
Tool for Analysing and Checking MPI Applications

April 30, 2010

1

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 What is Marmot? . 3
1.2 Design of Marmot . 3
1.3 Current Status . 3
1.4 Future Plans . 3

2 Installation 4
2.1 Software requirements . 4

2.1.1 MPI implementation . 4
2.1.2 CMake . 4
2.1.3 OpenMP . 4
2.1.4 C++ compiler . 4
2.1.5 Fortran Compiler . 5
2.1.6 C compiler . 5
2.1.7 Other tools that users need 5
2.1.8 Other tools that users do not necessarily need 5

2.2 Hardware requirements . 5
2.3 Configuring and Building . 6

2.3.1 Basic Steps . 6
2.3.2 Installation with OpenMP support 7
2.3.3 Known Issues . 7

2.4 DDT Plugin . 8
2.4.1 Prerequisites . 8
2.4.2 Installing DDT . 8
2.4.3 Installing the Marmot Plugin 9

3 Usage 10
3.1 Compilation . 10

3.1.1 C and C++ programs . 10
3.1.2 Fortran programs . 10
3.1.3 Hybrid programs . 11

3.2 Running the application . 11
3.2.1 Invocation . 11
3.2.2 Influential environment variables 11

3.3 Marmot’s output . 12
3.3.1 ASCII logging . 14
3.3.2 HTML logging . 15
3.3.3 CUBE logging . 16
3.3.4 Running DDT with Marmot’s plugin 16

2

1 INTRODUCTION

1 Introduction

1.1 What is Marmot?

• Marmot is a library written in C++, which has to be linked to your
application in addition to the existing MPI library.

• It will check whether your application conforms to the MPI standard and
will issue warnings if there are errors or non-portable constructs.

• You do not need to modify your source code, you only need one additional
process working as Marmot’s debug server.

• Marmot’s output is a human-readable text file, an HTML file, or uses a
format that allows display in other tools, e.g. Cube.

• The tool can be configured via environment variables.

1.2 Design of Marmot

Marmot makes use of the so-called ”profiling interface” defined in the MPI
standard, i.e. it intercepts the MPI calls from the application for examination
before they are passed to the underlying MPI implementation. Marmot maps
MPI resources such as communicators, datatypes etc. to its own resources to
keep track of proper construction and usage.

1.3 Current Status

• Full support for MPI-1.2

• Partial MPI-2.1 support (The user is notified if your application uses MPI
calls that are not checked by Marmot)

• Support for the C/Fortran language bindings of MPI

• Support for hybrid applications that use MPI and OpenMP

• Output available for the Cube [SCALASCA] Visualizer

• Integration into Microsoft Visual Studio available

1.4 Future Plans

• Extended MPI-2 support

• Further integration into IDE’s and high performance tools

• Enhanced deadlock detection

3

2 INSTALLATION

2 Installation

2.1 Software requirements

2.1.1 MPI implementation

1. Marmot needs to be built and configured for the MPI implementation
that you want to use with your applications. Marmot verifies the calls
made by the program with the use of the so called profiling interface
(PMPI). This profiling interface is part of the MPI standard. Any MPI
implementation that conforms to the MPI standard needs to provide this
interface. Therefore, this requirement should not limit the selection of
possible MPI libraries.

2. Marmot needs to detect the MPI implementation, i.e. its mpi.h and its
libraries

2.1.2 CMake

Marmot uses CMake as its build system, in order to build Marmot from source
you will need an installed CMake version. We strongly suggest to use a recent
version of CMake, to simplify the build process. For linux systems, if you have
no administrator priviliges, you can still install CMake into your home directory.

2.1.3 OpenMP

Marmot supports hybrid programs using MPI and OpenMP. In order to do so,
Marmot has to use an internal synchronisation, thus enabling full
MPI THREAD MULTIPLE support. This synchronisation uses OpenMP di-
rectives which also allows Marmot to gather additional information about the
threads being used. See Section 2.3 on how to build Marmot with OpenMP
support. Your compiler must, of course, support OpenMP as well.

2.1.4 C++ compiler

1. Marmot is implemented in C++. The compiler should implement the
ISO/IEC 14882 language specification of C++. We have succeeded in us-
ing gcc 2.96 or later, earlier versions might not work properly. Intel Com-
pilers are an alternative, they are available for no cost for non-commercial
use on linux platforms. For example, on our local environment, Intel
compilers version 10.0 have been used successfully. Further, IBM xlc++
compilers have been used successfully too.

2. To link Marmot to a C or Fortran application with the C/Fortran linker
instead of the C++ linker, some C++ libraries will have to be linked,
too (for example libstdc++, using gcc or g77). Marmot tries to deter-
mine these libraries, thus you are strongly encouraged to link your MPI
applications with the Marmot compiler wrappers (see Section 3.1.1).

4

2.2 Hardware requirements 2 INSTALLATION

2.1.5 Fortran Compiler

To support the Fortran binding of the MPI standard a Fortran compiler is
required.

2.1.6 C compiler

To support C applications, a C compiler is required (any C compiler should do).

2.1.7 Other tools that users need

A version of make (tested with GNU make 3.79.1 and later versions) for com-
pilation. Also, some of the Marmot helper tools, e.g. compiler wrappers, need
the bash shell and an awk interpreter (UNIX only).

2.1.8 Other tools that users do not necessarily need1

1. Doxygen [DOXYGEN] (tested with version 1.2.14 and later versions) is
used to automatically generate documentation. This documentation is
supposed to provide sufficient information for developers even if they do
not have Doxygen.

2. Scalasca [SCALASCA] or a stand alone installation of Cube, if you want
to use Cube logging (see Section 3.3)

2.2 Hardware requirements

Marmot does not require any specific hardware (any UNIX or Windows envi-
ronment should do). It has been tested on the following platforms:

• LINUX IA32/IA64 clusters

• SGI Altix 4700

• Opteron clusters

• SUN clusters

• NEC SX6, SX8

• IBM Power6 systems with AIX

• Windows Server 2003 & 2008 cluster

1Marmot’s distribution comes with all the required files, the users just have to run ”cmake”
and ”make”

5

2.3 Configuring and Building 2 INSTALLATION

2.3 Configuring and Building

2.3.1 Basic Steps

Marmot uses CMake for its configuration, as a first step you run the cmake
tool to create platform specific make files or project files. CMake provides a
command line tool and also graphical user interfaces for an easy configuration
process. Basically you just have to create a folder for example inside the Marmot
trunk, e.g. ”MyMarmotBuild”, change into this folder and issue the command
$ccmake .., $cmake-gui, or $cmake (You should prefer ccmake/cmake-gui over
cmake).

Figure 1: Ncurses display of CMake

You can then adapt the configuration to your needs. Some of the important
CMake configuration options for Marmot are:

CMAKE INSTALL PREFIX determines the installation path

MARMOT USED MPI PACKAGE determines which MPI find module is used. You
may choose: MPICH, OPENMPI or MPI. MPI works for almost all MPI im-
plementation and is a common choice.

6

2.3 Configuring and Building 2 INSTALLATION

MARMOT ADDIN when switched to ON the AddIn for VisualStudio is compiled
(Windows specific)

MARMOT ENABLE FORTRAN specifies whether Marmot is built with Fortran sup-
port (enabled per default on Linux)

MARMOT USE CUBE specifies whether Marmot is built with Cube support

In CMake frontends such as ccmake or cmake-gui you may switch to an advanced
mode where you can alter all the cmake-variables relevant to the configuration
process. Changing the compilers used for your installation is not possible after
you have started the CMake configuration. You should set the CC, CXX, F77,
and FC environment variables before the first call of ccmake.

After the configuration step with CMake you will have platform specific
make files, e.g. in Linux these may be regular make files, in Windows these
may be a VisualStudio project. Build these files, e.g., in Linux run make &&

make install, in Windows open the project right-click the INSTALL target
and build the solution. This will build and install Marmot.

2.3.2 Installation with OpenMP support

A Marmot installation with OpenMP support can only be used for applications
that are compiled and linked with OpenMP flags. As this may have a per-
formance impact for non-OpenMP applications, we advice to create an extra
installation of Marmot that is configured with OpenMP support. Many MPI
implementations use a different MPI library for hybrid MPI/OpenMP appli-
cations that use MPI THREAD MULTIPLE. For Marmot you should specify
this library during configuration with cmake, i.e. by setting the MPI library
to -lmpi mt (assuming your multithreaded MPI library is named “libmpi mt”).
Also do not forget to enable the MARMOT USE OPENMP option in cmake.

2.3.3 Known Issues

On some systems, or for some MPI implementations, it may happen that issues
during the installation or ussage of Marmot arise. The following list mentiones
all currently known issues and their workaroundlable:

• IBM compilers on AIX (Power6):

– C++ linking: A default installation of Marmot links C++ STL li-
braries to your C and Fortran applications, on AIX systems with IBM
compilers this may lead to deadlocks when running your applications.
Marmot’s compiler wrappers support a special linking step for C and
Fortran applications were the C++ compiler is used instead of the na-
tive compiler. Set the cmake variable “MARMOT STDCXX LIBS”
to something invalid – e.g. “BREAK!” – to enforce this behavior.

7

2.4 DDT Plugin 2 INSTALLATION

– 64bit builds: CMake supports no ARFLAGS, which are needed to
build 64 bit Marmot libraries. This issue can be overcome by setting
the environment variable “OBJECT MODE” to “64” before runing
cmake/cmake-gui/ccmake for the first time.

– All in all, a Marmot build on AIX with IBM compilers and POE may
look like (assumed no mpicc/.. of some other MPI is in the path):

cd <Marmot-Source>

mkdir BUILD-64 && cd BUILD-64

export OBJECT_MODE=64

CC=xlc CXX=xlc++ FC=xlf F77=xlf F90=xlf90 \

cmake ../ \

-DCMAKE_INSTALL_PREFIX=<INSTALL-PATH> \

-DMARMOT_STDCXX_LIBS=BREAK!

If you encounter any other issues, you are welcome to contact marmot-
supp@gforge.hlrs.de for help.

2.4 DDT Plugin

Marmot supports Allinea’s parallel debugger DDT with a plugin. This plugin
makes it possible to run a debugging session with DDT and at the same time
to perform Marmot’s checks.

2.4.1 Prerequisites

To use Marmot’s DDT plugin you need

• DDT from Allinea [ALLINEA], along with a valid Licence, version 2.3.1
or above,

• An MPI installation with shared libraries,

• Marmot with shared libraries and configured to support Cube

2.4.2 Installing DDT

Installation instructions for DDT can be found in the DDT manual. After
installing DDT you will find the following folder and files in the DDT folder:

$ls

bin doc examples help icons lib Licence plugins script templates wizard

To use plugins you need to create a plugin folder. Change into the DDT
folder and issue

8

2.4 DDT Plugin 2 INSTALLATION

$mkdir plugins

2.4.3 Installing the Marmot Plugin

Installing the Marmot plugin is as easy as copying the appropriate XML file
into DDT’s plugin folder. An XML file is generated and placed in Marmot’s
installation directory in share/marmot/examples/marmot ddt plugin.xml

$cp marmot ddt plugin.xml <DDT DIR>/plugins/

Please note that you have to set the environment variable MARMOT LOGFILE TYPE

to 3 for the plugin to work properly. Now you may startup DDT to see whether
the Marmot plugin has been recognized. Go to Session → New Session→ Run...
and switch to the Advanced view. You should now see the Marmot plugin:

Figure 2: DDT plugin selection

9

3 USAGE

3 Usage

3.1 Compilation

3.1.1 C and C++ programs

To compile a C/C++ application with Marmot, you can use marmotcc and
marmotcxx which are wrapper scripts invoking the C or C++ MPI compilers of
the underlying MPI implementation (Or native compilers with extra libraries, if
no MPI compilers are available). Compilation of a C/C++ application should
be as easy as typing

$marmotcc -o basic basic.c or $marmotcxx -o basic basic.cc

However, in rare situation this may lead to problems, e.g. in the linking
step. In this case, you may have to modify marmotcc/marmotcxx for your
needs (Or ask an administrator or Marmot developer for help). To see what
exactly marmotcc/marmotcxx does, you can type

$marmotcc --marmot-verbose -o basic basic.c

and should see something like

mpicc -I/usr/local/marmot/include -o basic basic.c -L/usr/local/marmot/lib

-lmarmot-profile -lmarmot-core -L/usr/local/mpi/openmpi-1.2.8/lib -lmpi

-lpthread -L/usr/lib -lxml2 -L/usr/local/cube/lib -lcube3 -L/usr/lib

-lstdc++

If you attempt to modify the linking step or change the library order, make
sure you link the libraries in the correct order, i.e. the Marmot libraries have
to be linked prior to the MPI libraries. Otherwise Marmot simply won’t work,
note that you won’t get an error message during the linking step due to a wrong
order.

Further, the compiler wrappers try to redirect the MPI header. If successful,
your application will use Marmot’s provided MPI header, which in turn includes
the MPI implementation provided header. As a result, Marmot can add source
code information to MPI calls, thus providing more detailed output.

To get basic usage hints just type marmotcc/marmotcxx without any argu-
ments.

3.1.2 Fortran programs

Compiling fortran programs basically works the same way as compiling C pro-
grams. One can use marmotf77/marmotf90 :

$marmotf77 -o basic basic.f

If you attempt to modify the linking step or change the library order, be
sure to link the Marmot libs prior to the MPI libs.

10

3.2 Running the application 3 USAGE

The Marmot compiler wrappers for Fortran attempt a source to source trans-
lation, which adds additional source code data to the MPI calls. For some For-
tran applications this may fail, use the extra argument --marmot-noinst in
these cases. You can also run marmotf77/marmotf90 without any arguments
to see all of their options.

3.1.3 Hybrid programs

A Marmot installation configured with OpenMP support works like a normal
installation. You can usemarmotcc (marmotf77 resp.) to compile and link your
applications. The compiler wrappers will automatically include the necessary
MPI library and the OpenMP flag, include paths and libraries.

3.2 Running the application

3.2.1 Invocation

To run the application, one has to add an additional process working as debug
server, i.e. one needs (n+ 1) instead of n processes:

$mpirun -np (n+1) foo

Marmot’s output is written to a logfile (see Section 3.3).
Note on hybrid programs:
Running a program compiled with an OpenMP supporting version of Marmot
works as usual. But you might have to set additional environmental variables
in order to enable MPI/OpenMP interoperability on your system.

3.2.2 Influential environment variables

The following environment variables affect Marmot’s behaviour at runtime:

MARMOT DEBUG MODE 0: errors,
1: errors and warnings,
2: errors, warnings and remarks are reported
(default)

MARMOT LOGFILE TYPE 0: ASCII Logging (default),
1: HTML Logging,
2: CUBE Logging (when enabled via
configure),

MARMOT LOG FILTER COUNT Limits how often a sepecific problem is
recoreded (default: 2)

MARMOT LOG FLUSH TYPE 0: Flush on Error (default),
1: Immediate Flush

MARMOT SERIALIZE 0: code is not serialized,
1: code is serialized (default)

11

3.3 Marmot’s output 3 USAGE

MARMOT TRACE CALLS 1: calls are traced with output to stderr,
traceback in case of a deadlock is possible
(default),
0: calls are traced without output to stderr,
traceback in case of a deadlock is possible,
-1: calls are not traced, traceback in case of a
deadlock is NOT possible.

MARMOT MAX PEND COUNT maximum number of calls that are traced back
(default 10)

MARMOT MAX TIMEOUT DEADLOCK maximum message time (default 106 µs)
MARMOT MAX TIMEOUT SERIALIZE maximum message time (default 103 µs)

3.3 Marmot’s output

Marmot’s output can be set to one of currently three modes. ASCII logging,
HTML logging and Cube logging. The mode is set via the environment variable
MARMOT LOGFILE TYPE (see Section 3.2.2). In the following, the different
modes are compared by having a look at the output of a small program named
deadlock1.c in the directory TEST C. The source code can be seen in Figure 3.

As the name suggests, this program deadlocks. So let’s have a look at
Marmot’s output, depending on the logging mode.

12

3.3 Marmot’s output 3 USAGE

#include <stdio.h>

#include "mpi.h"

int main(int argc, char **argv)

{

const int COUNT = 1;

const int MSG_TAG_1 = 17;

const int MSG_TAG_2 = 18;

int rank = -1;

int size = -1;

int dummy = 0;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(" I am rank %d of %d PEs\n", rank, size);

if (size < 2)

{

fprintf(stderr, " This program needs at least 2 PEs!\n");

}

else

{

if (rank == 0)

{

MPI_Recv(&dummy, COUNT, MPI_INT, 1, MSG_TAG_1, \\

MPI_COMM_WORLD, &status);

MPI_Send(&dummy, COUNT, MPI_INT, 1, MSG_TAG_2, \\

MPI_COMM_WORLD);

}

if (rank == 1)

{

MPI_Recv(&dummy, COUNT, MPI_INT, 0, MSG_TAG_2, \\

MPI_COMM_WORLD, &status);

MPI_Send(&dummy, COUNT, MPI_INT, 0, MSG_TAG_1, \\

MPI_COMM_WORLD);

}

}

MPI_Finalize();

return 0;

}

Figure 3: deadlock1.c

13

3.3 Marmot’s output 3 USAGE

3.3.1 ASCII logging

Figure 4: ASCII logging (excerpt)

The output file in ASCII logging mode is named Marmot EXE YYYYMMDD hhmmss.txt,
where EXE denotes the name of your executable, and YYYYMMDD hhmmss
is a timestamp.

14

3.3 Marmot’s output 3 USAGE

3.3.2 HTML logging

Figure 5: HTML logging (excerpt)

The output file in HTML logging mode is named MarmotLog EXE YYYYMMDD hhmmss.html.

15

3.3 Marmot’s output 3 USAGE

3.3.3 CUBE logging

Figure 6: CUBE logging

The output file in CUBE logging mode is named MarmotLog EXE YYYYMMDD hhmmss.cube.
Further a folder named MARMOT HTML is created, which contains detailed
information. To view the log file with the Cube browser, type

$cube MarmotLog EXE YYYYMMDD hhmmss.cube or $cube3 MarmotLog EXE YYYYMMDD hhmmss.cube

for the most recent version of the Cube browser.

3.3.4 Running DDT with Marmot’s plugin

Install the Marmot plugin as described in section 2.4. Compile your program

with the original MPI compiler wrappers (e.g. mpicc) and don’t forget to include

debug information in the executable (usually with -g):

$mpicc -g -o yourprogram yourprogram.c

Launch DDT and go to Session → New Session → Run In the advanced
view, select the Marmot plugin:

16

3.3 Marmot’s output 3 USAGE

Figure 7: DDT plugin selection

Run the application with the original number of processes. DDT will auto-
matically add one process for Marmot’s debug server, which is not displayed.
When Marmot detects an error DDT will pause the execution and pop up a
window:

17

3.3 Marmot’s output 3 USAGE

Figure 8: Marmot detects error from within DDT

When run from within DDT, Marmot still creates its logfile for later analysis.

18

REFERENCES REFERENCES

References

[SCALASCA] Scalable Performance Analysis of Large-Scale Applications, FZ
Jülich, available at http://www.fz-juelich.de/jsc/scalasca/

[DOXYGEN] Doxygen, http://www.doxygen.org/

[CMAKE] CMake, http://www.cmake.org

[ALLINEA] Allinea Software, http://www.allinea.com

19

