
Design and Implementation
of an Eclipse plugin for MARMOT

Peng Deng

September 23, 2009

1 Overview

MARMOT[3] is a tool for analyzing and checking MPI programs. It surveys the MPI-
calls made and automatically checks the correct usage of these calls and their arguments
during runtime. It does not replace classical debuggers, but can be used in addition to
them[1].

As one way to integrate the usage of MARMOT into normal MPI development work
flow, we have been creating an plugin for a common IDE: Eclipse, which provides the
functionality to configure/launch an executable and track the logging information within
Eclipse interface. Moreover, with the Performance Tools Framework (PTFw) [5] provided
by Parallel Tools Platform (PTP)[2], it is possible to further integrate the MARMOT
compilation phase right inside a Eclipse project.

This document describes the design and implementation details of the plugin, as
well as experience we received from some experimental steps we have taken to utilize
PTFw. We will cover the issues we encountered during the integration and present some
considerations for the development in future.

2 Standalone Eclipse Plugin

Generally, the standalone eclipse plugin, or “Marmoclipse” is developed without PTP in
mind and tries to fulfill basic MARMOT use case inside Eclipse’s user interface. The
user can launch an executable file pre-compiled with MARMOT compiler and then the
log information will be obtained by listening a certain TCP/IP port and tracking the
data received. Some important parameters for the execution are configurable and the log
information can be saved.

1

2 STANDALONE ECLIPSE PLUGIN 2

Figure 1: The user interface of Marmot Control View

2.1 User Interface

Marmoclipse provides 2 views, namely Marmot Log View and Marmot Control
View, and 1 perspective — Marmoclipse Perspective. The functionalities of these
three components are as following:

• Marmot Control View offers a configuration interface for the user to choose
the executable to run and modify several MARMOT related runtime options. See
figure 1.

• Marmot Log View, as shown in figure 2 on the next page displays the log infor-
mation received by listening to the network port chosen by the user in the control
view. If provides basic filters to hide/show different levels of log entries. It also let
the user save the log entries into a file.

• Marmotclipse Perspective is meant to organize views and other UI components
related to the plugin and MARMOT. Currently it simply arranges the 2 views
mentioned above to the lower right area of the workbench.

2.2 Implementation

2.2.1 Packages and Source Code Organization

The code of the plugin is organized using 5 packages:

• de.hlrs.marmoclipse is a base package that holds a essential class for the plugin.

2 STANDALONE ECLIPSE PLUGIN 3

Figure 2: The Marmot Log View, displaying sample log entries.

• de.hlrs.marmoclipse.log contains MARMOT log model and a socket listener
implementation to trace the log information.

• de.hlrs.marmoclipse.log.ui includes classes that create the table viewer which
is used by the Marmot Log View.

• de.hlrs.marmoclipse.views and de.hlrs.marmoclipse.perspective hold the
implementations of the 2 views and 1 perspective, respectively.

2.2.2 Important Classes

• MarmotLog

This class models a MARMOT log entry, which contains 11 different fields. Object
of this class is constructed from a received line of log which contains all the fields
truncated with a special character (Unicode: 0xfffd) as separator.

• MarmotLogList

It models a list of MarmotLog objects and provides several helper methods for
adding, removing log entry to the list and clearing the list. This class also contains a
simple implementation of change listeners which will be used by LogContentProvider

class.

• LogSocketListener

2 STANDALONE ECLIPSE PLUGIN 4

This class implements a socket listener so it is possible to receive the log information
via a specific port. It extends class Job so that we can schedule the running of the
listener into background and avoid it blocking the user interface.

• Table Viewer related classes

Package de.hlrs.marmoclipse.log.ui provides a couple of classes which will sup-
port the use of TableViewer in MarmotLogView. TableViewer is a powerful yet
flexible solution to integrate different UI components into a table representation,
and it allows to display a domain model in a list, tree or table without converting
the domain model beforehand.

For our design, we need:

– LogContentProvider to provide the log model to the table viewer;

– LogLabelProvider to define how the data is displayed in the table viewer cell;

– LogEdtingSupport to make the link displayed in the “Reference” column click-
able (This in turn uses a customized cell editor class ReferenceCellEditor);

– LogViewerFilter to support basic filtering functionality.

The implementation of these classes are more or less following the routines, please
refer to [4] for example and further information.

• MarmotControlView

This class creates the user interface of the Marmot Control View by implement-
ing all the UI components and their corresponding method. There is an in-line class
RunSelectionListener triggered by the “Run” button when clicked. It does some
sanity checks and assembly the command line from all the options chosen by the
user and starts/schedules the socket listener before switching to the Marmot Log
View.

• MarmotLogView

This class creates the table viewer for displaying the log entries and several actions
for filtering, clearing and saving the log information.

2.2.3 Notes

• Although it is possible to pre-define the path to save a log file in the execution
command line, in our design we only let the user choose the path/file when the user
decide to save a log. Therefore the log file is redirected into system’s temporary
folder when launching the executable, and moved to the destination when chosen
to be saved or removed when discarded.

3 PERFORMANCE TOOLS FRAMEWORK INTEGRATION 5

2.3 Test

Since Marmoclipse is not packaged as a production-ready plugin, following steps need to
be follow to test it:

1. Check out the source code from MARMOT’s SVN repository

2. Use Eclipse to open the “marmoclipse” project located at SRC/TOOLS/marmoclipse/.
Note: “Plugin Development Environment (PDE)” should be installed with Eclipse.

3. Right-click at plugin.xml file in the “Package Explorer” on the left hand side and
choose in the context menu “Run as → Eclipse Application”;

4. A new eclipse instance should start. If the current perspective is not Marmoclipse,
switch to Marmoclipse in the perspective menu (“Window → Open perspective →
Other . . . ”)

5. Now it is ready to test with any MPI binary executable pre-compiled using MAR-
MOT’s compiler.

3 Performance Tools Framework Integration

The Parallel Tools Platform (PTP) is a plugin for Eclipse which provides a highly
integrated environment specifically designed for parallel application development. Since
MARMOT is a tool for verification and analysis, it is natural and reasonable to uti-
lize PTP as bridge to offer the MARMOT features as part of the parallel development
environment.

The Performance Tools Framework (PTFw, a.k.a PTP External Tools Frame-
work) is part of PTP project and aims to ease the integration of existing external tools
in Eclipse. We have done some experiments to integrate MARMOT with Eclipse/PTP
via this framework, however because it is still in an early stage in its development, we
encountered some issues due to the lack of certain features. We will explain in this section
some steps we have taken and discuss the possible solutions to work around the issue.

3.1 Integration Approach and Test

For PTFw, an XML file which specifies the steps to take for the compilation, execution
and analysis phases in a work flow plays the most important role. By following certain
syntax, one can define in the XML file the command and arguments needed. Moreover,
UI components can be generated through the definitions which makes it possible to assign

3 PERFORMANCE TOOLS FRAMEWORK INTEGRATION 6

values to arguments through user’s input. For the analysis phase, an Eclipse plugin can
also be used to handle (e.g. visualize) the produced data.

One of the advantages of using PTFw is we can easily include MARMOT compilation
of the source code. This has to be done externally and manually with the standalone
plugin mentioned in section 2 on page 1.

We have created an experimental version of such a XML file and included inside the
project folder. It specifies the compile step and options needed to be given by the user for
the execution step. You can add the XML file directly through PTP’s preferences dialog
(Preferences → PTP → Performance Tools), then right-click an MPI project created
inside PTP and choose Profile as → Profile Configurations You can create a new
“Performance Analysis” profile in the opened dialog. At the Performance Analysis tab,
“Marmoclipse” should be available from the Select Tool dropdown list. and a “Marmo-
clipse” sub-tab should be visible and selectable, where values for various arguments are
supposed to be given.

3.2 Existing Problems

3.2.1 Socket Establishment

If performing a profiling/analysis, the source file can be seen compiled by marmotcc but
then an error message like “Marmot: Could not connect to localhost:30777” will
appear. This is because while running the MPI executable, we don’t have a socket listener
ready to establish a proper channel to receive the log messages. So here we need to take
care of two things:

• We need to start a socket listener prior to the execution of the MPI binary

• We need to relay the network host and port arguments obtained from user’s input
to the socket listener.

And accordingly, we could have the following possibilities to work on solving the problem:

1. Using a script instead of mpiexec for the execution.

This script will take all the parameters and pass the host and port values to an
external network listening tool (e.g. netcat) and then start mpiexec (with all pa-
rameters). This is a quick fix but obviously we sacrifice the compatibility between
different platforms since the scripting format and availability of network tool cannot
be guaranteed, not to mention that we need to ship an extra script with the plugin.
Also if we choose to use external tool to listen and receive the log information, we

REFERENCES 7

cannot display the log simultaneously (as in the standalone plugin). Instead we
have to parse the log messages dumped by the external tool.

2. After some hints provided by the author of this framework via the mailing list,
some experiments show that it is possible to add a analyze step before execute in
the XML file to launch some command. But during the experiments, it seemed not
all commands can be effective.

Nevertheless, this indicates that analysis can be triggered before execution therefore
we may be able to activate our own plugin code before execution starts. This way
we might be able to establish a socket listener like we do with the standalone plugin.
The only problem here is how to pass the host and port information from the profile
configuration page to the plugin code. It needs a better understanding and further
investigation of the org.eclipse.ptp.perf.dataManagers extension point offered
by PTFw.

This approach is a recommended working direction as the existing code can be
re-used and no extra external tool is used thus cross-platform compatibility can
remain.

3. Start the listener separatedly.

We can also work-around the issue by providing a socket listener independent from
the PTFw. Then the user has to manually start the listener prior to starting the
profiling/analysis. This can be implemented as a UI component directly integrated
into Eclipse’s interface (e.g. a toggle button). The disadvantage of this approach
is it becomes impossible to let the listener listen to the host/port the user chooses.
The host/port have to be a hard-coded value as a consequence.

3.2.2 Limited UI component choices

Currently there is limited number of UI component that can be generated from the XML
definition. As a result, some option values have to be input with plain text and data
validity of them cannot be assured. According to the documentation of the framework,
more components may be added in future releases. When proper component is available,
some of the current components should be replaced. (e.g. combo menu for “Log Level”
and “Log Format”, number spinner for “Port” and “Processes”). Meanwhile, there is a
extension point org.eclipse.ptp.configurationTabs which can be used to add SWT
widget.

References

[1] Marmot. http://www.hlrs.de/organization/av/amt/research/marmot/.

REFERENCES 8

[2] PTP - Parallel Tools Platform. http://www.eclipse.org/ptp/.

[3] MARMOT - tool for analysing and checking MPI programs, May 2009.

[4] Laurent Gauthier and Mirasol Op’nWorks. Building and
delivering a table editor with SWT/JFace, July 2003.
http://www.eclipse.org/articles/Article-Table-viewer/table viewer.html.

[5] Wyatt Spear and Beth Tibbitts. PTP/ETFw/PTP external tools framework, Septem-
ber 2009. http://wiki.eclipse.org/PTP/PTFw/PTFw-Overview.

	Overview
	Standalone Eclipse Plugin
	User Interface
	Implementation
	Packages and Source Code Organization
	Important Classes
	Notes
	Test
	Performance Tools Framework Integration
	Integration Approach and Test
	Existing Problems
	Socket Establishment
	Limited UI component choices

