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Programming 

Considerations



Memory allocation

• Linux provides some environment variables to control how malloc

behaves (Equivalent to using the mallopt system call)

• Returning memory to the OS is very costly

• MALLOC_MMAP_MAX_ 

� 64 mmap regions  to allow a program to return unused memory back to the system 

� no need  of these regions on the XE6

� Suggested value: export MALLOC_MMAP_MAX_=0
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Memory allocation

• MALLOC_TRIM_THRESHOLD_

� Before malloc returns memory to the OS we need free space (at the top of 

the heap after a free) 

� Default setting is very small : 128 Kbytes <<< 2/4 GBytes of memory 

available for the application

� Suggested value:

export MALLOC_TRIM_THRESHOLD_=536870912
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Huge pages - description

• virtual memory pages which are bigger than the default base page size of 4KB

• can improve memory performance for common access patterns on large data set

• increase the maximum size of data and text in a program accessible by the high speed 

network.

• Access to huge pages is provided through a virtual file system called ‘hugetlbfs’

� Link with the correct library:        -lhugetlbfs

� Activate the library  at run time:    export HUGETLB_MORECORE=yes

• Useful man pages: 

� man aprun

� man intro_hugepages
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Huge pages - howto

• This example requests 4000 MB of huge pages per PE

� HUGETLB_MORECORE=yes aprun -n 8 -m4000h ./xthi

• The following example requests 4000 MB of hugepages per PE, and also specifies 

that a hugepage size of 16 MB is to be used 

� HUGETLB_DEFAULT_PAGE_SIZE=16m aprun -n 8 -m4000h ./xthi

• The following example terminates because the required 4000 MB of huge  pages 

per PE are not available (hs is used)

� aprun -n 8 -m4000hs ./xthi

• Requires 1400 MBytes of huge page memory on each node

• aprun -m700hs -N2 -n8 ./xthi
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More about environment on XE6(1)
MPICH_SMP_SINGLE_COPY_ON=1 

All on-node messages, regardless of size, are not buffered

MPICH_GNI_RDMA_THRESHOLD

Adjusts the threshold for switching to use of the Direct 

Memory Access  engine for transferring inter-node MPI 

message data. 

For sh, ksh, or bash:
export MPICH_ENV_DISPLAY=1

export MPICH_SMP_SINGLE_COPY_ON=1

export MPICH_GNI_RDMA_THRESHOLD=2048

For csh or tcsh:
setenv MPICH_ENV_DISPLAY 1

setenv MPICH_SMP_SINGLE_COPY_ON 1

setenv MPICH_GNI_RDMA_THRESHOLD 2048
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More about environment on XE6(2)

If your  program hangs or aborts with an MPI or system library

error try each of these in turn or in combination.

1. Set MPICH_GNI_DYNAMIC_CONN to "disabled".  

For sh, ksh, or bash:

export MPICH_GNI_DYNAMIC_CONN=disabled

For csh or tcsh:

setenv MPICH_GNI_DYNAMIC_CONN disabled

2. Remove the MPICH_SMP_SINGLE_COPY_ON env var

3. 'module swap' back to an earlier xt-mpt module and rebuild

9



More about environment on XE6(3)

If your code is too slow , try the following suggestions separately,

or in combination.

1. Remove the MPICH_GNI_RDMA_THRESHOLD env var. No relink or rebuild needed.

2. Increase the value of MPICH_GNI_MAX_EAGER_MSG_SIZE (the default is

8192) and the value of MPICH_GNI_NUM_BUFS (default is 64). No relink or   

rebuild needed.

3. Set MPICH_GNI_DYNAMIC_CONN to disabled. No relink or rebuild required.

4. Try increasing the MPICH_SMP_SINGLE_COPY_SIZE   The default is 2k, setting

it larger may help.  Try 4k, 8k, 16k.  No relink or rebuild required.

5. Try using large pages; this seems to help some applications
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MPICH name conflict

• There is a name conflict between stdio.h and MPI C++ binding 

in relation to the names SEEK_SET, SEEK_CUR, SEEK_END

• If your application does not use those names:  

� work with -DMPICH_IGNORE_CXX_SEEK to come around 

this

• If your application does use those names:

� Set 
#undef SEEK_SET

<include mpi.h> 

� or change order of includes: mpi.h before stdio.h or 

iostream
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Running an 

application on the 

Cray XE6



• « ALPS + aprun »

• ALPS : Application Level Placement Scheduler

• aprun is the ALPS application launcher

• aprun

� It must be used to run application on the XT compute 

nodes

� If aprun is not used, the application is launched on the 

login node  (and might fail)

� aprun man page contains several useful examples

� at least  3 important parameters to control:
� The total number of PEs : -n

� The number of PEs per node: -N

� The number of OpenMP threads: -d

More precise : The ‘stride’ between 2 PEs in a node

Running an application on the Cray XE 
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• Assuming a XE6 mc8 system (16 cores per node)

• Pure MPI application, using all the available cores in a node

$ aprun –n <npes>

• Pure MPI application, using only 1 core per node

� npes MPI tasks, 16*npes cores allocated, npes nodes allocated

� Can be done to increase the available memory for the MPI tasks

$ aprun –N 1 –n <npes>

• Hybrid MPI/OpenMP application, 4 MPI ranks per node

� npes MPI tasks, 4 OpenMP threads each

� need to set OMP_NUM_THREADS
$ export OMP_NUM_THREADS=4

$ aprun –N 4 –d 4 –n <npes>

Running an application on the Cray XE6
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The application 

launching process
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• CNL can dynamically distribute work by allowing PEs and 

threads to migrate from one CPU to another within a node

• In some cases, moving PEs or threads from CPU to CPU 

increases cache and translation lookaside buffer (TLB) misses 

and therefore reduces performance

• CPU affinity options enable to bind a PE or thread to a 

particular CPU or a subset of CPUs on a node

• aprun CPU affinity option (see man aprun)

� suggested settings: -cc cpu (default)

� The cpu keyword binds each PE to a CPU within the 

assigned NUMA node

aprun CPU Affinity control
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• Pathscale compiler provide its own control of cpu affinity 

which is turned on by default : 

this should be disabled to avoid interference with ALPS

� export PSC_OMP_AFFINITY=FALSE

• The Intel RTE starts an extra thread when using OpenMP 

threads. This confuses the defaults ALPS affinity control 

� aprun –cc numa_node

� aprun –cc none

aprun CPU Affinity control 
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• Cray XE6 systems use dual-socket compute nodes

� Each die (4 or 6 cores) is considered a NUMA-node

• Remote-NUMA-node memory references, can adversely affect 

performance. 

• aprun memory affinity options (see man aprun)

� Suggested setting is -ss

� -ss : a PE can allocate only the memory local to its assigned 

NUMA node

Further aprun affinity control
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Running an application on the Cray XT - MPMD 

• aprun supports MPMD – Multiple Program Multiple Data

• Launching several executables on the same MPI_COMM_WORLD
$ aprun –n 128 exe1 : -n 64 exe2 : -n 64 exe3

• Notice : Each exacutable needs a dedicated node, exe1 and exe2 

cannot share a node.
Example : The following commands needs 3 nodes 
$ aprun –n 1 exe1 : -n 1 exe2 : -n 1 exe3

• Use a script to start several serial jobs on a node :
$ aprun –a xt –n 3 script.sh
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>cat script.sh

./exe1&

./exe2&

./exe3&

wait

>



Running a batch application with Torque

• The number of required nodes and cores is determined by the 

parameters specified in the job header

#PBS -l mppwidth=256

#PBS -l mppnppn=4

This example uses 256/4=64 nodes

• The job is submitted by the qsub command

• At the end of the exection output and error files are returned 

to submission directory

• PBS environment variable: $PBS_O_WORKDIR

Set to the directory from which the job has been submitted

• man qsub for env. variables
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Other Torque options

• #PBS -N job_name

the job name is used to determine the name of job output and 

error files

• #PBS -l walltime=hh:mm:ss

Maximum job elapsed time

should be indicated whenever possible: this allows Torqu to 

determine best scheduling startegy

• #PBS -j oe

job error and output files are merged in a single file

• #PBS -q queue

request execution on a specific queue
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Core specialization

• System ‘noise’ on compute nodes may significantly degrade 

scalability for some applications

• Core Specialization can mitigate this problem

� 1 core per node will be dedicated for system work (service core)

� As many system interrupts as possible will be forced to execute

on the service core

� The application will not run on the service core

• Use aprun -r to get core specialization

$ aprun –r –n 100 a.out

• apcount provided to compute total number of cores required

$ qsub -l mppwidth=$(apcount -r 1 1024 16)job

aprun -n 1024 -r 1 a.out
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Running a batch application with Torque

• The number of required nodes can be specified in the job header

• The job is submitted by the qsub command

• At the end of the exection output and error files are returned to 

submission directory

• Environment variables are 

inherited by #PBS -V

• The job starts in the home 

directory. $PBS_O_WORKDIR 

contains the directory from which 

the job has been submitted

Hybrid   MPI + OpenMP

#!/bin/bash

#PBS –N hybrid

#PBS –lwalltime=00:10:00

#PBS –lmppwidth=128 

#PBS –lmppnppn=4

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=4

aprun –n32 –d4 –N4 a.out
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Starting an interactive session with Torque

• An interactive job can be started by the –I argument

� That is <capital-i>

• Example: allocate 4 nodes on a mc8 system and exporting the 

environment variables to the job (-V)

$ qsub –I –V –lmppwith=64 –lmppnppn=16
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Watching a launched job on the Cray XE

• xtnodestat

� Shows XE nodes allocation and aprun processes

� Both interactive and PBS

• apstat

� Shows aprun processes status

� apstat overview

� apstat –a[ apid ]info about all the applications or a specific one

� apstat –n info about the status of the nodes

• Batch qstat command

� shows batch jobs
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Accounting at HLRS

• Currently the XE6 is run in test mode, it‘s free to use

� Accounting is allready enabled for testing purposes

• Accounting is done by examining the Torque log files and is 

based on the unix group id a user belongs to

� Normally the user don‘t have to do anything

• If a user is involved in several projects, he has to select the 

correct one by setting the group id in the batch script :

� #PBS -W group_list=<group name>
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Starting 512 MPI tasks (PEs)

#PBS -N MPIjob

#PBS -l mppwidth=512

#PBS -l mppnppn=16

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

aprun  -n 512 –cc cpu –ss ./a.out
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Starting an OpenMP program

#PBS -N OpenMP

#PBS -l mppwidth=1

#PBS -l mppdepth=16

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=16

aprun –n1 –d $OMP_NUM_THREADS –cc cpu –ss ./a.out
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Starting a hybrid job 

single node, 4 MPI tasks, each with 4 threads

#PBS -N hybrid

#PBS -l mppwidth=4

#PBS -l mppnppn=4

#PBS -l mppdepth=4

#PBS -l walltime=01:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=4

aprun –n4 –N4 –d $OMP_NUM_THREADS –cc cpu –ss ./a.out
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Starting a MPMD job on a non-default projectid

using 1 master, 16 slaves, each with 4 threads
#PBS -N hybrid

#PBS -l mppwidth=80 ! Note : 5 nodes * 16 cores = 80 cores

#PBS -l mppnppn=16

#PBS -l walltime=01:00:00

#PBS -j oe

#PBS -W group_list=My_Project

cd $PBS_O_WORKDIR

export MPICH_ENV_DISPLAY=1

export MALLOC_MMAP_MAX_=0

export MALLOC_TRIM_THRESHOLD_=536870912

export OMP_NUM_THREADS=4

id # Unix command ‚id‘, to check group id

aprun –n1 –d16 –N1 ./master.exe : -n 16 –N4 –d 

$OMP_NUM_THREADS  –cc cpu –ss ./slave.exe
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Cray Scientific 

Libraries (Libsci)



Cray Scientific/Math Libraries

Dense

BLAS

LAPACK

ScaLAPACK

IRT

Sparse

CASK

PETSc

Trilinos

FFT

CRAFFT

FFTW

P-CRAFFT
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Bend over backwards to keep everything the same despite

increases in machine complexity.

� LAPACK, ScaLAPACK

� Algorithmic tuning : increased performance by exploiting 

algorithmic improvement : Sub-blocking, new algorithms

• BLAS, FFT

� Kernel tuning: Improve the numerical kernel performance 

in assembly language

• ScaLAPACK

� Parallel tuning : exploit Cray’s custom network interfaces 

and MPT
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• Iterative Refinement Toolkit

• Solves linear systems in single precision

• Obtaining solutions accurate to double precision 

� For well conditioned problems

• Serial and Parallel versions of LU, Cholesky, and QR

• 2 usage methods

� IRT Benchmark routines
� Uses IRT 'under-the-covers' without changing your code

� Simply set an environment variable IRT_USE_SOLVERS =1

� Useful when you cannot alter source code

� Advanced IRT API
� If greater control of the iterative refinement process is required

� Allows

� condition number estimation 

� error bounds return

� minimization of either forward or backward error

� 'fall back' to full precision if the condition number is too high

� max number of iterations can be altered by users

• man intro_irt
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Adoption of near-standard interfaces/Assume near-standards

and promote those:
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• Portable, Extensible Toolkit for Scientific Computation

http://www-unix.mcs.anl.gov/petsc/petsc-as

• Serial and Parallel versions of sparse iterative linear solvers

• Large user community: DoE Labs, PSC, CSCS, CSC, ERDC, AWE and more.

• To use Cray-PETSc on CRAY XE : 

� module load petsc or module load petsc-complex 

� no need to load a compiler specific module

� treat the Cray distribution as your local PETSc installation

• Cray provides state-of-the art scientific computing packages to strengthen 

the capability of PETSc

� Hypre: scalable parallel preconditioners

� ParMetis: parallel graph partitioning package

� MUMPS: parallel multifrontal sparse direct solver

� SuperLU: sequential version of SuperLU_DIST
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• The Trilinos Project

� http://trilinos.sandia.gov/

� “an effort to develop algorithms and enabling technologies 

within an object-oriented software framework for the 

solution of large-scale, complex multi-physics engineering 

and scientific problems”

• A unique design feature of Trilinos is its focus on packages.

• Very large user-base and growing rapidly.

• Cray’s optimized Trilinos released

� Includes 50+ trilinos packages

� Optimized via CASK

� Any code that uses Epetra objects can access the 

optimizations

• Usage : module load trilinos
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• Cray Adaptive Sparse Kernel

• CASK is a product developed at Cray using the Cray Auto-tuning Framework 

(Cray ATF)

• The CASK Concept  :

� Analyze matrix at minimal cost

� Categorize matrix against internal classes

� Based on offline experience, find best CASK code for particular matrix

� Previously assign “best” compiler flags to CASK code

� Assign best CASK kernel and perform Ax

• CASK silently sits beneath PETSc on Cray systems

� Trilinos support coming soon

CASK
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CASK + PETSc Scalability (XT4)
Block Jacobi Preconditioning
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• In FFTs, the problems are 

� Which library choice to use?

� How to use complicated interfaces (e.g., FFTW)

• Standard FFT practice

� Do a plan stage
� Deduced machine and system information and run micro-kernels

� Select best FFT strategy

� Do an execute

Our system knowledge can remove some of this cost!

Cray Adaptive FFT (CRAFFT)
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• CRAFFT is designed with simple-to-use interfaces
� Planning and execution stage can be combined into one 

function call
� Underneath the interfaces, CRAFFT calls the appropriate 

FFT kernel

• CRAFFT provides both offline and online tuning
� Offline tuning

� Which FFT kernel to use

� Pre-computed PLANs for common-sized FFT

� No expensive plan stages

� Online tuning is performed as necessary at runtime as well

• At runtime, CRAFFT will adaptively select the best FFT kernel 
to use based on both offline and online testing (e.g. FFTW, 
Custom FFT)

CRAFFT library
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1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional 

arguments (as shown in red)

In-place, implicit memory management : 

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work) 

out-of-place, explicit memory management : 
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the 

CRAFFT_PLANNING environment variable and the do_exe optional argument, 

please see the intro_crafft man page. 
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Performance of one CRAFFT feature -

3-d FFT times using FFTW wisdom under-the-covers

128x128 256x256 512x512

FFTW plan 74 312 2758

FFTW exec 0.105 0.97 9.7

CRAFFT plan 0.00037 0.0009 0.00005

CRAFFT exec 0.139 1.2 11.4



• CRAFFT includes distributed parallel transforms

• Uses the CRAFFT interface prefixed by “p”, with optional 

arguments

• Can provide performance improvement over FFTW 2.1.5

• Currently implemented

� complex-complex 

� Real-complex and complex-real

� 3-d and 2-d

� In-place and out-of-place

• Upcoming

� C language support for serial and parallel
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1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management : 

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. 

Also see 3d equivalent : man crafft_pz2z3d
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Parallel CRAFFT performance
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• Cray docs site

http://docs.cray.com

• Starting point for Cray XE info

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap

• Twitter ?!?

http://twitter.com/craydocs

Documentation
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End Part_2End Part_2
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