THRESHOLD

Adjusts the threshold for switching to use of the Direct

Memory Access engine for transferring inter-node MPI

message data.

For sh, ksh, or bash:
export MPICH_ENV_DISPLAY=1

export MPICH_SMP_SINGLE_COPY_ON=1

export MPICH_GNI_RDMA_THRESHOLD=2048

For csh or tcsh:
setenv MPICH_ENV_DISPLAY 1

setenv MPICH_SMP_SINGLE_COPY_ON 1

setenv MPICH_GNI_RDMA_THRESHOLD 2048

8

More about environment on XE6(2)

If your program hangs or aborts with an MPI or system library

error try each of these in turn or in combination.

1. Set MPICH_GNI_DYNAMIC_CONN to "disabled".

For sh, ksh, or bash:

export MPICH_GNI_DYNAMIC_CONN=disabled

For csh or tcsh:

setenv MPICH_GNI_DYNAMIC_CONN disabled

2. Remove the MPICH_SMP_SINGLE_COPY_ON env var

3. 'module swap' back to an earlier xt-mpt module and rebuild

9

More about environment on XE6(3)

If your code is too slow , try the following suggestions separately,

or in combination.

1. Remove the MPICH_GNI_RDMA_THRESHOLD env var. No relink or rebuild needed.

2. Increase the value of MPICH_GNI_MAX_EAGER_MSG_SIZE (the default is

8192) and the value of MPICH_GNI_NUM_BUFS (default is 64). No relink or

rebuild needed.

3. Set MPICH_GNI_DYNAMIC_CONN to disabled. No relink or rebuild required.

4. Try increasing the MPICH_SMP_SINGLE_COPY_SIZE The default is 2k, setting

it larger may help. Try 4k, 8k, 16k. No relink or rebuild required.

5. Try using large pages; this seems to help some applications

10

MPICH name conflict

• There is a name conflict between stdio.h and MPI C++ binding

in relation to the names SEEK_SET, SEEK_CUR, SEEK_END

• If your application does not use those names:

� work with -DMPICH_IGNORE_CXX_SEEK to come around

this

• If your application does use those names:

� Set
#undef SEEK_SET

<include mpi.h>

� or change order of includes: mpi.h before stdio.h or

iostream

11

Running an

application on the

Cray XE6

• « ALPS + aprun »

• ALPS : Application Level Placement Scheduler

• aprun is the ALPS application launcher

• aprun

� It must be used to run application on the XT compute

nodes

� If aprun is not used, the application is launched on the

login node (and might fail)

� aprun man page contains several useful examples

� at least 3 important parameters to control:
� The total number of PEs : -n

� The number of PEs per node: -N

� The number of OpenMP threads: -d

More precise : The ‘stride’ between 2 PEs in a node

Running an application on the Cray XE

13

• Assuming a XE6 mc8 system (16 cores per node)

• Pure MPI application, using all the available cores in a node

$ aprun –n <npes>

• Pure MPI application, using only 1 core per node

� npes MPI tasks, 16*npes cores allocated, npes nodes allocated

� Can be done to increase the available memory for the MPI tasks

$ aprun –N 1 –n <npes>

• Hybrid MPI/OpenMP application, 4 MPI ranks per node

� npes MPI tasks, 4 OpenMP threads each

� need to set OMP_NUM_THREADS
$ export OMP_NUM_THREADS=4

$ aprun –N 4 –d 4 –n <npes>

Running an application on the Cray XE6

14

The application

launching process

Login Node

XE6 User

Job Launch

SDB Node

Compute Nodes

16

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch

SDB Node

Compute Nodes

17

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch apsched

SDB Node

Login Shell

Aprun (c)

Compute Nodes

18

apbasil(c)

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch Apsched(dm)

SDB Node

Login Shell

aprun

Apinit (dm)

apshepherd

Application

Compute Nodes

19

apbasil

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch apsched

SDB Node

Login Shell

aprun

apinit

apshepherd

Application
………… …………

Compute Nodes

20

apbasil

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch apsched

SDB Node

Login Shell

aprun

apinit

apshepherd

Application
………… …………

Compute Nodes

21

Application Runs on

compute nodes

IO Node
IO
daemons

IO Node
IO
daemons

IO Node
IO

daemons

IO
 N

o
d

e
s

 Im
p

le
m

e
n

t I/O

R
e

q
u

e
s

t

apbasil

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch apsched

SDB Node

Login Shell

aprun

Apinit (dm)

Compute Nodes

22

Job is

cleaned up

apbasil

qsub

Login Node

Login &

Start App

XE6 User

Job Launch

Batch

apbasil

apsched

SDB Node

Login Shell

aprun

apinit

Compute Nodes

23

Job is

cleaned up

Nodes returned

Login Node

XE6 User

Job Launch : Done

SDB Node

Compute Nodes

24

• CNL can dynamically distribute work by allowing PEs and

threads to migrate from one CPU to another within a node

• In some cases, moving PEs or threads from CPU to CPU

increases cache and translation lookaside buffer (TLB) misses

and therefore reduces performance

• CPU affinity options enable to bind a PE or thread to a

particular CPU or a subset of CPUs on a node

• aprun CPU affinity option (see man aprun)

� suggested settings: -cc cpu (default)

� The cpu keyword binds each PE to a CPU within the

assigned NUMA node

aprun CPU Affinity control

25

• Pathscale compiler provide its own control of cpu affinity

which is turned on by default :

this should be disabled to avoid interference with ALPS

� export PSC_OMP_AFFINITY=FALSE

• The Intel RTE starts an extra thread when using OpenMP

threads. This confuses the defaults ALPS affinity control

� aprun –cc numa_node

� aprun –cc none

aprun CPU Affinity control

26

• Cray XE6 systems use dual-socket compute nodes

� Each die (4 or 6 cores) is considered a NUMA-node

• Remote-NUMA-node memory references, can adversely affect

performance.

• aprun memory affinity options (see man aprun)

� Suggested setting is -ss

� -ss : a PE can allocate only the memory local to its assigned

NUMA node

Further aprun affinity control

27

Running an application on the Cray XT - MPMD

• aprun supports MPMD – Multiple Program Multiple Data

• Launching several executables on the same MPI_COMM_WORLD
$ aprun –n 128 exe1 : -n 64 exe2 : -n 64 exe3

• Notice : Each exacutable needs a dedicated node, exe1 and exe2

cannot share a node.
Example : The following commands needs 3 nodes
$ aprun –n 1 exe1 : -n 1 exe2 : -n 1 exe3

• Use a script to start several serial jobs on a node :
$ aprun –a xt –n 3 script.sh

28

>cat script.sh

./exe1&

./exe2&

./exe3&

wait

>

Running a batch application with Torque

• The number of required nodes and cores is determined by the

parameters specified in the job header

#PBS -l mppwidth=256

#PBS -l mppnppn=4

This example uses 256/4=64 nodes

• The job is submitted by the qsub command

• At the end of the exection output and error files are returned

to submission directory

• PBS environment variable: $PBS_O_WORKDIR

Set to the directory from which the job has been submitted

• man qsub for env. variables

29

Other Torque options

• #PBS -N job_name

the job name is used to determine the name of job output and

error files

• #PBS -l walltime=hh:mm:ss

Maximum job elapsed time

should be indicated whenever possible: this allows Torqu to

determine best scheduling startegy

• #PBS -j oe

job error and output files are merged in a single file

• #PBS -q queue

request execution on a specific queue

30

Core specialization

• System ‘noise’ on compute nodes may significantly degrade

scalability for some applications

• Core Specialization can mitigate this problem

� 1 core per node will be dedicated for system work (service core)

� As many system interrupts as possible will be forced to execute

on the service core

� The application will not run on the service core

• Use aprun -r to get core specialization

$ aprun –r –n 100 a.out

• apcount provided to compute total number of cores required

$ qsub -l mppwidth=$(apcount -r 1 1024 16)job

aprun -n 1024 -r 1 a.out

31

Running a batch application with Torque

• The number of required nodes can be specified in the job header

• The job is submitted by the qsub command

• At the end of the exection output and error files are returned to

submission directory

• Environment variables are

inherited by #PBS -V

• The job starts in the home

directory. $PBS_O_WORKDIR

contains the directory from which

the job has been submitted

Hybrid MPI + OpenMP

#!/bin/bash

#PBS –N hybrid

#PBS –lwalltime=00:10:00

#PBS –lmppwidth=128

#PBS –lmppnppn=4

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=4

aprun –n32 –d4 –N4 a.out

32

Starting an interactive session with Torque

• An interactive job can be started by the –I argument

� That is <capital-i>

• Example: allocate 4 nodes on a mc8 system and exporting the

environment variables to the job (-V)

$ qsub –I –V –lmppwith=64 –lmppnppn=16

33

Watching a launched job on the Cray XE

• xtnodestat

� Shows XE nodes allocation and aprun processes

� Both interactive and PBS

• apstat

� Shows aprun processes status

� apstat overview

� apstat –a[apid]info about all the applications or a specific one

� apstat –n info about the status of the nodes

• Batch qstat command

� shows batch jobs

34

Accounting at HLRS

• Currently the XE6 is run in test mode, it‘s free to use

� Accounting is allready enabled for testing purposes

• Accounting is done by examining the Torque log files and is

based on the unix group id a user belongs to

� Normally the user don‘t have to do anything

• If a user is involved in several projects, he has to select the

correct one by setting the group id in the batch script :

� #PBS -W group_list=<group name>

35

Starting 512 MPI tasks (PEs)

#PBS -N MPIjob

#PBS -l mppwidth=512

#PBS -l mppnppn=16

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

aprun -n 512 –cc cpu –ss ./a.out

36

Starting an OpenMP program

#PBS -N OpenMP

#PBS -l mppwidth=1

#PBS -l mppdepth=16

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=16

aprun –n1 –d $OMP_NUM_THREADS –cc cpu –ss ./a.out

37

Starting a hybrid job

single node, 4 MPI tasks, each with 4 threads

#PBS -N hybrid

#PBS -l mppwidth=4

#PBS -l mppnppn=4

#PBS -l mppdepth=4

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=4

aprun –n4 –N4 –d $OMP_NUM_THREADS –cc cpu –ss ./a.out

38

Starting a MPMD job on a non-default projectid

using 1 master, 16 slaves, each with 4 threads
#PBS -N hybrid

#PBS -l mppwidth=80 ! Note : 5 nodes * 16 cores = 80 cores

#PBS -l mppnppn=16

#PBS -l walltime=01:00:00

#PBS -j oe

#PBS -W group_list=My_Project

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=4

id # Unix command ‚id‘, to check group id

aprun –n1 –d16 –N1 ./master.exe : -n 16 –N4 –d

$OMP_NUM_THREADS –cc cpu –ss ./slave.exe

39

Cray Scientific

Libraries (Libsci)

Cray Scientific/Math Libraries

Dense

BLAS

LAPACK

ScaLAPACK

IRT

Sparse

CASK

PETSc

Trilinos

FFT

CRAFFT

FFTW

P-CRAFFT

41

Bend over backwards to keep everything the same despite

increases in machine complexity.

� LAPACK, ScaLAPACK

� Algorithmic tuning : increased performance by exploiting

algorithmic improvement : Sub-blocking, new algorithms

• BLAS, FFT

� Kernel tuning: Improve the numerical kernel performance

in assembly language

• ScaLAPACK

� Parallel tuning : exploit Cray’s custom network interfaces

and MPT

42

Dense

• Iterative Refinement Toolkit

• Solves linear systems in single precision

• Obtaining solutions accurate to double precision

� For well conditioned problems

• Serial and Parallel versions of LU, Cholesky, and QR

• 2 usage methods

� IRT Benchmark routines
� Uses IRT 'under-the-covers' without changing your code

� Simply set an environment variable IRT_USE_SOLVERS =1

� Useful when you cannot alter source code

� Advanced IRT API
� If greater control of the iterative refinement process is required

� Allows

� condition number estimation

� error bounds return

� minimization of either forward or backward error

� 'fall back' to full precision if the condition number is too high

� max number of iterations can be altered by users

• man intro_irt

43

IRT

Adoption of near-standard interfaces/Assume near-standards

and promote those:

44

Sparse

• Portable, Extensible Toolkit for Scientific Computation

http://www-unix.mcs.anl.gov/petsc/petsc-as

• Serial and Parallel versions of sparse iterative linear solvers

• Large user community: DoE Labs, PSC, CSCS, CSC, ERDC, AWE and more.

• To use Cray-PETSc on CRAY XE :

� module load petsc or module load petsc-complex

� no need to load a compiler specific module

� treat the Cray distribution as your local PETSc installation

• Cray provides state-of-the art scientific computing packages to strengthen

the capability of PETSc

� Hypre: scalable parallel preconditioners

� ParMetis: parallel graph partitioning package

� MUMPS: parallel multifrontal sparse direct solver

� SuperLU: sequential version of SuperLU_DIST

45

PETSc

• The Trilinos Project

� http://trilinos.sandia.gov/

� “an effort to develop algorithms and enabling technologies

within an object-oriented software framework for the

solution of large-scale, complex multi-physics engineering

and scientific problems”

• A unique design feature of Trilinos is its focus on packages.

• Very large user-base and growing rapidly.

• Cray’s optimized Trilinos released

� Includes 50+ trilinos packages

� Optimized via CASK

� Any code that uses Epetra objects can access the

optimizations

• Usage : module load trilinos

46

Trilinos

• Cray Adaptive Sparse Kernel

• CASK is a product developed at Cray using the Cray Auto-tuning Framework

(Cray ATF)

• The CASK Concept :

� Analyze matrix at minimal cost

� Categorize matrix against internal classes

� Based on offline experience, find best CASK code for particular matrix

� Previously assign “best” compiler flags to CASK code

� Assign best CASK kernel and perform Ax

• CASK silently sits beneath PETSc on Cray systems

� Trilinos support coming soon

CASK

47

CASK + PETSc Scalability (XT4)
Block Jacobi Preconditioning

0

50

100

150

200

0 128 256 384 512 640 768 896 1024

G
F

lo
p

s

of Cores

Performance of CASK VS PETSc

N=65,536 to 67,108,864

MatMult-CASK MatMult-PETSc

0

50

100

150

200

250

300

0 128 256 384 512 640 768 896 1024

G
F

lo
p

s

of Cores

Performance of CASK VS PETSc

N=65,536 to 67,108,864

BlockJacobi-IC(0)-CASK BlockJacobi-IC(0)-PETSc

SpMV

48

• In FFTs, the problems are

� Which library choice to use?

� How to use complicated interfaces (e.g., FFTW)

• Standard FFT practice

� Do a plan stage
� Deduced machine and system information and run micro-kernels

� Select best FFT strategy

� Do an execute

Our system knowledge can remove some of this cost!

Cray Adaptive FFT (CRAFFT)

49

• CRAFFT is designed with simple-to-use interfaces
� Planning and execution stage can be combined into one

function call
� Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

• CRAFFT provides both offline and online tuning
� Offline tuning

� Which FFT kernel to use

� Pre-computed PLANs for common-sized FFT

� No expensive plan stages

� Online tuning is performed as necessary at runtime as well

• At runtime, CRAFFT will adaptively select the best FFT kernel
to use based on both offline and online testing (e.g. FFTW,
Custom FFT)

CRAFFT library

50

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional

arguments (as shown in red)

In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the

CRAFFT_PLANNING environment variable and the do_exe optional argument,

please see the intro_crafft man page.

51

CRAFFT usage

Performance of one CRAFFT feature -

3-d FFT times using FFTW wisdom under-the-covers

128x128 256x256 512x512

FFTW plan 74 312 2758

FFTW exec 0.105 0.97 9.7

CRAFFT plan 0.00037 0.0009 0.00005

CRAFFT exec 0.139 1.2 11.4

• CRAFFT includes distributed parallel transforms

• Uses the CRAFFT interface prefixed by “p”, with optional

arguments

• Can provide performance improvement over FFTW 2.1.5

• Currently implemented

� complex-complex

� Real-complex and complex-real

� 3-d and 2-d

� In-place and out-of-place

• Upcoming

� C language support for serial and parallel

53

Parallel CRAFFT

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage.

Also see 3d equivalent : man crafft_pz2z3d

54

parallel CRAFFT usage

55

Parallel CRAFFT performance

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

128 256 512 1024 2048 4096 8192 163843276865536

M
fl

o
p

s

Size N

2D FFT (N x N, transposed), 128 cores

pcrafft

fftw2.5.1

• Cray docs site

http://docs.cray.com

• Starting point for Cray XE info

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap

• Twitter ?!?

http://twitter.com/craydocs

Documentation

56

End Part_2End Part_2

57

