
tool for analysing and checking MPI programs

May 19, 2009

1

CONTENTS CONTENTS

Contents

1 Introduction 4

1.1 What is Marmot? . 4
1.2 Design of Marmot . 4
1.3 Current Status . 4
1.4 Future Plans . 4

2 Installation 5

2.1 Software requirements . 5
2.1.1 MPI implementation . 5
2.1.2 OpenMP . 5
2.1.3 C++ compiler . 5
2.1.4 Fortran Compiler . 5
2.1.5 C compiler . 6
2.1.6 Other tools that users need 6
2.1.7 Other tools that users do not necessarily need 6

2.2 Hardware requirements . 6
2.3 Basics . 7

2.3.1 Installation . 7
2.3.2 Installation with OpenMP support 8

2.4 Configure Options . 8
2.4.1 Installation directories . 9
2.4.2 Program names . 9
2.4.3 System types . 9
2.4.4 Optional Features . 10
2.4.5 Optional Packages . 10
2.4.6 Influential environment variables: 13

2.5 Configure . 13
2.6 DDT Plugin . 13

2.6.1 Prerequisites . 13
2.6.2 Installing DDT . 13
2.6.3 Installing the Marmot Plugin 14

3 Usage 15

3.1 Compilation . 15
3.1.1 C and C++ programs . 15
3.1.2 Fortran programs . 16
3.1.3 Hybrid programs . 16

3.2 Running the application . 17
3.2.1 Invocation . 17
3.2.2 Influential environment variables 17

3.3 Marmot’s output . 18
3.3.1 ASCII logging . 20
3.3.2 HTML logging . 21
3.3.3 CUBE logging . 22

2

CONTENTS CONTENTS

3.3.4 Running DDT with Marmot’s plugin 22

A Installation Examples 25

A.1 Overview . 25
A.2 Configuration, installation and compilation 25

A.2.1 Cacau . 25
A.2.2 A1 . 26
A.2.3 Windows HPC Server 2008 cluster 27
A.2.4 bwGrid . 28

3

1 INTRODUCTION

1 Introduction

1.1 What is Marmot?

• Marmot is a library written in C++, which has to be linked to your
application in addition to the existing MPI library.

• It will check if your application conforms to the MPI standard and will
issue warnings if there are errors or non-portable constructs.

• You need not modify your source code, you only need one additional pro-
cess working as Marmot’s debug server.

• Marmot’s output is a human-readable text file, an HTML file or uses a
format that allows display in other tools, e.g. Cube.

• The tool can be configured via environment variables.

1.2 Design of Marmot

Marmot makes use of the so-called ”profiling interface” defined in the MPI
standard, i.e. it intercepts the MPI calls from the application for examination
before they are passed to the underlying MPI implementation. Marmot maps
MPI resources such as communicators, datatypes etc. to its own resources to
keep track of proper construction and usage.

1.3 Current Status

• Full support of MPI-1.2

• C/Fortran language binding

• Support for hybrid applications using MPI and OpenMP

• Support for CMake [CMAKE] building process (not fully completed yet)

• Support for the Cube [SCALASCA] Visualizer

1.4 Future Plans

• Extended functionality, e.g. one sided communication and parallel file I/O
as defined in MPI-2

• Furhther integration into IDE’s and high performance tools

• Enhanced deadlock detection

4

2 INSTALLATION

2 Installation

2.1 Software requirements

2.1.1 MPI implementation

1. Since the application that is to be verified is written using MPI, the MPI
library is needed to run the application. Marmot verifies the calls made
by the program with the use of the so called profiling interface (PMPI).
This profiling interface is part of the MPI standard. Any MPI implemen-
tation that conforms to the MPI standard needs to provide this interface.
Therefore, this requirement should not limit the selection of possible MPI
libraries.

2. The MPI implementation itself may require some other software, for ex-
ample globus libraries when using mpich-g2.

3. Some of Marmot’s source files include mpi.h, therefore MPI (i.e. at least
mpi.h) is needed for the compilation of the Marmot libraries, which can
then be linked to an application.

2.1.2 OpenMP

Marmot supports hybrid programs using MPI and OpenMP. In order to do so,
Marmot has to use an internal synchronisation, thus enabling full
MPI THREAD MULTIPLE support. This synchronisation uses OpenMP di-
rectives which also allows Marmot to gather additional information about the
threads used. See Section 2.4 on how to configure Marmot with OpenMP sup-
port. Your compiler must of course support OpenMP as well.

2.1.3 C++ compiler

1. Marmot is implemented in C++. The compiler should implement the
ISO/IEC 14882 language specification of C++. We have succeeded in us-
ing gcc 2.96 or later, earlier versions might not work properly. Intel Com-
pilers are an alternative, they are available for no cost for non-commercial
use on linux platforms. For example, on our local environment, Intel com-
pilers version 10.0 have been used successfully.

2. To link Marmot to a C or Fortran application with the C/Fortran linker
instead of the C++ linker, some C++ libraries will have to be linked, too
(for example libstdc++, using gcc or g77).

2.1.4 Fortran Compiler

To support the Fortran binding of the MPI standard a Fortran compiler is
required. The same Fortran compiler should be used to compile the application.

5

2.2 Hardware requirements 2 INSTALLATION

2.1.5 C compiler

To support C applications, a C compiler is required (any C compiler should do).

2.1.6 Other tools that users need

make (tested with GNU make 3.79.1 and later versions) for compilation. Also,
some of the Marmot helper tools, e.g. compiler wrappers, need the bash shell
and an awk interpreter.

2.1.7 Other tools that users do not necessarily need1

1. Doxygen [DOXYGEN] (tested with version 1.2.14 and later versions) is
used to automatically generate documentation. This documentation is
supposed to provide sufficient information for users even if they do not
have Doxygen.

2. autoconf-2.63 [AUTOCONF] or higher is required to generate a configure
script from the configure.ac (tested with GNU Autoconf 2.63).

3. aclocal/automake [AUTOMAKE] (tested with GNU automake 1.10).

4. perl (tested with v5.6.1) is required by automake.

5. Scalasca [SCALASCA], if you want to use Cube logging (see Section 3.3)

6. CMake [CMAKE] if you want to build Marmot with CMake

2.2 Hardware requirements

Marmot does not require any specific hardware (any UNIX or Windows envi-
ronment should do). It has been tested on the following platforms:

• LINUX IA32/IA64 clusters

• SGI Altix 4700

• Cray T3e

• Regatta (IBM-cluster)

• NEC SX6, SX8

• Windows Server 2003 & 2008 cluster

1Marmot’s distribution comes with all the required files that users just have to run ”con-

figure” and ”make”, users do not need automake, autoconf, libtool etc. However, if you plan

to create all these files yourself with autobuild tools, have a look at the autogen.sh script.

6

2.3 Basics 2 INSTALLATION

2.3 Basics

2.3.1 Installation

Marmot can be built using autotools. Basically, the following commands are
sufficient:

$cd MARMOT

$./configure <OPTIONS>

$make

$make install

However, for more details, read also the installation examples in Appendix A
on page 25 . Sometimes it might be necessary to provide ./configure with
options, e.g. specifications of paths or compilers.

An alternate way to configure Marmot is the usage of CMake. CMake pro-
vides a command line tool and also graphical user interfaces for an easy configu-
ration process. Basically you just have to create a folder for example inside the
Marmot trunk, e.g. ”MyMarmot”, change into this folder and issue the com-
mand $ccmake .. On windows you could use the cmakesetup.exe application.

Figure 1: Ncurses display of CMake

7

2.4 Configure Options 2 INSTALLATION

You can then adapt the configuration to your needs. However, not every
option provided by ”configure” is covered by the CMake building process yet,
e.g. building of shared libraries. Some of the important CMake configuration
options for Marmot are:

CMAKE INSTALL PREFIX determines the installation path

USED MPI PACKAGE determines which MPI find module is used. You may choose:
MPICH, OPENMPI or MPI.

MARMOT ADDIN when switched to ON the AddIn for VisualStudio is compiled
(windows specific)

MARMOT ENABLE FORTRAN specifies whether Marmot is built with Fortran sup-
port

USE CUBE specifies whether Marmot is built with Cube support

In CMake frontends such as ccmake or cmakesetup you may switch to an ad-
vanced mode where you can alter all the cmake-variables relevant to the config-
uration process. An important thing to note here is that although the compiler
variables are listed the compiler used (for example CMAKE C COMPILER) cannot
be changed here. In case you would like to specify a different compiler you have
to set the CC and CXX environment variables before the first call of ccmake.

2.3.2 Installation with OpenMP support

A Marmot installation with OpenMP support can only be used for programs
linked with OpenMP. So on most systems one will use an extra installation of
Marmot for an OpenMP version of Marmot. Many MPI implementations use
a different MPI library for hybrid programs using MPI THREAD MULTIPLE.
For Marmot you should specify this library, i.e. by using --with-mpi-libs=-lmpi mt

(if your multithreaded MPI library is named “libmpi mt”).

2.4 Configure Options

Marmot provides the following configure options:
OPTION : most important options and environment variables

OPTION : options needed for CUBE support

OPTION : options needed for OpenMP support

8

2.4 Configure Options 2 INSTALLATION

2.4.1 Installation directories

--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data

[PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
--datadir=DIR read-only architecture-independent data [DATAROOTDIR]
--infodir=DIR info documentation [DATAROOTDIR/info]
--localedir=DIR locale-dependent data [DATAROOTDIR/locale]
--mandir=DIR man documentation [DATAROOTDIR/man]
--docdir=DIR documentation root [DATAROOTDIR/doc/PACKAGE]
--htmldir=DIR html documentation [DOCDIR]
--dvidir=DIR dvi documentation [DOCDIR]
--pdfdir=DIR pdf documentation [DOCDIR]
--psdir=DIR ps documentation [DOCDIR]

2.4.2 Program names

--program-prefix=PREFIX prepend PREFIX to installed program
names

--program-suffix=SUFFIX append SUFFIX to installed program
names

--program-transform-name=PROGRAM run sed PROGRAM on installed program
names

2.4.3 System types

--build=BUILD configure for building on BUILD

[guessed]
--host=HOST cross-compile to build programs to run

on HOST [BUILD]

9

2.4 Configure Options 2 INSTALLATION

2.4.4 Optional Features

--disable-FEATURE do not include FEATURE (same as
–enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]
--disable-doc disable building documentation,

default is to build it
--enable-tests enable building test executables,

default is not to build them
--enable-signal-based-mpi use signal-based MPI library on IBM,

default=no
--enable-globus use globus, default=no
--enable-myrinet use Myrinet libraries, default=no
--enable-mpichp4 use MPICH with p4 device, default=no

--enable-cube use cube when you want to be able to
use the CUBE display for logging,
default=no

--disable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency

extractors

--enable-openmp enable OpenMP usage if you want to
use Marmot for applications using
OpenMP threading, default=no
Note: The --enable-openmp flag
switches the OpenMP support on. The
other flags are used to specify the
additional flags, paths and libraries
needed for OpenMP on your system.
Usually you will only need
--with-openmp-flag=-openmp (or the
appropriate flag for your compiler).

2.4.5 Optional Packages

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as

–with-PACKAGE=no)
--with-cxx-lib-dir=CXX LIBDIR give the path for CXX-libraries,

default: /usr/lib
--with-cxx-libs=CXX LIBS give the CXX-libraries, default:

-lstdc++
--with-cldflags=CLDFLAGS give the linker flags to use in TEST C

directory, default: LDFLAGS set by
user (empty if none).

10

2.4 Configure Options 2 INSTALLATION

--with-fldflags=FLDFLAGS give the linker flags to use in TEST F
directory, default: LDFLAGS set by
user (empty if none).

--with-mpi-dir=MPIDIR give the path for MPI, default:
/usr/local/mpich

--with-mpi-inc-dir=MPI INCDIR give the path for MPI-include-files,
default: MPIDIR/include

--with-mpif-inc-dir=MPIF INCDIR give the path for MPIF-include-files,
default: MPIDIR/include

--with-mpi-lib-dir=MPI LIBDIR give the path for MPI-libraries,
default: MPIDIR/lib

--with-mpi-libs=MPI LIBS give the MPI-libraries to link to
application (including calls for profiling
interface!), default: libraries found
automatically by configure

--with-mpi-bin-dir=MPI BINDIR give the path for MPI-binaries, default:
MPIDIR/bin

--with-mpicxx=MPICXX give the path for the MPI cxx
compiler, default: compiler found
automatically by configure

--with-mpicc=MPICC give the path for the MPI c compiler,
default: compiler found automatically
by configure

--with-mpif77=MPIF77 give the path for the MPI f77 compiler,
default: compiler found automatically
by configure

--with-mpif90=MPIF90 give the path for the MPI f90 compiler,
default: compiler found automatically
by configure

--with-mpif95=MPIF95 give the path for the MPI f95 compiler,
default: compiler found automatically
by configure

--with-cube-inc-dir=CUBE INCDIR give the path for the CUBE include
directory (only needed when
–enable-cube was set), default:
/usr/local/include

--with-cube-lib-dir=CUBE LIBDIR give the path for the CUBE library
(only needed when –enable-cube was
set), default: /usr/local/lib

--with-cube-lib=CUBE LIB give the name of the cube library (only
needed when –enable-cube was set),
default: -lcube

--with-xml2-lib-dir=XML2 LIBDIR give the path for the xml2 library (only
needed when –enable-cube was set),
default: /usr/lib

11

2.4 Configure Options 2 INSTALLATION

--with-xml2-lib=XML2 LIB give the name of the xml2 library (only
needed when –enable-cube was set),
default: -lxml2

--with-globus-dir=GLOBUSDIR give the path for globus directory,
default: /opt/globus

--with-globus-lib-dir=GLOBUS LIBDIR give the path for globus-libraries,
default: GLOBUSDIR/lib

--with-myrinet-dir=MYRINETDIR give the path for Myrinet directory,
default: /opt/Myricom

--with-myrinet-lib-dir=MYRINET LIBDIR give the path for Myrinet-libraries,
default: MYRINETDIR/lib

--with-rpm-dir=DIR give RPM directory, default: pwd
--with-marmot-bin-prefix=PREFIX give prefix for installed binaries,

default: package name
--with-marmot-lib-prefix=PREFIX give prefix for installed libraries,

default: marmot

--with-openmp-inc-dir=OPENMP INCDIR give the path for the OpenMP include
directory (only needed when
--enable-openmp was set), default: ””

--with-openmp-lib-dir=OPENMP LIBDIR give the path for the OpenMP libraries
(only needed when --enable-openmp

was set and there is the need of an
extra OpenMP library), default: ””

--with-openmp-libs=OPENMP LIBS give the name of the openmp libraries
if necessary (only needed when
--enable-openmp was set), default: ””

--with-openmp-flag=OPENMP FLAG give the name of the compiler flag used
for enabling openmp (only needed
when --enable-openmp was set),
default: ”-openmp”

12

2.5 Configure 2 INSTALLATION

2.4.6 Influential environment variables:

CXX C++ compiler command
CXXFLAGS C++ compiler flags
LDFLAGS linker flags, e.g. -L¡lib dir¿ if you have libraries in a

nonstandard directory ¡lib dir¿
CPPFLAGS C/C++/Objective C preprocessor flags, e.g. -I¡include

dir¿ if you have headers in a nonstandard directory
¡include dir¿

AR Archiver to create libraries, useful for cross compilation
PRELINK use -prelink on SX machines
RANLIB ranlib to bless libraries

CC C compiler command
CFLAGS C compiler flags

CPP C preprocessor

F77 Fortran 77 compiler command
FFLAGS Fortran 77 compiler flags

2.5 Configure

Run ./configure to create the Makefiles etc. automatically from the cor-
responding templates named *.in. Note that the default values may not be
correct and that you may have to specify options for ./configure, for example
to specify the paths of MPI and C/C++/Fortran compilers. Consult Appendix
A to get an idea how to configure Marmot for different platforms.

2.6 DDT Plugin

A plugin for Allinea’s parallel debugger DDT is under development. However,
a first version is already available. With this plugin you will be able to run a
debugging session with DDT and at the same time switch on the Marmot plugin
to perform Marmot’s checks.

2.6.1 Prerequisites

To use Marmot’s DDT plugin you need

• DDT from Allinea [ALLINEA], along with a valid Licence, version 2.3.1
or above,

• Open MPI with shared libraries (support of other MPIs will follow),

• Marmot with shared libraries

2.6.2 Installing DDT

Installation instructions for DDT can be found in the DDT manual. After
installing DDT you will find the following folder and files in the DDT folder:

13

2.6 DDT Plugin 2 INSTALLATION

$ls

bin doc examples help icons lib Licence plugins script templates wizard

To use plugins you need to create a plugin folder. Chnage into the DDT
folder and issue

$mkdir plugins

2.6.3 Installing the Marmot Plugin

Installing the Marmot plugin is as easy as copying the appropriate XML file into
DDT’s plugin folder. An XML file for Open MPI can be found in the Marmot
source tree (in SRC/TOOLS/MarmotDDTPlugin/OpenMPI):

$cp marmot ddt plugin openmpi alpha.xml <DDT DIR>/plugins/

Now you may startup DDT to see whether the Marmot plugin has been
recognized. Go to Session → New Session→ Run... and switch to the Advanced

view. You should now see the Marmot plugin:

Figure 2: DDT plugin selection

14

3 USAGE

3 Usage

3.1 Compilation

3.1.1 C and C++ programs

To compile a C/C++ application with Marmot, you can use marmotcc/marmotcxx

which are wrapper scripts invoking mpicc/mpicxx from the underlying MPI li-
brary. Compilation of a C/C++ application should be as easy as typing

$marmotcc -o basic basic.c or $marmotcxx -o basic basic.cc

However, this might sometimes lead to problems, especially in the linking
step. In this case, you will need to modify marmotcc/marmotcxx for your needs.
To see what exactly marmotcc/marmotcxx does, you can type

$marmotcc --marmot-verbose -o basic basic.c

and should see something like

mpicc -I/usr/local/marmot/include -o basic basic.c -L/usr/local/marmot/lib

-lmarmot-profile -lmarmot-core -L/usr/local/mpi/openmpi-1.2.8/lib -lmpi

-lpthread -L/usr/lib -lxml2 -L/usr/local/cube/lib -lcube3 -L/usr/lib

-lstdc++

To see the invocation of the underlying compiler, type $marmotcc -show

-o basic basic.c

gcc -I/usr/local/mpi/openmpi-1.2.8/include -pthread -I/usr/local/marmot/include

-o basic basic.c -L/usr/local/marmot/lib -lmarmot-profile -lmarmot-core

-L/usr/local/mpi/openmpi-1.2.8/lib -lmpi -lpthread -L/usr/lib -lxml2

-L/usr/local/cube/lib -lcube3 -L/usr/lib -lstdc++ -L/usr/local/mpi/openmpi-1.2.8/lib

-lmpi -lopen-rte -lopen-pal -ldl -Wl,--export-dynamic -lnsl -lutil

-lm -ldl

As you can see, marmotcc passes the show option to mpicc and you get the
compiler command and its command line options. Depending on the compiler
and the MPI library, you might for example need to link some other libraries,
too.

Another approach is to use the mpicc command or the “plain” compiler
command itself. You could start with:

$mpicc -o basic basic.c -L/usr/local/lib -lmarmot-profile

-lmarmot-core -lstdc++

or you can invoke the compiler directly:

$gcc -o basic basic.c -L/usr/local/lib -lmarmot-profile

15

3.1 Compilation 3 USAGE

-lmarmot-core -lstdc++ -L/usr/local/mpi -lmpi

Either way you go, make sure you link the libraries in the correct order, i.e.
the Marmot libraries have to be linked prior to the MPI libraries. You won’t get
an error message because of the wrong linking order but Marmot simply won’t
work.

Further, the compiler wrappers try to redirect the MPI header. If successful,
your application will use Marmots provided MPI header, which in turn includes
the MPI implementation provided header. As a result, Marmot can add source
code information to MPI calls, thus providing more detailed output.

To get basic usage hints just type marmotcc/marmotcxx without any argu-
ments.

3.1.2 Fortran programs

Compiling fortran programs basically works the same way as compiling C pro-
grams. One can use marmotf77 :

$marmotf77 -o basic basic.f

or one can manually compile and link the application. This might look like
this:

$gfortran -c basic.f -I/usr/local/mpich2/include

$gfortran basic.o -L/usr/local/lib -lmarmot-profile -lmarmot-fortran

-lmarmot-core -lstdc++ -L/usr/local/mpich2/lib -lmpich -lpthread -lrt

Be sure to link the Marmot libs prior to the MPI libs and don’t forget to
link libmarmot-fortran, too.

The Marmot compiler wrappers will attempt a source to source translation,
which adds additional source code data to the MPI calls. For some Fortran
applications this may fail, use the extra argument –marmot-noinst in these
cases. You can also run marmotf77/marmotf90 without any arguments to see
all options.

3.1.3 Hybrid programs

A Marmot installation configured with OpenMP support works like a normal
installation. You can use marmotcc (marmotf77 resp.) to compile an link your
programs. The compiler wrappers will automatically include the necessary MPI
library and the OpenMP flag, include paths and libraries.

16

3.2 Running the application 3 USAGE

3.2 Running the application

3.2.1 Invocation

To run the application, one has to add an additional process working as debug
server, i.e. one needs (n+1) instead of n processes:

$mpirun -np (n+1) foo

Marmot’s output is written to a logfile (see Section 3.3).
Note on hybrid programs:

Running a program compiled with an OpenMP supporting version of Mar-
mot works as usual. Bur you might have to set additional environmental vari-
ables in order to enable MPI/OpenMP interoperability on your system.

3.2.2 Influential environment variables

The following environment variables affect Marmot’s behaviour at runtime:

MARMOT DEBUG MODE 0: errors,
1: errors and warnings,
2: errors, warnings and remarks are reported
(default)

MARMOT LOGFILE TYPE 0: ASCII Logging (default),
1: HTML Logging,
2: CUBE Logging (when enabled via
configure),
3: VAMPIR Logging (when enabled via
configure) (not implemented yet)

MARMOT LOG FILTER COUNT Limits how often a sepecific problem is
recoreded (default: 50)

MARMOT LOG FLUSH TYPE 0: Flush on Error (default),
1: Immediate Flush

MARMOT RESOURCE TRACE SELECTION 0: On (Full resource tracing if source-locations
are present and quantitative tracing otherwise)
(default),
1: Off (no additional resource tracing, some
tracing is still done in order to detect certain
errors)

MARMOT INTERFACE MODE 0: C interface,
1: Fortran interface,
interface mode is set automatically

MARMOT SERIALIZE 0: code is not serialized,
1: code is serialized (default)

MARMOT TRACE CALLS 1: calls are traced with output to stderr,
traceback in case of a deadlock is possible
(default),

17

3.3 Marmot’s output 3 USAGE

0: calls are traced without output to stderr,
traceback in case of a deadlock is possible,
-1: calls are not traced, traceback in case of a
deadlock is NOT possible.

MARMOT MAX PEND COUNT maximum number of calls that are traced back
(default 10)

MARMOT MAX TIMEOUT DEADLOCK maximum message time (default 106
µs)

MARMOT MAX TIMEOUT SERIALIZE maximum message time (default 103
µs)

3.3 Marmot’s output

Marmot’s output can be set to one of currently three modes. ASCII logging,
HTML logging and Cube logging. The mode is set via the environment variable
MARMOT LOGFILE TYPE (see Section 3.2.2). In the following, the different
modes are compared by having a look at the output of a small program named
deadlock1.c in the directory TEST C. The source code can be seen in Figure 3.

As the name suggests, this program deadlocks. So let’s have a look at
Marmot’s output, depending on the logging mode.

18

3.3 Marmot’s output 3 USAGE

#include <stdio.h>

#include "mpi.h"

int main(int argc, char **argv)

{

const int COUNT = 1;

const int MSG_TAG_1 = 17;

const int MSG_TAG_2 = 18;

int rank = -1;

int size = -1;

int dummy = 0;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(" I am rank %d of %d PEs\n", rank, size);

if (size < 2)

{

fprintf(stderr, " This program needs at least 2 PEs!\n");

}

else

{

if (rank == 0)

{

MPI_Recv(&dummy, COUNT, MPI_INT, 1, MSG_TAG_1, \\

MPI_COMM_WORLD, &status);

MPI_Send(&dummy, COUNT, MPI_INT, 1, MSG_TAG_2, \\

MPI_COMM_WORLD);

}

if (rank == 1)

{

MPI_Recv(&dummy, COUNT, MPI_INT, 0, MSG_TAG_2, \\

MPI_COMM_WORLD, &status);

MPI_Send(&dummy, COUNT, MPI_INT, 0, MSG_TAG_1, \\

MPI_COMM_WORLD);

}

}

MPI_Finalize();

return 0;

}

Figure 3: deadlock1.c

19

3.3 Marmot’s output 3 USAGE

3.3.1 ASCII logging

Figure 4: ASCII logging (excerpt)

The output file in ASCII logging mode is named Marmot EXE YYYYMMDD hhmmss.txt,
where EXE denotes the name of your executable, and YYYYMMDD hhmmss
is a timestamp.

20

3.3 Marmot’s output 3 USAGE

3.3.2 HTML logging

Figure 5: HTML logging (excerpt)

The output file in HTML logging mode is named MarmotLog EXE YYYYMMDD hhmmss.html.

21

3.3 Marmot’s output 3 USAGE

3.3.3 CUBE logging

Figure 6: CUBE logging

The output file in CUBE logging mode is named MarmotLog EXE YYYYMMDD hhmmss.cube.
Further a folder named MARMOT HTML is created, which contains detailed
information. To view it with the Cube browser, type

$cube MarmotLog EXE YYYYMMDD hhmmss.cube or $cube3 MarmotLog EXE YYYYMMDD hhmmss.cube

for the most recent version of the Cube browser.

3.3.4 Running DDT with Marmot’s plugin

Install the Marmot plugin as described in section 2.6. Compile your program

with the original MPI compiler wrappers (e.g. mpicc) and don’t forget to include

debug information in the executable (usually with -g):

22

3.3 Marmot’s output 3 USAGE

$mpicc -g -o yourprogram yourprogram.c

Launch DDT and go to Session → New Session → Run In the advanced
view, select the Marmot plugin:

Figure 7: DDT plugin selection

Run the application with the original number of processes. DDT will auto-
matically add one process for Marmot’s debug server, which is not displayed.
When Marmot detects an error DDT will pause the execution and pop up a
window:

23

3.3 Marmot’s output 3 USAGE

Figure 8: Marmot detects error from within DDT

When run from within DDT Marmot still creates its logfile for later analysis.

24

A INSTALLATION EXAMPLES

A Installation Examples

Marmot was (and is being) tested on a variety of different machines, including
installations at HLRS and ZIH. As mentioned in Section 2.3 on page 7, it is
usually necessary to configure Marmot with different options, depending on the
specific hardware and software of the target platform. These adjustments have
to be made because of

• the used compiler (e.g., GCC or Intel)

• the used MPI library (e.g., OpenMPI or IntelMPI) and the compiler it
was built with

• the used interconnection (e.g. Myrinet)

• the paths where libraries and/or include files reside

• the desired features Marmot can be compiled with (e.g. CUBE support)

A.1 Overview

In the following, four installation processes are presented in more detail, to give
the user an idea on how to configure and install Marmot, as well as running a
simple test program.

1. “Cacau”: A cluster of 204 Intel Xeon EM64T nodes, Node-Node inter-
connect Voltaire Infiniband, Intel Compiler, MPI library, OpenMPI, Batch
system: Torque, Maui scheduler

2. “A1”: A NEC SX-8 cluster with 72 SX-8 nodes, each having 8 CPUs,
Node-Node interconnect IXS, NEC SX (cross)compiler, MPI library: NECmpi,
Batch system: NQSII

3. “Windows HPC Server 2008 cluster”: A 17 node cluster with Mi-
crosoft HPC pack v.2

4. “bwGrid”: A cluster with 868 Quad-Core Intel Xeon processors (3472
cores). Infiniband interconnection. Open MPI, MVAPICH

Of course it is unlikley that you will build Marmot in exactly the same environ-
ment, so at least the used paths will differ from yours.

A.2 Configuration, installation and compilation

A.2.1 Cacau

Configuration and installation:

$./configure --with-mpi-dir=/opt/OpenMPI/1.2.2

--disable-tests --disable-doc

25

A.2 Configuration, installation and compilationA INSTALLATION EXAMPLES

--prefix=$INSTALL DIR

CXXFLAGS="-g -Wall -I/opt/OpenMPI/ 1.2.2/include/openmpi"

CFLAGS="-g -Wall "

FFLAGS="-g -Wall "

CXX="icpc"

CC="icc"

CPP="icc -E"

F77="ifort"

$make

$make install

Compilation of a test program:

$cd TEST C

$marmotcc -o deadlock1 deadlock1.c --marmot-verbose

mpicc -o deadlock1 deadlock1.c -L/usr/local/marmot/lib -lmarmot-profile

-lmarmot-core -L/opt/OpenMPI/1.2.2/lib -lmpi -lpthread -L/usr/lib -lstdc++

-I/usr/local/marmot/include

Running the test program:

$mpirun -np 3 ./deadlock1

I am rank 0 of 2 PEs

I am rank 1 of 2 PEs

WARNING: all clients are pending! (Details see the LogFile)

A.2.2 A1

Configuration and installation:

$cd MARMOT

$export SX BASE CROSS=/SX/opt/crosskit/inst/

$export PATH=/SX/usr/bin/:$PATH

$export SX BASE CPLUS=/SX/opt/sxc++/inst

$export SX BASE F90=/SX/opt/sxf90/inst

$export SX BASE MPI=/SX/opt/mpisx/inst

$export CC="sxcc"

$export CXX="sxc++"

$export F77="sxf90"

$export CPP="sxcc -E"

$export AR="sxar"

$export CXXFLAGS="-K exceptions"

$export PRELINK=1

$export RANLIB="sxar -s"

$./configure --with-mpi-dir=/opt/NECmpi --disable-tests --disable-doc

--prefix=$INSTALL DIR --host=sx8-nec-superux

26

A.2 Configuration, installation and compilationA INSTALLATION EXAMPLES

$make

$make install

Compilation of a test program:

$cd TEST C

$sxc++ deadlock1.c -c

$sxmpic++ -K exceptions -mpiprof -o deadlock1 deadlock1.o -I../SRC/INCLUDE

-L../LIB -lmarmot-profile -lmarmot-core -f90lib

Running the test program:

$mpirun -np 3 ./deadlock1

I am rank 0 of 2 PEs

I am rank 1 of 2 PEs

WARNING: all clients are pending! (Details see the LogFile)

A.2.3 Windows HPC Server 2008 cluster

Configuration and installation:

• Create a directory for the generated files

• Start CMake and select the root of the marmot sources and the path for
the generated files

• Click on the “Configure” button

• Select a generator according to the VisualStudio version installed (Please
note that if you intend to enable Fortran support it is advisable to select
the NMake generator)

• Change the field “USED MPI PACKAGE” to MPI (Default find module is
MPICH)

• Adjust the configuration options to your needs

• Click on the “Configure” button again and then “Generate”

• Open the generated solution file with VisualStudio and build the “ALL BUILD”
target and then the “INSTALL” target

• Change the build configuration from “Debug” to “Release” and reiterate

• All the necessary files can be found in the directory set in CMAKE INSTALL PREFIX.
You may copy/move the contents of this directory anywhere you wish. Set
the environment variable MARMOT HOME to the directory you installed/copied
marmot to. (It is not necessary to set MARMOT HOME if you used the installer
to set-up Marmot.)

27

A.2 Configuration, installation and compilationA INSTALLATION EXAMPLES

Compilation of a test program:

For VisualStudio 2008 there is an example solution file in $MARMOT_HOME\share\

marmot\examples\marmot-vs-demo. The project should compile this small ex-
ample as longs as the $MARMOT HOME environment variable is set and the Micro-
soft HPC SDK is installed. If you prefer to use CMake in your project there is
an example CMakeLists.txt file in $MARMOT_HOME\share\marmot\examples\

mpihello which you may use as a starting point.

Running the test program:

Open a command shell and change to the Debug or Release subdirectory (de-
pending which configuration you built). Launch the test application with:

$mpiexec -n 3 sdk-demo.exe

An alternative way to launch applications and also to have a look at the marmot
messages is the usage of the Marmot-Addin for VisualStudio.

• Either use the marmot installer or start $MARMOT_HOME\bin\register_

marmot_addin.bat in order to register the Addin in VisualStudio.

• Open your project file and select a “Startup Project”.

• Compile the subproject if it was not built yet.

• Click on the leftmost button in the Marmot-Addin toolbar (this will setup
a commandline with mpiexec some environment variables and the correct
absolute path to the executable. Note: If you edit this line manually you
have to confirm any changes made by hitting the return-key.

• Click on the “Run” button in the Marmot-Addin toolbar to launch the
application.

• You should see the marmot output in the build pane of VisualStudio (just
like regular error or warning messages coming from the compiler).

• If you use VisualStudio 2008 or later you will get an extra tool window
that displays the Marmot output.

A.2.4 bwGrid

Configuration and installation:

$cd MARMOT

$./configure --prefix=/opt/bwgrid/debugger/marmot

--with-mpi-dir=/opt/bwgrid/mpi/mvapich2/1.0.3-gcc --disable-tests

--enable-shared-libs F77=gfortran CXXFLAGS=-DMPICH IGNORE CXX SEEK

28

A.2 Configuration, installation and compilationA INSTALLATION EXAMPLES

$make

$make install

Compilation of a test program:
$cd TEST C

$marmotcc --marmot-verbose -o pending-msg pending-msg.c

mpicc -I/opt/bwgrid/debugger/marmot/include -o pending-msg pending-msg.c

-L/opt/bwgrid/debugger/marmot/lib -lmarmot-profile -lmarmot-core

-L/opt/bwgrid/mpi/mvapich2/1.2p1-intel-10.1/lib -lmpich -lpthread -L/usr/lib

-lstdc++

Running the test program:
$mpirun -np 5 ./pending-msg

We call Finalize when there is still a non-received message pending

I am rank 0 of 4 PEs

I am rank 2 of 4 PEs

I am rank 1 of 4 PEs

I am rank 3 of 4 PEs

29

REFERENCES REFERENCES

References

[SCALASCA] Scalable Performance Analysis of Large-Scale Applications, FZ
Jülich, available at http://www.fz-juelich.de/jsc/scalasca/

[AUTOCONF] Autoconf - GNU Project - Free Software Foundation (FSF),
http://www.gnu.org/software/autoconf/

[AUTOMAKE] GNU Automake - GNU Project - Free Software Foundation
(FSF), http://www.gnu.org/software/automake/

[DOXYGEN] Doxygen, http://www.doxygen.org/

[CMAKE] CMake, http://www.cmake.org

[ALLINEA] Allinea Software, http://www.allinea.com

30

